Skip to yearly menu bar Skip to main content


Timezone: Canada/Pacific

Registration Desk: Registration (East & West) Fri 13 Dec 07:30 a.m.  


Invited Talk: Danica Kragic

Learning for Interaction and Interaction for Learning

To ask a question remotely, visit Slido and enter #neurips2024?

Humans learn though interaction and interact to learn. Automating highly dextreous tasks such as food handling, garment sorting, or assistive dressing relies on advances in mathematical modeling, perception, planning, control, to name a few. The advances in data-driven approaches, with the development of better simulation tools, allows for addressing these through systematic benchmarking of relevant methods. This can provide better understanding of what theoretical developments need to be made and how practical systems can be implemented and evaluated to provide flexible, scalable, and robust solutions. But are we solving the appropriate scientific problems and making the neccesarry step toward general solutions? This talk will showcase some of the challenges in developing physical interaction capabilities in robots, and overview our ongoing work on multimodal representation learning, latent space planning, learning physically-consistent reduced-order dynamics, visuomotor skill learning, and peak into our recent work on olfaction encoding.

Danica Kragic

 

Danica Kragic is a Professor at the School of Computer Science and Communication at the Royal Institute of Technology, KTH. She received MSc in Mechanical Engineering from the Technical University of Rijeka, Croatia in 1995 and PhD in Computer Science from KTH in 2001. She has been a visiting researcher at Columbia University, Johns Hopkins University and INRIA Rennes. She is the Director of the Centre for Autonomous Systems. Danica received the 2007 IEEE Robotics and Automation Society Early Academic Career Award. She is a member of the Royal Swedish Academy of Sciences, Royal Swedish Academy of Engineering Sciences and Founding member of Young Academy of Sweden. She holds a Honorary Doctorate from the Lappeenranta University of Technology and Technical Univeristy of Rijeka. Her research is in the area of robotics, computer vision and machine learning. She received an ERC Starting and ERC Advanced grants and a Distinguished Professor Grant from the Swedish research Council. Her research is supported by the Knut and Alice Wallenberg Foundation, Swedish Foundation for Strategic Research, EU and Swedish Research Council. She is an IEEE Fellow.



Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Meetup: Quiet Streaming Hangout Fri 13 Dec 09:00 a.m.  


Oral Session 5C: Machine Vision Fri 13 Dec 10:00 a.m.  

Oral
Haonan Lin · Wenbin An · Jiahao Wang · Yan Chen · Feng Tian · Mengmeng Wang · QianYing Wang · Guang Dai · Jingdong Wang

[ East Ballroom A, B ]

Abstract
Recent advancements have shown promise in applying traditional Semi-Supervised Learning strategies to the task of Generalized Category Discovery (GCD). Typically, this involves a teacher-student framework in which the teacher imparts knowledge to the student to classify categories, even in the absence of explicit labels. Nevertheless, GCD presents unique challenges, particularly the absence of priors for new classes, which can lead to the teacher's misguidance and unsynchronized learning with the student, culminating in suboptimal outcomes. In our work, we delve into why traditional teacher-student designs falter in generalized category discovery as compared to their success in closed-world semi-supervised learning. We identify inconsistent pattern learning as the crux of this issue and introduce FlipClass—a method that dynamically updates the teacher to align with the student's attention, instead of maintaining a static teacher reference. Our teacher-attention-update strategy refines the teacher's focus based on student feedback, promoting consistent pattern recognition and synchronized learning across old and new classes. Extensive experiments on a spectrum of benchmarks affirm that FlipClass significantly surpasses contemporary GCD methods, establishing new standards for the field.
Oral
Felix Petersen · Hilde Kuehne · Christian Borgelt · Julian Welzel · Stefano Ermon

[ East Ballroom A, B ]

Abstract
With the increasing inference cost of machine learning models, there is a growing interest in models with fast and efficient inference. Recently, an approach for learning logic gate networks directly via a differentiable relaxation was proposed. Logic gate networks are faster than conventional neural network approaches because their inference only requires logic gate operators such as NAND, OR, and XOR, which are the underlying building blocks of current hardware and can be efficiently executed. We build on this idea, extending it by deep logic gate tree convolutions, logical OR pooling, and residual initializations. This allows scaling logic gate networks up by over one order of magnitude and utilizing the paradigm of convolution. On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
Oral
Peter Tong · Ellis Brown · Penghao Wu · Sanghyun Woo · Adithya Jairam Vedagiri IYER · Sai Charitha Akula · Shusheng Yang · Jihan Yang · Manoj Middepogu · Ziteng Wang · Xichen Pan · Rob Fergus · Yann LeCun · Saining Xie

[ East Ballroom A, B ]

Abstract
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures—self-supervised, strongly supervised, or combinations thereof—based on experiments with over 15 vision models. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks. To further improve visual grounding, we propose spatial vision aggregator (SVA), a dynamic and spatially-aware connector that integrates vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of distribution balancing. Collectively, Cambrian-1 not only achieves state-of-the-art performances but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.

Session: Overflow for Oral Session 5B: Graph Neural Networks, Causal Inference Fri 13 Dec 10:00 a.m.  


Oral Session 5D: Machine Learning and Science Fri 13 Dec 10:00 a.m.  

Oral
Zhongchao Yi · Zhengyang Zhou · Qihe Huang · Yanjiang Chen · Liheng Yu · Xu Wang · Yang Wang

[ East Meeting Room 1-3 ]

Abstract
Spatiotemporal learning has become a pivotal technique to enable urban intelligence. Traditional spatiotemporal models mostly focus on a specific task by assuming a same distribution between training and testing sets. However, given that urban systems are usually dynamic, multi-sourced with imbalanced data distributions, current specific task-specific models fail to generalize to new urban conditions and adapt to new domains without explicitly modeling interdependencies across various dimensions and types of urban data. To this end, we argue that there is an essential to propose a Continuous Multi-task Spatio-Temporal learning framework (CMuST) to empower collective urban intelligence, which reforms the urban spatiotemporal learning from single-domain to cooperatively multi-dimensional and multi-task learning. Specifically, CMuST proposes a new multi-dimensional spatiotemporal interaction network (MSTI) to allow cross-interactions between context and main observations as well as self-interactions within spatial and temporal aspects to be exposed, which is also the core for capturing task-level commonality and personalization. To ensure continuous task learning, a novel Rolling Adaptation training scheme (RoAda) is devised, which not only preserves task uniqueness by constructing data summarization-driven task prompts, but also harnesses correlated patterns among tasks by iterative model behavior modeling. We further establish a benchmark of three cities for multi-task spatiotemporal learning, …
Oral
Zekun Shi · Zheyuan Hu · Min Lin · Kenji Kawaguchi

[ East Meeting Room 1-3 ]

Abstract
Optimizing neural networks with loss that contain high-dimensional and high-order differential operators is expensive to evaluate with back-propagation due to $\mathcal{O}(d^{k})$ scaling of the derivative tensor size and the $\mathcal{O}(2^{k-1}L)$ scaling in the computation graph, where $d$ is the dimension of the domain, $L$ is the number of ops in the forward computation graph, and $k$ is the derivative order. In previous works, the polynomial scaling in $d$ was addressed by amortizing the computation over the optimization process via randomization. Separately, the exponential scaling in $k$ for univariate functions ($d=1$) was addressed with high-order auto-differentiation (AD). In this work, we show how to efficiently perform arbitrary contraction of the derivative tensor of arbitrary order for multivariate functions, by properly constructing the input tangents to univariate high-order AD, which can be used to efficiently randomize any differential operator. When applied to Physics-Informed Neural Networks (PINNs), our method provides >1000$\times$ speed-up and >30$\times$ memory reduction over randomization with first-order AD, and we can now solve 1-million-dimensional PDEs in 8 minutes on a single NVIDIA A100 GPU. This work opens the possibility of using high-order differential operators in large-scale problems.
Oral
Gabriel Poesia · David Broman · Nick Haber · Noah Goodman

[ East Meeting Room 1-3 ]

Abstract
How did humanity coax mathematics from the aether? We explore the Platonic view that mathematics can be discovered from its axioms---a game of conjecture and proof. We describe an agent that jointly learns to pose challenging problems for itself (conjecturing) and solve them (theorem proving). Given a mathematical domain axiomatized in dependent type theory, we first combine methods for constrained decoding and type-directed synthesis to sample valid conjectures from a language model. Our method guarantees well-formed conjectures by construction, even as we start with a randomly initialized model. We use the same model to represent a policy and value function for guiding proof search. Our agent targets generating hard but provable conjectures --- a moving target, since its own theorem proving ability also improves as it trains. We propose novel methods for hindsight relabeling on proof search trees to significantly improve the agent's sample efficiency in both tasks. Experiments on 3 axiomatic domains (propositional logic, arithmetic and group theory) demonstrate that our agent can bootstrap from only the axioms, self-improving in generating true and challenging conjectures and in finding proofs.

Oral Session 5B: Graph Neural Networks, Causal Inference Fri 13 Dec 10:00 a.m.  

Oral
Dongxiao He · Lianze Shan · Jitao Zhao · Hengrui Zhang · Zhen Wang · Weixiong Zhang

[ West Meeting Room 211-214 ]

Abstract
Graph Contrastive Learning (GCL) has emerged as a powerful approach for generating graph representations without the need for manual annotation. Most advanced GCL methods fall into three main frameworks: node discrimination, group discrimination, and bootstrapping schemes, all of which achieve comparable performance. However, the underlying mechanisms and factors that contribute to their effectiveness are not yet fully understood. In this paper, we revisit these frameworks and reveal a common mechanism—representation scattering—that significantly enhances their performance. Our discovery highlights an essential feature of GCL and unifies these seemingly disparate methods under the concept of representation scattering. To leverage this insight, we introduce Scattering Graph Representation Learning (SGRL), a novel framework that incorporates a new representation scattering mechanism designed to enhance representation diversity through a center-away strategy. Additionally, consider the interconnected nature of graphs, we develop a topology-based constraint mechanism that integrates graph structural properties with representation scattering to prevent excessive scattering. We extensively evaluate SGRL across various downstream tasks on benchmark datasets, demonstrating its efficacy and superiority over existing GCL methods. Our findings underscore the significance of representation scattering in GCL and provide a structured framework for harnessing this mechanism to advance graph representation learning. The code of SGRL is at …
Oral
Siyuan Guo · Chi Zhang · Karthika Mohan · Ferenc Huszar · Bernhard Schölkopf

[ West Meeting Room 211-214 ]

Abstract
We study causal effect estimation in a setting where the data are not i.i.d.$\ $(independent and identically distributed). We focus on exchangeable data satisfying an assumption of independent causal mechanisms. Traditional causal effect estimation frameworks, e.g., relying on structural causal models and do-calculus, are typically limited to i.i.d. data and do not extend to more general exchangeable generative processes, which naturally arise in multi-environment data. To address this gap, we develop a generalized framework for exchangeable data and introduce a truncated factorization formula that facilitates both the identification and estimation of causal effects in our setting. To illustrate potential applications, we introduce a causal Pólya urn model and demonstrate how intervention propagates effects in exchangeable data settings. Finally, we develop an algorithm that performs simultaneous causal discovery and effect estimation given multi-environment data.
Oral
Feng Xie · Zhen Yao · Lin Xie · Yan Zeng · Zhi Geng

[ West Meeting Room 211-214 ]

Abstract
We consider the challenging problem of estimating causal effects from purely observational data in the bi-directional Mendelian randomization (MR), where some invalid instruments, as well as unmeasured confounding, usually exist. To address this problem, most existing methods attempt to find proper valid instrumental variables (IVs) for the target causal effect by expert knowledge or by assuming that the causal model is a one-directional MR model. As such, in this paper, we first theoretically investigate the identification of the bi-directional MR from observational data. In particular, we provide necessary and sufficient conditions under which valid IV sets are correctly identified such that the bi-directional MR model is identifiable, including the causal directions of a pair of phenotypes (i.e., the treatment and outcome).Moreover, based on the identification theory, we develop a cluster fusion-like method to discover valid IV sets and estimate the causal effects of interest.We theoretically demonstrate the correctness of the proposed algorithm.Experimental results show the effectiveness of our method for estimating causal effects in both one-directional and bi-directional MR models.

Oral Session 5A: Graph Neural Networks Fri 13 Dec 10:00 a.m.  

Oral
Yulia Rubanova · Tatiana Lopez-Guevara · Kelsey Allen · Will Whitney · Kimberly Stachenfeld · Tobias Pfaff

[ West Exhibition Hall C, B3 ]

Abstract
Simulating large scenes with many rigid objects is crucial for a variety of applications, such as robotics, engineering, film and video games. Rigid interactions are notoriously hard to model: small changes to the initial state or the simulation parameters can lead to large changes in the final state. Recently, learned simulators based on graph networks (GNNs) were developed as an alternative to hand-designed simulators like MuJoCo and Bullet. They are able to accurately capture dynamics of real objects directly from real-world observations. However, current state-of-the-art learned simulators operate on meshes and scale poorly to scenes with many objects or detailed shapes. Here we present SDF-Sim, the first learned rigid-body simulator designed for scale. We use learned signed-distance functions (SDFs) to represent the object shapes and to speed up distance computation. We design the simulator to leverage SDFs and avoid the fundamental bottleneck of the previous simulators associated with collision detection.For the first time in literature, we demonstrate that we can scale the GNN-based simulators to scenes with hundreds of objects and up to 1.1 million nodes, where mesh-based approaches run out of memory. Finally, we show that SDF-Sim can be applied to real world scenes by extracting SDFs from multi-view …
Oral
Raffaele Paolino · Sohir Maskey · Pascal Welke · Gitta Kutyniok

[ West Exhibition Hall C, B3 ]

Abstract
We introduce $r$-loopy Weisfeiler-Leman ($r$-$\ell$WL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, $r$-$\ell$MPNN, that can count cycles up to length $r{+}2$. Most notably, we show that $r$-$\ell$WL can count homomorphisms of cactus graphs. This extends 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to $k$-WL for any fixed $k$. We empirically validate the expressive and counting power of $r$-$\ell$MPNN on several synthetic datasets and demonstrate the scalability and strong performance on various real-world datasets, particularly on sparse graphs.
Oral
Ioannis Kalogeropoulos · Giorgos Bouritsas · Yannis Panagakis

[ West Exhibition Hall C, B3 ]

Abstract
This paper pertains to an emerging machine learning paradigm: learning higher- order functions, i.e. functions whose inputs are functions themselves, particularly when these inputs are Neural Networks (NNs). With the growing interest in architectures that process NNs, a recurring design principle has permeated the field: adhering to the permutation symmetries arising from the connectionist structure ofNNs. However, are these the sole symmetries present in NN parameterizations? Zooming into most practical activation functions (e.g. sine, ReLU, tanh) answers this question negatively and gives rise to intriguing new symmetries, which we collectively refer to as scaling symmetries, that is, non-zero scalar multiplications and divisions of weights and biases. In this work, we propose Scale Equivariant Graph MetaNetworks - ScaleGMNs, a framework that adapts the Graph Metanetwork (message-passing) paradigm by incorporating scaling symmetries and thus rendering neuron and edge representations equivariant to valid scalings. We introduce novel building blocks, of independent technical interest, that allow for equivariance or invariance with respect to individual scalar multipliers or their product and use them in all components of ScaleGMN. Furthermore, we prove that, under certain expressivity conditions, ScaleGMN can simulate the forward and backward pass of any input feedforward neural network. Experimental results demonstrate that our …

Session: Overflow for Oral Session 5D: Machine Learning and Science Fri 13 Dec 10:00 a.m.  


Poster Session 5 East Fri 13 Dec 11:00 a.m.  

Poster
Che Liu · Cheng Ouyang · Sibo Cheng · Anand Shah · Wenjia Bai · Rossella Arcucci

[ East Exhibit Hall A-C ]

Abstract
Medical imaging tasks require an understanding of subtle and localized visual features due to the inherently detailed and area-specific nature of pathological patterns, which are crucial for clinical diagnosis. Although recent advances in medical vision-language pre-training (VLP) enable models to learn clinically relevant visual features by leveraging both medical images and their associated radiology reports, current medical VLP methods primarily focus on aligning images with entire reports. This focus hinders the learning of dense (pixel-level) visual features and is suboptimal for dense prediction tasks (e.g., medical image segmentation).To address this challenge, we propose a novel medical VLP framework, named **Global to Dense level representation learning (G2D)**, which aims to learn global and dense visual features simultaneously using only image-text pairs without extra annotations. In particular, G2D designs a **Pseudo Segmentation (PS)** task, which enables the model to learn dense visual features during VLP. Notably, generating PS masks can be performed on the fly during VLP, which does not incur extra trainable parameters. With this simple yet effective idea, G2D achieves superior performance across 5 medical imaging tasks and 25 diseases. Particularly, in the segmentation task which requires dense visual features, **G2D surpasses existing models even with just 1% of the …
Poster
Jin Woo Lee · Jaehyun Park · Min Jun Choi · Kyogu Lee

[ East Exhibit Hall A-C ]

Abstract
While significant advancements have been made in music generation and differentiable sound synthesis within machine learning and computer audition, the simulation of instrument vibration guided by physical laws has been underexplored. To address this gap, we introduce a novel model for simulating the spatio-temporal motion of nonlinear strings, integrating modal synthesis and spectral modeling within a neural network framework. Our model leverages mechanical properties and fundamental frequencies as inputs, outputting string states across time and space that solve the partial differential equation characterizing the nonlinear string. Empirical evaluations demonstrate that the proposed architecture achieves superior accuracy in string motion simulation compared to existing baseline architectures. The code and demo are available online.
Spotlight Poster
Xi (Nicole) Zhang · Yuan Pu · Yuki Kawamura · Andrew Loza · Yoshua Bengio · Dennis Shung · Alexander Tong

[ East Exhibit Hall A-C ]

Abstract
Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medicine. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose **Trajectory Flow Matching** (TFM), which trains a Neural SDE in a *simulation-free* manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on four clinical time series datasets both in terms of absolute performance and uncertainty prediction, a crucial parameter in this setting.
Poster
Yangyang Yu · Zhiyuan Yao · Haohang Li · Zhiyang Deng · Yuechen Jiang · Yupeng Cao · Zhi Chen · Jordan Suchow · Zhenyu Cui · Rong Liu · Zhaozhuo Xu · Denghui Zhang · Koduvayur (Suba) Subbalakshmi · GUOJUN XIONG · Yueru He · Jimin Huang · Dong Li · Qianqian Xie

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have demonstrated notable potential in conducting complex tasks and are increasingly utilized in various financial applications. However, high-quality sequential financial investment decision-making remains challenging. These tasks require multiple interactions with a volatile environment for every decision, demanding sufficient intelligence to maximize returns and manage risks. Although LLMs have been used to develop agent systems that surpass human teams and yield impressive investment returns, opportunities to enhance multi-source information synthesis and optimize decision-making outcomes through timely experience refinement remain unexplored. Here, we introduce FinCon, an LLM-based multi-agent framework tailored for diverse financial tasks. Inspired by effective real-world investment firm organizational structures, FinCon utilizes a manager-analyst communication hierarchy. This structure allows for synchronized cross-functional agent collaboration towards unified goals through natural language interactions and equips each agent with greater memory capacity than humans. Additionally, a risk-control component in FinCon enhances decision quality by episodically initiating a self-critiquing mechanism to update systematic investment beliefs. The conceptualized beliefs serve as verbal reinforcement for the future agent’s behavior and can be selectively propagated to the appropriate node that requires knowledge updates. This feature significantly improves performance while reducing unnecessary peer-to-peer communication costs. Moreover, FinCon demonstrates strong generalization capabilities in various financial …
Poster
Hiroshi Kera · Yuki Ishihara · Yuta Kambe · Tristan Vaccon · Kazuhiro Yokoyama

[ East Exhibit Hall A-C ]

Abstract
Solving a polynomial system, or computing an associated Gröbner basis, has been a fundamental task in computational algebra. However, it is also known for its notorious doubly exponential time complexity in the number of variables in the worst case. This paper is the first to address the learning of Gröbner basis computation with Transformers. The training requires many pairs of a polynomial system and the associated Gröbner basis, raising two novel algebraic problems: random generation of Gröbner bases and transforming them into non-Gröbner ones, termed as backward Gröbner problem. We resolve these problems with 0-dimensional radical ideals, the ideals appearing in various applications. Further, we propose a hybrid input embedding to handle coefficient tokens with continuity bias and avoid the growth of the vocabulary set. The experiments show that our dataset generation method is a few orders of magnitude faster than a naive approach, overcoming a crucial challenge in learning to compute Gröbner bases, and Gröbner computation is learnable in a particular class.
Poster
Michael Shalyt · Uri Seligmann · Itay Beit Halachmi · Ofir David · Rotem Elimelech · Ido Kaminer

[ East Exhibit Hall A-C ]

Abstract
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI.Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with 'near-true' formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm.In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas.We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures.We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for $\pi$, $\ln(2)$, Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This …
Poster
Nina Gubina · Andrei Dmitrenko · Gleb Solovev · Lyubov Yamshchikova · Oleg Petrov · Ivan Lebedev · Nikita Serov · Grigorii Kirgizov · Nikolay Nikitin · Vladimir Vinogradov

[ East Exhibit Hall A-C ]

Abstract
Co-crystallization is an accessible way to control physicochemical characteristics of organic crystals, which finds many biomedical applications. In this work, we present Generative Method for Co-crystal Design (GEMCODE), a novel pipeline for automated co-crystal screening based on the hybridization of deep generative models and evolutionary optimization for broader exploration of the target chemical space. GEMCODE enables fast *de novo* co-crystal design with target tabletability profiles, which is crucial for the development of pharmaceuticals. With a series of experimental studies highlighting validation and discovery cases, we show that GEMCODE is effective even under realistic computational constraints. Furthermore, we explore the potential of language models in generating co-crystals. Finally, we present numerous previously unknown co-crystals predicted by GEMCODE and discuss its potential in accelerating drug development.
Poster
Wenrui Hao · Xinliang Liu · Yahong Yang

[ East Exhibit Hall A-C ]

Abstract
Solving nonlinear partial differential equations (PDEs) with multiple solutions is essential in various fields, including physics, biology, and engineering. However, traditional numerical methods, such as finite element and finite difference methods, often face challenges when dealing with nonlinear solvers, particularly in the presence of multiple solutions. These methods can become computationally expensive, especially when relying on solvers like Newton's method, which may struggle with ill-posedness near bifurcation points.In this paper, we propose a novel approach, the Newton Informed Neural Operator, which learns the Newton solver for nonlinear PDEs. Our method integrates traditional numerical techniques with the Newton nonlinear solver, efficiently learning the nonlinear mapping at each iteration. This approach allows us to compute multiple solutions in a single learning process while requiring fewer supervised data points than existing neural network methods.
Poster
Zangir Iklassov · Yali Du · Farkhad Akimov · Martin Takac

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have become pivotal in addressing reasoning tasks across diverse domains, including arithmetic, commonsense, and symbolic reasoning. They utilize prompting techniques such as Exploration-of-Thought, Decomposition, and Refinement to effectively navigate and solve intricate tasks. Despite these advancements, the application of LLMs to Combinatorial Problems (CPs), known for their NP-hardness and critical roles in logistics and resource management remains underexplored. To address this gap, we introduce a novel prompting strategy: Self-Guiding Exploration (SGE), designed to enhance the performance of solving CPs. SGE operates autonomously, generating multiple thought trajectories for each CP task. It then breaks these trajectories down into actionable subtasks, executes them sequentially, and refines the results to ensure optimal outcomes. We present our research as the first to apply LLMs to a broad range of CPs and demonstrate that SGE outperforms existing prompting strategies by over 27.84% in CP optimization performance. Additionally, SGE achieves a 2.46% higher accuracy over the best existing results in other reasoning tasks (arithmetic, commonsense, and symbolic).
Poster
Intekhab Hossain · Jonas Fischer · Rebekka Burkholz · John Quackenbush

[ East Exhibit Hall A-C ]

Abstract
The practical utility of machine learning models in the sciences often hinges on their interpretability. It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it aligns with already available domain knowledge - a dimension that is currently largely disregarded in the comparison of neural network models. While pruning can simplify deep neural network architectures and excels in identifying sparse models, as we show in the context of gene regulatory network inference, state-of-the-art techniques struggle with biologically meaningful structure learning. To address this issue, we propose DASH, a generalizable framework that guides network pruning by using domain-specific structural information in model fitting and leads to sparser, better interpretable models that are more robust to noise. Using both synthetic data with ground truth information, as well as real-world gene expression data, we show that DASH, using knowledge about gene interaction partners within the putative regulatory network, outperforms general pruning methods by a large margin and yields deeper insights into the biological systems being studied.
Poster
Daeho Um · Ji Won Yoon · Seong Jin Ahn · Yunha Yeo

[ East Exhibit Hall A-C ]

Abstract
Single-cell RNA sequencing (scRNA-seq) technologies enable the exploration of cellular heterogeneity and facilitate the construction of cell atlases. However, scRNA-seq data often contain a large portion of missing values (false zeros) or noisy values, hindering downstream analyses. To recover these false zeros, propagation-based imputation methods have been proposed using $k$-NN graphs. However they model only associating relationships among genes within a cell, while, according to well-known genetic evidence, there are both associating and dissociating relationships among genes. To apply this genetic evidence to gene-gene relationship modeling, this paper proposes a novel imputation method that newly employs dissociating relationships in addition to associating relationships. Our method constructs a $k$-NN graph to additionally model dissociating relationships via the negation of a given cell-gene matrix. Moreover, our method standardizes the value distribution (mean and variance) of each gene to have standard distributions regardless of the gene. Through extensive experiments, we demonstrate that the proposed method achieves exceptional performance gains over state-of-the-art methods in both cell clustering and gene expression recovery across six scRNA-seq datasets, validating the significance of using complete gene-gene relationships in accordance with genetic evidence. The source code is available at https://github.com/daehoum1/scCR.
Spotlight Poster
Xingyi Cheng · Bo Chen · Pan Li · Jing Gong · Jie Tang · Le Song

[ East Exhibit Hall A-C ]

Abstract
We explore optimally training protein language models, an area of significant interest in biological research where guidance on best practices is limited.Most models are trained with extensive compute resources until performance gains plateau, focusing primarily on increasing model sizes rather than optimizing the efficient compute frontier that balances performance and compute budgets.Our investigation is grounded in a massive dataset consisting of 939 million protein sequences. We trained over 300 models ranging from 3.5 million to 10.7 billion parameters on 5 to 200 billion unique tokens, to investigate the relations between model sizes, training token numbers, and objectives.First, we observed the effect of diminishing returns for the Causal Language Model (CLM) and that of overfitting for Masked Language Model (MLM) when repeating the commonly used Uniref database. To address this, we included metagenomic protein sequences in the training set to increase the diversity and avoid the plateau or overfitting effects. Second, we obtained the scaling laws of CLM and MLM on Transformer, tailored to the specific characteristics of protein sequence data. Third, we observe a transfer scaling phenomenon from CLM to MLM, further demonstrating the effectiveness of transfer through scaling behaviors based on estimated Effectively Transferred Tokens.Finally, to validate our scaling …
Poster
Dongfu Jiang · Max KU · Tianle Li · Yuansheng Ni · Shizhuo Sun · Rongqi Fan · Wenhu Chen

[ East Exhibit Hall A-C ]

Abstract
Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three tasks of text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 35 open-source generative models. GenAI-Arena has been operating for seven months, amassing over 9000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, and GPT-4o to mimic …
Poster
Juexiao Zhang · Gao Zhu · Sihang Li · Xinhao Liu · Haorui Song · Xinran Tang · Chen Feng

[ East Exhibit Hall A-C ]

Abstract
A proper scene representation is central to the pursuit of spatial intelligence where agents can robustly reconstruct and efficiently understand 3D scenes. A scene representation is either metric, such as landmark maps in 3D reconstruction, 3D bounding boxes in object detection, or voxel grids in occupancy prediction, or topological, such as pose graphs with loop closures in SLAM or visibility graphs in SfM. In this work, we propose to build Multiview Scene Graphs (MSG) from unposed images, representing a scene topologically with interconnected place and object nodes. The task of building MSG is challenging for existing representation learning methods since it needs to jointly address both visual place recognition, object detection, and object association from images with limited fields of view and potentially large viewpoint changes. To evaluate any method tackling this task, we developed an MSG dataset and annotation based on a public 3D dataset. We also propose an evaluation metric based on the intersection-over-union score of MSG edges. Moreover, we develop a novel baseline method built on mainstream pretrained vision models, combining visual place recognition and object association into one Transformer decoder architecture. Experiments demonstrate that our method has superior performance compared to existing relevant baselines.
Poster
Shayan Shekarforoush · David Lindell · Marcus Brubaker · David Fleet

[ East Exhibit Hall A-C ]

Abstract
Cryo-EM is an increasingly popular method for determining the atomic resolution 3D structure of macromolecular complexes (eg, proteins) from noisy 2D images captured by an electron microscope. The computational task is to reconstruct the 3D density of the particle, along with 3D pose of the particle in each 2D image, for which the posterior pose distribution is highly multi-modal. Recent developments in cryo-EM have focused on deep learning for which amortized inference has been used to predict pose. Here, we address key problems with this approach, and propose a new semi-amortized method, cryoSPIN, in which reconstruction begins with amortized inference and then switches to a form of auto-decoding to refine poses locally using stochastic gradient descent. Through evaluation on synthetic datasets, we demonstrate that cryoSPIN is able to handle multi-modal pose distributions during the amortized inference stage, while the later, more flexible stage of direct pose optimization yields faster and more accurate convergence of poses compared to baselines. On experimental data, we show that cryoSPIN outperforms the state-of-the-art cryoAI in speed and reconstruction quality.
Poster
Chen Hang · Zhe Ma · Haoming Chen · Xuwei Fang · Vincent Xie · Faming Fang · Guixu Zhang · Hongbin Wang

[ East Exhibit Hall A-C ]

Abstract
In image editing, Denoising Diffusion Implicit Models (DDIM) inversion has become a widely adopted method and is extensively used in various image editing approaches. The core concept of DDIM inversion stems from the deterministic sampling technique of DDIM, which allows the DDIM process to be viewed as an Ordinary Differential Equation (ODE) process that is reversible. This enables the prediction of corresponding noise from a reference image, ensuring that the restored image from this noise remains consistent with the reference image. Image editing exploits this property by modifying the cross-attention between text and images to edit specific objects while preserving the remaining regions. However, in the DDIM inversion, using the $t-1$ time step to approximate the noise prediction at time step $t$ introduces errors between the restored image and the reference image. Recent approaches have modeled each step of the DDIM inversion process as finding a fixed-point problem of an implicit function. This approach significantly mitigates the error in the restored image but lacks theoretical support regarding the existence of such fixed points. Therefore, this paper focuses on the study of fixed points in DDIM inversion and provides theoretical support. Based on the obtained theoretical insights, we further optimize the …
Poster
Chengkai Hou · Zhengrong Xue · Bingyang Zhou · Jinghan Ke · Lin Shao · Huazhe Xu

[ East Exhibit Hall A-C ]

Abstract
Detecting 3D keypoints with semantic consistency is widely used in many scenarios such as pose estimation, shape registration and robotics. Currently, most unsupervised 3D keypoint detection methods focus on the rigid-body objects. However, when faced with deformable objects, the keypoints they identify do not preserve semantic consistency well. In this paper, we introduce an innovative unsupervised keypoint detector Key-Grid for both the rigid-body and deformable objects, which is an autoencoder framework. The encoder predicts keypoints and the decoder utilizes the generated keypoints to reconstruct the objects. Unlike previous work, we leverage the identified keypoint in formation to form a 3D grid feature heatmap called grid heatmap, which is used in the decoder section. Grid heatmap is a novel concept that represents the latent variables for grid points sampled uniformly in the 3D cubic space, where these variables are the shortest distance between the grid points and the “skeleton” connected by keypoint pairs. Meanwhile, we incorporate the information from each layer of the encoder into the decoder section. We conduct an extensive evaluation of Key-Grid on a list of benchmark datasets. Key-Grid achieves the state-of-the-art performance on the semantic consistency and position accuracy of keypoints. Moreover, we demonstrate the robustness of …
Poster
Yuang Ai · Xiaoqiang Zhou · Huaibo Huang · Xiaotian Han · Zhengyu Chen · Quanzeng You · Hongxia Yang

[ East Exhibit Hall A-C ]

Abstract
Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets.To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model.**GenIR**, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation \& filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images.Our second contribution, **DreamClear**, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address.Our exhaustive experiments confirm DreamClear's …
Poster
Jiaqi Xu · Cuiling Lan · Wenxuan Xie · Xuejin Chen · Yan Lu

[ East Exhibit Hall A-C ]

Abstract
Video-Language Models (VLMs), powered by the advancements in Large Language Models (LLMs), are charting new frontiers in video understanding. A pivotal challenge is the development of an effective method to encapsulate video content into a set of representative tokens to align with LLMs. In this work, we introduce Slot-VLM, a new framework designed to generate semantically decomposed video tokens, in terms of object-wise and event-wise visual representations, to facilitate LLM inference. Particularly, we design an Object-Event Slots module, i.e., OE-Slots, that adaptively aggregates the dense video tokens from the vision encoder to a set of representative slots. In order to take into account both the spatial object details and the varied temporal dynamics, we build OE-Slots with two branches: the Object-Slots branch and the Event-Slots branch. The Object-Slots branch focuses on extracting object-centric slots from features of high spatial resolution but low frame sample rate, emphasizing detailed object information. The Event-Slots branch is engineered to learn event-centric slots from high temporal sample rate but low spatial resolution features. These complementary slots are combined to form the vision context, serving as the input to the LLM for effective video reasoning. Our experimental results demonstrate the effectiveness of our Slot-VLM, which achieves …
Poster
Yuze He · Wang Zhao · Shaohui Liu · Yubin Hu · Yushi Bai · Yu-Hui Wen · Yong-jin Liu

[ East Exhibit Hall A-C ]

Abstract
We introduce AlphaTablets, a novel and generic representation of 3D planes that features continuous 3D surface and precise boundary delineation. By representing 3D planes as rectangles with alpha channels, AlphaTablets combine the advantages of current 2D and 3D plane representations, enabling accurate, consistent and flexible modeling of 3D planes. We derive differentiable rasterization on top of AlphaTablets to efficiently render 3D planes into images, and propose a novel bottom-up pipeline for 3D planar reconstruction from monocular videos. Starting with 2D superpixels and geometric cues from pre-trained models, we initialize 3D planes as AlphaTablets and optimize them via differentiable rendering. An effective merging scheme is introduced to facilitate the growth and refinement of AlphaTablets. Through iterative optimization and merging, we reconstruct complete and accurate 3D planes with solid surfaces and clear boundaries. Extensive experiments on the ScanNet dataset demonstrate state-of-the-art performance in 3D planar reconstruction, underscoring the great potential of AlphaTablets as a generic 3D plane representation for various applications.
Poster
Hansol Lee · Tackgeun You · Hansoo Park · Woohyeon Shim · Sanghyeon Kim · Hwasup Lim

[ East Exhibit Hall A-C ]

Abstract
We introduce a novel implicit field representation tailored for multi-person interaction geometry in 3D spaces, capable of simultaneously reconstructing occupancy, instance identification (ID) tags, and contact fields. Volumetric representation of interacting human bodies presents significant challenges, including inaccurately captured geometries, varying degrees of occlusion, and data scarcity. Existing multi-view methods, which either reconstruct each subject in isolation or merge nearby 3D surfaces into a single unified mesh, often fail to capture the intricate geometry between interacting bodies and exploit on datasets with many views and a small group of people for training. Our approach utilizes an implicit representation for interaction geometry contextualized by a multi-view local-global feature module. This module adeptly aggregates both local and global information from individual views and interacting groups, enabling precise modeling of close physical interactions through dense point retrieval in small areas, supported by the implicit fields. Furthermore, we develop a synthetic dataset encompassing diverse multi-person interaction scenarios to enhance the robustness of our geometry estimation. The experimental results demonstrate the superiority of our method to accurately reconstruct human geometries and ID tags within three-dimensional spaces, outperforming conventional multi-view techniques. Notably, our method facilitates unsupervised estimation of contact points without the need for specific training …
Poster
Yuli Wang · Peng jian · Yuwei Dai · Craig Jones · Haris Sair · Jinglai Shen · Nicolas Loizou · jing wu · Wen-Chi Hsu · Maliha Imami · Zhicheng Jiao · Paul Zhang · Harrison Bai

[ East Exhibit Hall A-C ]

Abstract
Recent approaches to vision-language tasks are built on the remarkable capabilities of large vision-language models (VLMs). These models excel in zero-shot and few-shot learning, enabling them to learn new tasks without parameter updates. However, their primary challenge lies in their design, which primarily accommodates 2D input, thus limiting their effectiveness for medical images, particularly radiological images like MRI and CT, which are typically 3D. To bridge the gap between state-of-the-art 2D VLMs and 3D medical image data, we developed an innovative, one-pass, unsupervised representative slice selection method called Vote-MI, which selects representative 2D slices from 3D medical imaging. To evaluate the effectiveness of vote-MI when implemented with VLMs, we introduce BrainMD, a robust, multimodal dataset comprising 2,453 annotated 3D MRI brain scans with corresponding textual radiology reports and electronic health records. Based on BrainMD, we further develop two benchmarks, BrainMD-select (including the most representative 2D slice of 3D image) and BrainBench (including various vision-language downstream tasks). Extensive experiments on the BrainMD dataset and its two corresponding benchmarks demonstrate that our representative selection method significantly improves performance in zero-shot and few-shot learning tasks. On average, Vote-MI achieves a 14.6\% and 16.6\% absolute gain for zero-shot and few-shot learning, respectively, compared to …
Poster
Max Jiang · Yijing Bai · Andre Cornman · Christopher Davis · XIUKUN HUANG · Hong Jeon · Sakshum Kulshrestha · John Lambert · Shuangyu Li · Xuanyu Zhou · Carlos Fuertes · Chang Yuan · Mingxing Tan · Yin Zhou · Dragomir Anguelov

[ East Exhibit Hall A-C ]

Abstract
Simulation with realistic and interactive agents represents a key task for autonomous vehicle (AV) software development in order to test AV performance in prescribed, often long-tail scenarios. In this work, we propose SceneDiffuser, a scene-level diffusion prior for traffic simulation. We present a singular framework that unifies two key stages of simulation: scene initialization and scene rollout. Scene initialization refers to generating the initial layout for the traffic in a scene, and scene rollout refers to closed-loop simulation for the behaviors of the agents. While diffusion has been demonstrated to be effective in learning realistic, multimodal agent distributions, two open challenges remain: controllability and closed-loop inference efficiency and realism. To this end, to address controllability challenges, we propose generalized hard constraints, a generalized inference-time constraint mechanism that is simple yet effective. To improve closed-loop inference quality and efficiency, we propose amortized diffusion, a novel diffusion denoising paradigm that amortizes the physical cost of denoising over future simulation rollout steps, reducing the cost of per physical rollout step to a single denoising function evaluation, while dramatically reducing closed-loop errors. We demonstrate the effectiveness of our approach on the Waymo Open Dataset, where we are able to generate distributionally realistic scenes, while …
Poster
Bavesh Balaji · Jerrin Bright · Yuhao Chen · Sirisha Rambhatla · John Zelek · David Clausi

[ East Exhibit Hall A-C ]

Abstract
Accurate estimation of human pose and the pose of interacting objects, like a hockey stick, is crucial for action recognition and performance analysis, particularly in sports. Existing methods capture the object along with the human in the bounding boxes, assuming all keypoints are visible within the bounding box. This necessitates larger bounding boxes to capture the object, introducing unnecessary visual features and hindering performance in real-world cluttered environments. We propose a simple image and text-based multimodal solution TokenCLIPose that addresses this limitation. Our approach focuses solely on human keypoints within the bounding box, treating objects as unseen. TokenCLIPose leverages the rich semantic representations endowed by language for inducing keypoint-specific context, even for occluded keypoints. We evaluate the performance of TokenCLIPose on a real-world Ice-Hockey dataset, and demonstrate its generalizability through zero-shot transfer to a smaller Lacrosse dataset. Additionally, we showcase its flexibility on CrowdPose, a popular occlusion benchmark with keypoints within the bounding box. Our method significantly improves over state-of-the-art approaches on all three datasets, with gains of 4.36\%, 2.35\%, and 3.8\%, respectively.
Poster
Ye Mao · JUNPENG JING · Krystian Mikolajczyk

[ East Exhibit Hall A-C ]

Abstract
Recent open-world 3D representation learning methods using Vision-Language Models (VLMs) to align 3D point clouds with image-text information have shown superior 3D zero-shot performance. However, CAD-rendered images for this alignment often lack realism and texture variation, compromising alignment robustness. Moreover, the volume discrepancy between 3D and 2D pretraining datasets highlights the need for effective strategies to transfer the representational abilities of VLMs to 3D learning. In this paper, we present OpenDlign, a novel open-world 3D model using depth-aligned images generated from a diffusion model for robust multimodal alignment. These images exhibit greater texture diversity than CAD renderings due to the stochastic nature of the diffusion model. By refining the depth map projection pipeline and designing depth-specific prompts, OpenDlign leverages rich knowledge in pre-trained VLM for 3D representation learning with streamlined fine-tuning. Our experiments show that OpenDlign achieves high zero-shot and few-shot performance on diverse 3D tasks, despite only fine-tuning 6 million parameters on a limited ShapeNet dataset. In zero-shot classification, OpenDlign surpasses previous models by 8.0\% on ModelNet40 and 16.4\% on OmniObject3D. Additionally, using depth-aligned images for multimodal alignment consistently enhances the performance of other state-of-the-art models.
Poster
Chao Chen · Yu-Shen Liu · Zhizhong Han

[ East Exhibit Hall A-C ]

Abstract
It is important to estimate an accurate signed distance function (SDF) from a point cloud in many computer vision applications. The latest methods learn neural SDFs using either a data-driven based or an overfitting-based strategy. However, these two kinds of methods are with either poor generalization or slow convergence, which limits their capability under challenging scenarios like highly noisy point clouds. To resolve this issue, we propose a method to prompt pros of both data-driven based and overfitting-based methods for better generalization, faster inference, and higher accuracy in learning neural SDFs. We introduce a novel statistical reasoning algorithm in local regions which is able to finetune data-driven based priors without signed distance supervision, clean point cloud, or point normals. This helps our method start with a good initialization, and converge to a minimum in a much faster way. Our numerical and visual comparisons with the stat-of-the-art methods show our superiority over these methods in surface reconstruction and point cloud denoising on widely used shape and scene benchmarks. The code is available at https://github.com/chenchao15/LocalN2NM.
Poster
Yizhou Zhao · Hengwei Bian · Kaihua Chen · Pengliang Ji · Liao Qu · Shao-yu Lin · Weichen Yu · Haoran Li · Hao Chen · Jun Shen · Bhiksha Raj · Min Xu

[ East Exhibit Hall A-C ]

Abstract
Monocular depth estimation (MDE) is fundamental for deriving 3D scene structures from 2D images. While state-of-the-art monocular relative depth estimation (MRDE) excels in estimating relative depths for in-the-wild images, current monocular metric depth estimation (MMDE) approaches still face challenges in handling unseen scenes. Since MMDE can be viewed as the composition of MRDE and metric scale recovery, we attribute this difficulty to scene dependency, where MMDE models rely on scenes observed during supervised training for predicting scene scales during inference. To address this issue, we propose to use humans as landmarks for distilling scene-independent metric scale priors from generative painting models. Our approach, Metric from Human (MfH), bridges from generalizable MRDE to zero-shot MMDE in a generate-and-estimate manner. Specifically, MfH generates humans on the input image with generative painting and estimates human dimensions with an off-the-shelf human mesh recovery (HMR) model. Based on MRDE predictions, it propagates the metric information from painted humans to the contexts, resulting in metric depth estimations for the original input. Through this annotation-free test-time adaptation, MfH achieves superior zero-shot performance in MMDE, demonstrating its strong generalization ability.
Poster
Suyoung Lee · Jaeyoung Chung · Jaeyoo Huh · Kyoung Mu Lee

[ East Exhibit Hall A-C ]

Abstract
Omnidirectional (or 360-degree) images are increasingly being used for 3D applications since they allow the rendering of an entire scene with a single image. Existing works based on neural radiance fields demonstrate successful 3D reconstruction quality on egocentric videos, yet they suffer from long training and rendering times. Recently, 3D Gaussian splatting has gained attention for its fast optimization and real-time rendering. However, directly using a perspective rasterizer to omnidirectional images results in severe distortion due to the different optical properties between the two image domains. In this work, we present ODGS, a novel rasterization pipeline for omnidirectional images with geometric interpretation. For each Gaussian, we define a tangent plane that touches the unit sphere and is perpendicular to the ray headed toward the Gaussian center. We then leverage a perspective camera rasterizer to project the Gaussian onto the corresponding tangent plane. The projected Gaussians are transformed and combined into the omnidirectional image, finalizing the omnidirectional rasterization process. This interpretation reveals the implicit assumptions within the proposed pipeline, which we verify through mathematical proofs. The entire rasterization process is parallelized using CUDA, achieving optimization and rendering speeds 100 times faster than NeRF-based methods. Our comprehensive experiments highlight the superiority of …
Poster
Simone Foti · Stefanos Zafeiriou · Tolga Birdal

[ East Exhibit Hall A-C ]

Abstract
Seams, distortions, wasted UV space, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure long-distance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusion-based self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.
Poster
Jiewen Yang · Yiqun Lin · Bin Pu · Xiaomeng Li

[ East Exhibit Hall A-C ]

Abstract
Quantitative analysis of cardiac motion is crucial for assessing cardiac function. This analysis typically uses imaging modalities such as MRI and Echocardiograms that capture detailed image sequences throughout the heartbeat cycle. Previous methods predominantly focused on the analysis of image pairs lacking consideration of the motion dynamics and spatial variability. Consequently, these methods often overlook the long-term relationships and regional motion characteristic of cardiac. To overcome these limitations, we introduce the GPTrack, a novel unsupervised framework crafted to fully explore the temporal and spatial dynamics of cardiac motion. The GPTrack enhances motion tracking by employing the sequential Gaussian Process in the latent space and encoding statistics by spatial information at each time stamp, which robustly promotes temporal consistency and spatial variability of cardiac dynamics. Also, we innovatively aggregate sequential information in a bidirectional recursive manner, mimicking the behavior of diffeomorphic registration to better capture consistent long-term relationships of motions across cardiac regions such as the ventricles and atria. Our GPTrack significantly improves the precision of motion tracking in both 3D and 4D medical images while maintaining computational efficiency. The code is available at: https://github.com/xmed-lab/GPTrack.
Spotlight Poster
Zhu Yu · Runmin Zhang · Jiacheng Ying · Junchen Yu · Xiaohai Hu · Lun Luo · Si-Yuan Cao · Hui-liang Shen

[ East Exhibit Hall A-C ]

Abstract
Vision-based Semantic Scene Completion (SSC) has gained much attention due to its widespread applications in various 3D perception tasks. Existing sparse-to-dense approaches typically employ shared context-independent queries across various input images, which fails to capture distinctions among them as the focal regions of different inputs vary and may result in undirected feature aggregation of cross-attention. Additionally, the absence of depth information may lead to points projected onto the image plane sharing the same 2D position or similar sampling points in the feature map, resulting in depth ambiguity. In this paper, we present a novel context and geometry aware voxel transformer. It utilizes a context aware query generator to initialize context-dependent queries tailored to individual input images, effectively capturing their unique characteristics and aggregating information within the region of interest. Furthermore, it extend deformable cross-attention from 2D to 3D pixel space, enabling the differentiation of points with similar image coordinates based on their depth coordinates. Building upon this module, we introduce a neural network named CGFormer to achieve semantic scene completion. Simultaneously, CGFormer leverages multiple 3D representations (i.e., voxel and TPV) to boost the semantic and geometric representation abilities of the transformed 3D volume from both local and global perspectives. Experimental …
Spotlight Poster
Kang Chen · Shiyan Chen · Jiyuan Zhang · Baoyue Zhang · Yajing Zheng · Tiejun Huang · Zhaofei Yu

[ East Exhibit Hall A-C ]

Abstract
Reconstructing a sequence of sharp images from the blurry input is crucial for enhancing our insights into the captured scene and poses a significant challenge due to the limited temporal features embedded in the image. Spike cameras, sampling at rates up to 40,000 Hz, have proven effective in capturing motion features and beneficial for solving this ill-posed problem. Nonetheless, existing methods fall into the supervised learning paradigm, which suffers from notable performance degradation when applied to real-world scenarios that diverge from the synthetic training data domain. To address these challenges, we propose the first self-supervised framework for the task of spike-guided motion deblurring. Our approach begins with the formulation of a spike-guided deblurring model that explores the theoretical relationships among spike streams, blurry images, and their corresponding sharp sequences. We subsequently develop a self-supervised cascaded framework to alleviate the issues of spike noise and spatial-resolution mismatching encountered in the deblurring model. With knowledge distillation and re-blurring loss, we further design a lightweight deblur network to generate high-quality sequences with brightness and texture consistency with the original input. Quantitative and qualitative experiments conducted on our real-world and synthetic datasets with spikes validate the superior generalization of the proposed framework. Our code, …
Poster
Ye Fang · Zeyi Sun · Tong Wu · Jiaqi Wang · Ziwei Liu · Gordon Wetzstein · Dahua Lin

[ East Exhibit Hall A-C ]

Abstract
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original albedo map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
Poster
Xu Zhang · Peiyao Guo · Ming Lu · Zhan Ma

[ East Exhibit Hall A-C ]

Abstract
Image coding for multi-task applications, catering to both human perception and machine vision, has been extensively investigated. Existing methods often rely on multiple task-specific encoder-decoder pairs, leading to high overhead of parameter and bitrate usage, or face challenges in multi-objective optimization under a unified representation, failing to achieve both performance and efficiency. To this end, we propose Multi-Path Aggregation (MPA) integrated into existing coding models for joint human-machine vision, unifying the feature representation with an all-in-one architecture. MPA employs a predictor to allocate latent features among task-specific paths based on feature importance varied across tasks, maximizing the utility of shared features while preserving task-specific features for subsequent refinement. Leveraging feature correlations, we develop a two-stage optimization strategy to alleviate multi-task performance degradation. Upon the reuse of shared features, as low as 1.89\% parameters are further augmented and fine-tuned for a specific task, which completely avoids extensive optimization of the entire model. Experimental results show that MPA achieves performance comparable to state-of-the-art methods in both task-specific and multi-objective optimization across human viewing and machine analysis tasks. Moreover, our all-in-one design supports seamless transitions between human- and machine-oriented reconstruction, enabling task-controllable interpretation without altering the unified model. Code is available at https://github.com/NJUVISION/MPA.
Poster
Zhenyu Guan · Xiangyu Kong · Fangwei Zhong · Yizhou Wang

[ East Exhibit Hall A-C ]

Abstract
Diplomacy is one of the most sophisticated activities in human society, involving complex interactions among multiple parties that require skills in social reasoning, negotiation, and long-term strategic planning. Previous AI agents have demonstrated their ability to handle multi-step games and large action spaces in multi-agent tasks. However, diplomacy involves a staggering magnitude of decision spaces, especially considering the negotiation stage required. While recent agents based on large language models (LLMs) have shown potential in various applications, they still struggle with extended planning periods in complex multi-agent settings. Leveraging recent technologies for LLM-based agents, we aim to explore AI's potential to create a human-like agent capable of executing comprehensive multi-agent missions by integrating three fundamental capabilities: 1) strategic planning with memory and reflection; 2) goal-oriented negotiation with social reasoning; and 3) augmenting memory through self-play games for self-evolution without human in the loop. Project page: https://sites.google.com/view/richelieu-diplomacy.
Poster
Mingyi Li · Xiao Zhang · Qi Wang · Tengfei LIU · Ruofan Wu · Weiqiang Wang · Fuzhen Zhuang · Hui Xiong · Dongxiao Yu

[ East Exhibit Hall A-C ]

Abstract
Due to the heterogeneous architectures and class skew, the global representation models training in resource-adaptive federated self-supervised learning face with tricky challenges: $\textit{deviated representation abilities}$ and $\textit{inconsistent representation spaces}$. In this work, we are the first to propose a multi-teacher knowledge distillation framework, namely $\textit{FedMKD}$, to learn global representations with whole class knowledge from heterogeneous clients even under extreme class skew. Firstly, the adaptive knowledge integration mechanism is designed to learn better representations from all heterogeneous models with deviated representation abilities. Then the weighted combination of the self-supervised loss and the distillation loss can support the global model to encode all classes from clients into a unified space. Besides, the global knowledge anchored alignment module can make the local representation spaces close to the global spaces, which further improves the representation abilities of local ones. Finally, extensive experiments conducted on two datasets demonstrate the effectiveness of $\textit{FedMKD}$ which outperforms state-of-the-art baselines 4.78\% under linear evaluation on average.
Poster
Silong Yong · Yaqi Xie · Simon Stepputtis · Katia Sycara

[ East Exhibit Hall A-C ]

Abstract
Volume rendering in neural radiance fields is inherently time-consuming due to the large number of MLP calls on the points sampled per ray. Previous works would address this issue by introducing new neural networks or data structures. In this work, we propose GL-NeRF, a new perspective of computing volume rendering with the Gauss-Laguerre quadrature. GL-NeRF significantly reduces the number of MLP calls needed for volume rendering, introducing no additional data structures or neural networks. The simple formulation makes adopting GL-NeRF in any NeRF model possible. In the paper, we first justify the use of the Gauss-Laguerre quadrature and then demonstrate this plug-and-play attribute by implementing it in two different NeRF models. We show that with a minimal drop in performance, GL-NeRF can significantly reduce the number of MLP calls, showing the potential to speed up any NeRF model. Code can be found in project page https://silongyong.github.io/GL-NeRF_project_page/.
Poster
Chau Tran · Duy M. H. Nguyen · Manh-Duy Nguyen · TrungTin Nguyen · Ngan Le · Pengtao Xie · Daniel Sonntag · James Zou · Binh Nguyen · Mathias Niepert

[ East Exhibit Hall A-C ]

Abstract
Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior work has proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top $k$ similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the \textit{energy score}. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAEH compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of Clip on Flick30k compared to 4.5\% as others), and analogously in visual questions answering …
Poster
Senthooran Rajamanoharan · Arthur Conmy · Lewis Smith · Tom Lieberum · Vikrant Varma · Janos Kramar · Rohin Shah · Neel Nanda

[ East Exhibit Hall A-C ]

Abstract
Recent work has found that sparse autoencoders (SAEs) are an effective technique for unsupervised discovery of interpretable features in language models' (LMs) activations, by finding sparse, linear reconstructions of those activations. We introduce the Gated Sparse Autoencoder (Gated SAE), which achieves a Pareto improvement over training with prevailing methods. In SAEs, the L1 penalty used to encourage sparsity introduces many undesirable biases, such as shrinkage -- systematic underestimation of feature activations. The key insight of Gated SAEs is to separate the functionality of (a) determining which directions to use and (b) estimating the magnitudes of those directions: this enables us to apply the L1 penalty only to the former, limiting the scope of undesirable side effects. Through training SAEs on LMs of up to 7B parameters we find that, in typical hyper-parameter ranges, Gated SAEs solve shrinkage, are similarly interpretable, and require half as many firing features to achieve comparable reconstruction fidelity.
Poster
Junfeng Ni · Yixin Chen · Bohan Jing · Nan Jiang · Bin Wang · Bo Dai · Puhao Li · Yixin Zhu · Song-Chun Zhu · Siyuan Huang

[ East Exhibit Hall A-C ]

Abstract
We address the issue of physical implausibility in multi-view neural reconstruction. While implicit representations have gained popularity in multi-view 3D reconstruction, previous work struggles to yield physically plausible results, limiting their utility in domains requiring rigorous physical accuracy. This lack of plausibility stems from the absence of physics modeling in existing methods and their inability to recover intricate geometrical structures. In this paper, we introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations. PHYRECON features a novel differentiable particle-based physical simulator built on neural implicit representations. Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points via our proposed Surface Points Marching Cubes (SP-MC), enabling differentiable learning with both rendering and physical losses. Additionally, PHYRECON models both rendering and physical uncertainty to identify and compensate for inconsistent and inaccurate monocular geometric priors. The physical uncertainty further facilitates physics-guided pixel sampling to enhance the learning of slender structures. By integrating these techniques, our model supports differentiable joint modeling of appearance, geometry, and physics. Extensive experiments demonstrate that PHYRECON significantly improves the reconstruction quality. Our results also exhibit superior physical stability in physical simulators, with at …
Poster
Timing Yang · Yuanliang Ju · Li Yi

[ East Exhibit Hall A-C ]

Abstract
Open-vocabulary 3D object detection (OV-3Det) aims to generalize beyond the limited number of base categories labeled during the training phase. The biggest bottleneck is the scarcity of annotated 3D data, whereas 2D image datasets are abundant and richly annotated. Consequently, it is intuitive to leverage the wealth of annotations in 2D images to alleviate the inherent data scarcity in OV-3Det. In this paper, we push the task setup to its limits by exploring the potential of using solely 2D images to learn OV-3Det. The major challenges for this setup is the modality gap between training images and testing point clouds, which prevents effective integration of 2D knowledge into OV-3Det. To address this challenge, we propose a novel framework ImOV3D to leverage pseudo multimodal representation containing both images and point clouds (PC) to close the modality gap. The key of ImOV3D lies in flexible modality conversion where 2D images can be lifted into 3D using monocular depth estimation and can also be derived from 3D scenes through rendering. This allows unifying both training images and testing point clouds into a common image-PC representation, encompassing a wealth of 2D semantic information and also incorporating the depth and structural characteristics of 3D spatial …
Poster
Cuong Le · John Viktor Johansson · Manon Kok · Bastian Wandt

[ East Exhibit Hall A-C ]

Abstract
Human motion capture from monocular videos has made significant progress in recent years. However, modern approaches often produce temporal artifacts, e.g. in form of jittery motion and struggle to achieve smooth and physically plausible motions. Explicitly integrating physics, in form of internal forces and exterior torques, helps alleviating these artifacts. Current state-of-the-art approaches make use of an automatic PD controller to predict torques and reaction forces in order to re-simulate the input kinematics, i.e. the joint angles of a predefined skeleton. However, due to imperfect physical models, these methods often require simplifying assumptions and extensive preprocessing of the input kinematics to achieve good performance. To this end, we propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting, inspired by a neural Kalman-filtering approach. We develop a control loop as a meta-PD controller to predict internal joint torques and external reaction forces, followed by a physics-based motion simulation. A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion, resulting in an optimal-state dynamics prediction. We show that this filtering step is crucial to provide an online supervision that helps balancing the shortcoming …
Poster
Jiacong Xu · Yiqun Mei · Vishal Patel

[ East Exhibit Hall A-C ]

Abstract
Photographs captured in unstructured tourist environments frequently exhibit variable appearances and transient occlusions, challenging accurate scene reconstruction and inducing artifacts in novel view synthesis. Although prior approaches have integrated the Neural Radiance Field (NeRF) with additional learnable modules to handle the dynamic appearances and eliminate transient objects, their extensive training demands and slow rendering speeds limit practical deployments. Recently, 3D Gaussian Splatting (3DGS) has emerged as a promising alternative to NeRF, offering superior training and inference efficiency along with better rendering quality. This paper presents \textit{Wild-GS}, an innovative adaptation of 3DGS optimized for unconstrained photo collections while preserving its efficiency benefits. \textit{Wild-GS} determines the appearance of each 3D Gaussian by their inherent material attributes, global illumination and camera properties per image, and point-level local variance of reflectance. Unlike previous methods that model reference features in image space, \textit{Wild-GS} explicitly aligns the pixel appearance features to the corresponding local Gaussians by sampling the triplane extracted from the reference image. This novel design effectively transfers the high-frequency detailed appearance of the reference view to 3D space and significantly expedites the training process. Furthermore, 2D visibility maps and depth regularization are leveraged to mitigate the transient effects and constrain the geometry, respectively. Extensive …
Poster
Fei Xie · Weijia Zhang · Zhongdao Wang · Chao Ma

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in State Space Models, notably Mamba, have demonstrated superior performance over the dominant Transformer models, particularly in reducing the computational complexity from quadratic to linear. Yet, difficulties in adapting Mamba from language to vision tasks arise due to the distinct characteristics of visual data, such as the spatial locality and adjacency within images and large variations in information granularity across visual tokens. Existing vision Mamba approaches either flatten tokens into sequences in a raster scan fashion, which breaks the local adjacency of images, or manually partition tokens into windows, which limits their long-range modeling and generalization capabilities. To address these limitations, we present a new vision Mamba model, coined QuadMamba, that effectively captures local dependencies of varying granularities via quadtree-based image partition and scan. Concretely, our lightweight quadtree-based scan module learns to preserve the 2D locality of spatial regions within learned window quadrants. The module estimates the locality score of each token from their features, before adaptively partitioning tokens into window quadrants. An omnidirectional window shifting scheme is also introduced to capture more intact and informative features across different local regions. To make the discretized quadtree partition end-to-end trainable, we further devise a sequence masking strategy based on …
Poster
Zhenghao Pan · Haijin Zeng · Jiezhang Cao · Yongyong Chen · Kai Zhang · Yong Xu

[ East Exhibit Hall A-C ]

Abstract
Color video snapshot compressive imaging (SCI) employs computational imaging techniques to capture multiple sequential video frames in a single Bayer-patterned measurement. With the increasing popularity of quad-Bayer pattern in mainstream smartphone cameras for capturing high-resolution videos, mobile photography has become more accessible to a wider audience. However, existing color video SCI reconstruction algorithms are designed based on the traditional Bayer pattern. When applied to videos captured by quad-Bayer cameras, these algorithms often result in color distortion and ineffective demosaicing, rendering them impractical for primary equipment. To address this challenge, we propose the MambaSCI method, which leverages the Mamba and UNet architectures for efficient reconstruction of quad-Bayer patterned color video SCI. To the best of our knowledge, our work presents the first algorithm for quad-Bayer patterned SCI reconstruction, and also the initial application of the Mamba model to this task. Specifically, we customize Residual-Mamba-Blocks, which residually connect the Spatial-Temporal Mamba (STMamba), Edge-Detail-Reconstruction (EDR) module, and Channel Attention (CA) module. Respectively, STMamba is used to model long-range spatial-temporal dependencies with linear complexity, EDR is for better edge-detail reconstruction, and CA is used to compensate for the missing channel information interaction in Mamba model. Experiments demonstrate that MambaSCI surpasses state-of-the-art methods with lower …
Poster
Mathilde Caron · Alireza Fathi · Cordelia Schmid · Ahmet Iscen

[ East Exhibit Hall A-C ]

Abstract
Web-scale visual entity recognition, the task of associating images with their corresponding entities within vast knowledge bases like Wikipedia, presents significant challenges due to the lack of clean, large-scale training data. In this paper, we propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation. Instead of relying on the multimodal LLM to directly annotate data, which we found to be suboptimal, we prompt it to reason about potential candidate entity labels by accessing additional contextually relevant information (such as Wikipedia), resulting in more accurate annotations. We further use the multimodal LLM to enrich the dataset by generating question-answer pairs and a grounded fine-grained textual description (referred to as "rationale") that explains the connection between images and their assigned entities. Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks (e.g. +6.9% improvement in OVEN entity task), underscoring the importance of high-quality training data in this domain.
Poster
Chenjie Cao · Chaohui Yu · Fan Wang · Xiangyang Xue · Yanwei Fu

[ East Exhibit Hall A-C ]

Abstract
Novel View Synthesis (NVS) and 3D generation have recently achieved prominent improvements. However, these works mainly focus on confined categories or synthetic 3D assets, which are discouraged from generalizing to challenging in-the-wild scenes and fail to be employed with 2D synthesis directly. Moreover, these methods heavily depended on camera poses, limiting their real-world applications. To overcome these issues, we propose MVInpainter, re-formulating the 3D editing as a multi-view 2D inpainting task. Specifically, MVInpainter partially inpaints multi-view images with the reference guidance rather than intractably generating an entirely novel view from scratch, which largely simplifies the difficulty of in-the-wild NVS and leverages unmasked clues instead of explicit pose conditions. To ensure cross-view consistency, MVInpainter is enhanced by video priors from motion components and appearance guidance from concatenated reference key\&value attention. Furthermore, MVInpainter incorporates slot attention to aggregate high-level optical flow features from unmasked regions to control the camera movement with pose-free training and inference. Sufficient scene-level experiments on both object-centric and forward-facing datasets verify the effectiveness of MVInpainter, including diverse tasks, such as multi-view object removal, synthesis, insertion, and replacement. The project page is https://ewrfcas.github.io/MVInpainter/.
Spotlight Poster
Hanyang Chen · Yang Jiang · Shengnan Guo · Xiaowei Mao · Youfang Lin · Huaiyu Wan

[ East Exhibit Hall A-C ]

Abstract
The application of reinforcement learning in traffic signal control (TSC) has been extensively researched and yielded notable achievements. However, most existing works for TSC assume that traffic data from all surrounding intersections is fully and continuously available through sensors. In real-world applications, this assumption often fails due to sensor malfunctions or data loss, making TSC with missing data a critical challenge. To meet the needs of practical applications, we introduce DiffLight, a novel conditional diffusion model for TSC under data-missing scenarios in the offline setting. Specifically, we integrate two essential sub-tasks, i.e., traffic data imputation and decision-making, by leveraging a Partial Rewards Conditioned Diffusion (PRCD) model to prevent missing rewards from interfering with the learning process. Meanwhile, to effectively capture the spatial-temporal dependencies among intersections, we design a Spatial-Temporal transFormer (STFormer) architecture. In addition, we propose a Diffusion Communication Mechanism (DCM) to promote better communication and control performance under data-missing scenarios. Extensive experiments on five datasets with various data-missing scenarios demonstrate that DiffLight is an effective controller to address TSC with missing data. The code of DiffLight is released at https://github.com/lokol5579/DiffLight-release.
Poster
Zhixiong Nan · Li Xianghong · Tao Xiang · Jifeng Dai

[ East Exhibit Hall A-C ]

Abstract
This paper is motivated by an interesting phenomenon: the performance of object detection lags behind that of instance segmentation (i.e., performance imbalance) when investigating the intermediate results from the beginning transformer decoder layer of MaskDINO (i.e., the SOTA model for joint detection and segmentation). This phenomenon inspires us to think about a question: will the performance imbalance at the beginning layer of transformer decoder constrain the upper bound of the final performance? With this question in mind, we further conduct qualitative and quantitative pre-experiments, which validate the negative impact of detection-segmentation imbalance issue on the model performance. To address this issue, this paper proposes DI-MaskDINO model, the core idea of which is to improve the final performance by alleviating the detection-segmentation imbalance. DI-MaskDINO is implemented by configuring our proposed De-Imbalance (DI) module and Balance-Aware Tokens Optimization (BATO) module to MaskDINO. DI is responsible for generating balance-aware query, and BATO uses the balance-aware query to guide the optimization of the initial feature tokens. The balance-aware query and optimized feature tokens are respectively taken as the Query and Key&Value of transformer decoder to perform joint object detection and instance segmentation. DI-MaskDINO outperforms existing joint object detection and instance segmentation models on COCO …
Poster
Runjia Zeng · Cheng Han · Qifan Wang · Chunshu Wu · Tong Geng · Lifu Huangg · Ying Nian Wu · Dongfang Liu

[ East Exhibit Hall A-C ]

Abstract
With the scale of vision Transformer-based models continuing to grow, finetuning these large-scale pretrained models for new tasks has become increasingly parameter-intensive. Visual prompt tuning is introduced as a parameter-efficient finetuning (PEFT) method to this trend. Despite its successes, a notable research challenge persists within almost all PEFT approaches: significant performance degradation is observed when there is a substantial disparity between the datasets applied in pretraining and finetuning phases. To address this challenge, we draw inspiration from human visual cognition, and propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models. Our approach innovatively incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information. Apart from its inherent simplicity and intuitiveness, VFPT exhibits superior performance across all datasets, offering a general solution to dataset challenges, irrespective of data disparities. Empirical results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks, with low parameter usage (e.g., 0.57% of model parameters on VTAB-1k) and notable performance enhancements (e.g., 73.20% of mean accuracy on VTAB-1k). Our code is avaliable at https://github.com/runtsang/VFPT.
Poster
Jer Pelhan · Alan Lukezic · Vitjan Zavrtanik · Matej Kristan

[ East Exhibit Hall A-C ]

Abstract
Low-shot object counters estimate the number of objects in an image using few or no annotated exemplars. Objects are localized by matching them to prototypes, which are constructed by unsupervised image-wide object appearance aggregation.Due to potentially diverse object appearances, the existing approaches often lead to overgeneralization and false positive detections.Furthermore, the best-performing methods train object localization by a surrogate loss, that predicts a unit Gaussian at each object center. This loss is sensitive to annotation error, hyperparameters and does not directly optimize the detection task, leading to suboptimal counts.We introduce GeCo, a novel low-shot counter that achieves accurate object detection, segmentation, and count estimation in a unified architecture.GeCo robustly generalizes the prototypes across objects appearances through a novel dense object query formulation. In addition, a novel counting loss is proposed, that directly optimizes the detection task and avoids the issues of the standard surrogate loss. GeCo surpasses the leading few-shot detection-based counters by $\sim$25\% in the total count MAE, achieves superior detection accuracy and sets a new solid state-of-the-art result across all low-shot counting setups. The code will be available on GitHub.
Poster
Chu Zhou · Yixing Liu · Chao Xu · Boxin Shi

[ East Exhibit Hall A-C ]

Abstract
Polarimetric imaging is a challenging problem in the field of polarization-based vision, since setting a short exposure time reduces the signal-to-noise ratio, making the degree of polarization (DoP) and the angle of polarization (AoP) severely degenerated, while if setting a relatively long exposure time, the DoP and AoP would tend to be over-smoothed due to the frequently-occurring motion blur. This work proposes a polarimetric imaging framework that can produce clean and clear polarized snapshots by complementarily fusing a degraded pair of noisy and blurry ones. By adopting a neural network-based three-phase fusing scheme with specially-designed modules tailored to each phase, our framework can not only improve the image quality but also preserve the polarization properties. Experimental results show that our framework achieves state-of-the-art performance.
Poster
Xiaoming Zhao · Pratul Srinivasan · Dor Verbin · Keunhong Park · Ricardo Martin Brualla · Philipp Henzler

[ East Exhibit Hall A-C ]

Abstract
Existing methods for relightable view synthesis --- using a set of images of an object under unknown lighting to recover a 3D representation that can be rendered from novel viewpoints under a target illumination --- are based on inverse rendering, and attempt to disentangle the object geometry, materials, and lighting that explain the input images. Furthermore, this typically involves optimization through differentiable Monte Carlo rendering, which is brittle and computationally-expensive. In this work, we propose a simpler approach: we first relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry. We then reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting. We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks. Please see our project page at [illuminerf.github.io](illuminerf.github.io).
Poster
Zian Qian · Chenyang Qi · Ka Law · Hao Fu · Chenyang Lei · Qifeng Chen

[ East Exhibit Hall A-C ]

Abstract
Different camera sensors have different noise patterns, and thus an image denoising model trained on one sensor often does not generalize well to a different sensor. One plausible solution is to collect a large dataset for each sensor for training or fine-tuning, which is inevitably time-consuming. To address this cross-domain challenge, we present a novel adaptive domain learning (ADL) scheme for cross-domain RAW image denoising by utilizing existing data from different sensors (source domain) plus a small amount of data from the new sensor (target domain). The ADL training scheme automatically removes the data in the source domain that are harmful to fine-tuning a model for the target domain (some data are harmful as adding them during training lowers the performance due to domain gaps). Also, we introduce a modulation module to adopt sensor-specific information (sensor type and ISO) to understand input data for image denoising. We conduct extensive experiments on public datasets with various smartphone and DSLR cameras, which show our proposed model outperforms prior work on cross-domain image denoising, given a small amount of image data from the target domain sensor.
Poster
Junoh Lee · Changyeon Won · Hyunjun Jung · Inhwan Bae · Hae-Gon Jeon

[ East Exhibit Hall A-C ]

Abstract
3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations. Unfortunately, the benefits of the prior and representation do not involve novel view synthesis for dynamic motions. Ironically, this is because the main barrier is the reliance on them, which requires increasing training and rendering times to account for dynamic motions. In this paper, we design Explicit 4D Gaussian Splatting (Ex4DGS).Our key idea is to firstly separate static and dynamic Gaussians during training, and to explicitly sample positions and rotations of the dynamic Gaussians at sparse timestamps. The sampled positions and rotations are then interpolated to represent both spatially and temporally continuous motions of objects in dynamic scenes as well as reducing computational cost. Additionally, we introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence. We initially train Ex4DGS using short timestamps and progressively extend timestamps, which makes it work well with a few point clouds. The point-backtracking is used to quantify the cumulative error of each Gaussian over time, enabling the detection and removal of erroneous Gaussians in dynamic scenes. Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving …
Poster
Jiawei Xu · Zexin Fan · Jian Yang · Jin Xie

[ East Exhibit Hall A-C ]

Abstract
Recently, Gaussian splatting has received more and more attention in the field of static scene rendering. Due to the low computational overhead and inherent flexibility of explicit representations, plane-based explicit methods are popular ways to predict deformations for Gaussian-based dynamic scene rendering models. However, plane-based methods rely on the inappropriate low-rank assumption and excessively decompose the space-time 4D encoding, resulting in overmuch feature overlap and unsatisfactory rendering quality. To tackle these problems, we propose Grid4D, a dynamic scene rendering model based on Gaussian splatting and employing a novel explicit encoding method for the 4D input through the hash encoding. Different from plane-based explicit representations, we decompose the 4D encoding into one spatial and three temporal 3D hash encodings without the low-rank assumption. Additionally, we design a novel attention module that generates the attention scores in a directional range to aggregate the spatial and temporal features. The directional attention enables Grid4D to more accurately fit the diverse deformations across distinct scene components based on the spatial encoded features. Moreover, to mitigate the inherent lack of smoothness in explicit representation methods, we introduce a smooth regularization term that keeps our model from the chaos of deformation prediction. Our experiments demonstrate that Grid4D …
Poster
Amirhosein Ghasemabadi · Muhammad Janjua · Mohammad Salameh · Di Niu

[ East Exhibit Hall A-C ]

Abstract
One key challenge to video restoration is to model the transition dynamics of video frames governed by motion. In this work, we propose Turtle to learn the truncated causal history model for efficient and high-performing video restoration. Unlike traditional methods that process a range of contextual frames in parallel, Turtle enhances efficiency by storing and summarizing a truncated history of the input frame latent representation into an evolving historical state. This is achieved through a sophisticated similarity-based retrieval mechanism that implicitly accounts for inter-frame motion and alignment. The causal design in Turtle enables recurrence in inference through state-memorized historical features while allowing parallel training by sampling truncated video clips. We report new state-of-the-art results on a multitude of video restoration benchmark tasks, including video desnowing, nighttime video deraining, video raindrops and rain streak removal, video super-resolution, real-world and synthetic video deblurring, and blind video denoising while reducing the computational cost compared to existing best contextual methods on all these tasks.
Poster
JiaBao Wang · Zhaojiang Liu · Qiang Meng · Liujiang Yan · Ke Wang · JIE YANG · Wei Liu · Qibin Hou · Ming-Ming Cheng

[ East Exhibit Hall A-C ]

Abstract
Occupancy prediction, aiming at predicting the occupancy status within voxelized 3D environment, is quickly gaining momentum within the autonomous driving community. Mainstream occupancy prediction works first discretize the 3D environment into voxels, then perform classification on such dense grids. However, inspection on sample data reveals that the vast majority of voxels is unoccupied. Performing classification on these empty voxels demands suboptimal computation resource allocation, and reducing such empty voxels necessitates complex algorithm designs. To this end, we present a novel perspective on the occupancy prediction task: formulating it as a streamlined set prediction paradigm without the need for explicit space modeling or complex sparsification procedures. Our proposed framework, called OPUS, utilizes a transformer encoder-decoder architecture to simultaneously predict occupied locations and classes using a set of learnable queries. Firstly, we employ the Chamfer distance loss to scale the set-to-set comparison problem to unprecedented magnitudes, making training such model end-to-end a reality. Subsequently, semantic classes are adaptively assigned using nearest neighbor search based on the learned locations. In addition, OPUS incorporates a suite of non-trivial strategies to enhance model performance, including coarse-to-fine learning, consistent point sampling, and adaptive re-weighting, etc. Finally, compared with current state-of-the-art methods, our lightest model achieves superior …
Poster
Zujin Guo · Wei Li · Chen Change Loy

[ East Exhibit Hall A-C ]

Abstract
Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be easily integrated with existing flow-based VFI works by supplying accurately modeled motion. We show that GIMM performs better than the current state of the art on standard VFI benchmarks.
Poster
Jin-Hwi Park · Hae-Gon Jeon

[ East Exhibit Hall A-C ]

Abstract
Consistent depth estimation across diverse scenes and sensors is a crucial challenge in computer vision, especially when deploying machine learning models in the real world. Traditional methods depend heavily on extensive pixel-wise labeled data, which is costly and labor-intensive to acquire, and frequently have difficulty in scale issues on various depth sensors. In response, we define Universal Depth Completion (UniDC) problem. We also present a baseline architecture, a simple yet effective approach tailored to estimate scene depth across a wide range of sensors and environments using minimal labeled data. Our approach addresses two primary challenges: generalizable knowledge of unseen scene configurations and strong adaptation to arbitrary depth sensors with various specifications. To enhance versatility in the wild, we utilize a foundation model for monocular depth estimation that provides a comprehensive understanding of 3D structures in scenes. Additionally, for fast adaptation to off-the-shelf sensors, we generate a pixel-wise affinity map based on the knowledge from the foundation model. We then adjust depth information from arbitrary sensors to the monocular depth along with the constructed affinity. Furthermore, to boost up both the adaptability and generality, we embed the learned features into hyperbolic space, which builds implicit hierarchical structures of 3D data from …
Poster
Lei Zhu · Xinjiang Wang · Wayne Zhang · Rynson Lau

[ East Exhibit Hall A-C ]

Abstract
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel \textbf{at different granularity levels} instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named \textit{GLMix}: by offloading the burden of fine-grained features to light-weight Convs, it …
Spotlight Poster
Zijie Ye · Jia-Wei Liu · Jia Jia · Shikun Sun · Mike Zheng Shou

[ East Exhibit Hall A-C ]

Abstract
Capturing and maintaining geometric interactions among different body parts is crucial for successful motion retargeting in skinned characters. Existing approaches often overlook body geometries or add a geometry correction stage after skeletal motion retargeting. This results in conflicts between skeleton interaction and geometry correction, leading to issues such as jittery, interpenetration, and contact mismatches. To address these challenges, we introduce a new retargeting framework, MeshRet, which directly models the dense geometric interactions in motion retargeting. Initially, we establish dense mesh correspondences between characters using semantically consistent sensors (SCS), effective across diverse mesh topologies. Subsequently, we develop a novel spatio-temporal representation called the dense mesh interaction (DMI) field. This field, a collection of interacting SCS feature vectors, skillfully captures both contact and non-contact interactions between body geometries. By aligning the DMI field during retargeting, MeshRet not only preserves motion semantics but also prevents self-interpenetration and ensures contact preservation. Extensive experiments on the public Mixamo dataset and our newly-collected ScanRet dataset demonstrate that MeshRet achieves state-of-the-art performance. Code available at https://github.com/abcyzj/MeshRet.
Poster
Yifan Sun · Jingyan Shen · Yongchan Kwon

[ East Exhibit Hall A-C ]

Abstract
Data valuation has emerged as a powerful framework for quantifying each datum's contribution to the training of a machine learning model. However, it is crucial to recognize that the quality of cells within a single data point can vary greatly in practice. For example, even in the case of an abnormal data point, not all cells are necessarily noisy. The single scalar score assigned by existing data valuation methods blurs the distinction between noisy and clean cells of a data point, making it challenging to interpret the data values. In this paper, we propose 2D-OOB, an out-of-bag estimation framework for jointly determining helpful (or detrimental) samples as well as the particular cells that drive them. Our comprehensive experiments demonstrate that 2D-OOB achieves state-of-the-art performance across multiple use cases while being exponentially faster. Specifically, 2D-OOB shows promising results in detecting and rectifying fine-grained outliers at the cell level, and localizing backdoor triggers in data poisoning attacks.
Poster
Miaosen Zhang · Yixuan Wei · Zhen Xing · Yifei Ma · Zuxuan Wu · Ji Li · Zheng Zhang · Qi Dai · Chong Luo · Xin Geng · Baining Guo

[ East Exhibit Hall A-C ]

Abstract
Modern vision models are trained on very large noisy datasets. While these models acquire strong capabilities, they may not follow the user's intent to output the desired results in certain aspects, e.g., visual aesthetic, preferred style, and responsibility. In this paper, we target the realm of visual aesthetics and aim to align vision models with human aesthetic standards in a retrieval system. Advanced retrieval systems usually adopt a cascade of aesthetic models as re-rankers or filters, which are limited to low-level features like saturation and perform poorly when stylistic, cultural or knowledge contexts are involved. We find that utilizing the reasoning ability of large language models (LLMs) to rephrase the search query and extend the aesthetic expectations can make up for this shortcoming. Based on the above findings, we propose a preference-based reinforcement learning method that fine-tunes the vision models to distill the knowledge from both LLMs reasoning and the aesthetic models to better align the vision models with human aesthetics. Meanwhile, with rare benchmarks designed for evaluating retrieval systems, we leverage large multi-modality model (LMM) to evaluate the aesthetic performance with their strong abilities. As aesthetic assessment is one of the most subjective tasks, to validate the robustness of …
Poster
Zheng Chen · Haotong Qin · Yong Guo · Xiongfei Su · Xin Yuan · Linghe Kong · Yulun Zhang

[ East Exhibit Hall A-C ]

Abstract
Advanced diffusion models (DMs) perform impressively in image super-resolution (SR), but the high memory and computational costs hinder their deployment. Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating DMs. Nonetheless, due to the model structure and the multi-step iterative attribute of DMs, existing binarization methods result in significant performance degradation. In this paper, we introduce a novel binarized diffusion model, BI-DiffSR, for image SR. First, for the model structure, we design a UNet architecture optimized for binarization. We propose the consistent-pixel-downsample (CP-Down) and consistent-pixel-upsample (CP-Up) to maintain dimension consistent and facilitate the full-precision information transfer. Meanwhile, we design the channel-shuffle-fusion (CS-Fusion) to enhance feature fusion in skip connection. Second, for the activation difference across timestep, we design the timestep-aware redistribution (TaR) and activation function (TaA). The TaR and TaA dynamically adjust the distribution of activations based on different timesteps, improving the flexibility and representation alability of the binarized module. Comprehensive experiments demonstrate that our BI-DiffSR outperforms existing binarization methods. Code is released at: https://github.com/zhengchen1999/BI-DiffSR.
Poster
Hongyu Sun · Qiuhong Ke · Yongcai Wang · Wang Chen · Kang Yang · Deying Li · Jianfei Cai

[ East Exhibit Hall A-C ]

Abstract
This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameter-efficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge. We design the regulation framework as a plug-and-play module to embed into existing representative large 3D models. Surprisingly, our method not only realizes consistently increasing generalization ability but also enhances task-specific 3D recognition performances across various 3DDG benchmarks by a clear margin. Considering the lack of study and evaluation on 3DDG, we also create three new benchmarks, namely base-to-new, cross-dataset and few-shot generalization benchmarks, to enrich the field and inspire future research. Code and benchmarks are available at \url{https://github.com/auniquesun/Point-PRC}.
Poster
Tong Wei · Hao-Tian Li · ChunShu Li · Jiang-Xin Shi · Yu-Feng Li · Min-Ling Zhang

[ East Exhibit Hall A-C ]

Abstract
Recent research on fine-tuning vision-language models has demonstrated impressive performance in various downstream tasks. However, the challenge of obtaining accurately labeled data in real-world applications poses a significant obstacle during the fine-tuning process. To address this challenge, this paper presents a Denoising Fine-Tuning framework, called DeFT, for adapting vision-language models. DeFT utilizes the robust alignment of textual and visual features pre-trained on millions of auxiliary image-text pairs to sieve out noisy labels. The proposed framework establishes a noisy label detector by learning positive and negative textual prompts for each class. The positive prompt seeks to reveal distinctive features of the class, while the negative prompt serves as a learnable threshold for separating clean and noisy samples. We employ parameter-efficient fine-tuning for the adaptation of a pre-trained visual encoder to promote its alignment with the learned textual prompts. As a general framework, DeFT can seamlessly fine-tune many pre-trained models to downstream tasks by utilizing carefully selected clean samples. Experimental results on seven synthetic and real-world noisy datasets validate the effectiveness of DeFT in both noisy label detection and image classification. Our source code can be found in the supplementary material.
Poster
Chenxi Zhao · Jinglei Shi · Liqiang Nie · Jufeng Yang

[ East Exhibit Hall A-C ]

Abstract
Accuracy is a commonly adopted performance metric in various classification tasks, which measures the proportion of correctly classified samples among all samples. It assumes equal importance for all classes, hence equal severity for misclassifications. However, in the task of emotional classification, due to the psychological similarities between emotions, misclassifying a certain emotion into one class may be more severe than another, e.g., misclassifying 'excitement' as 'anger' apparently is more severe than as 'awe'. Albeit high meaningful for many applications, metrics capable of measuring these cases of misclassifications in visual emotion recognition tasks have yet to be explored. In this paper, based on Mikel's emotion wheel from psychology, we propose a novel approach for evaluating the performance in visual emotion recognition, which takes into account the distance on the emotion wheel between different emotions to mimic the psychological nuances of emotions. Experimental results in semi-supervised learning on emotion recognition and user study have shown that our proposed metrics is more effective than the accuracy to assess the performance and conforms to the cognitive laws of human emotions. The code is available at https://github.com/ZhaoChenxi-nku/ECC.
Poster
Hanchao Liu · Yujiang Li · Tai-Jiang Mu · Shi-min Hu

[ East Exhibit Hall A-C ]

Abstract
Despite huge progress in skeleton-based action recognition, its generalizability to different domains remains a challenging issue. In this paper, to solve the skeleton action generalization problem, we present a recover-and-resample augmentation framework based on a novel complete action prior. We observe that human daily actions are confronted with temporal mismatch across different datasets, as they are usually partial observations of their complete action sequences. By recovering complete actions and resampling from these full sequences, we can generate strong augmentations for unseen domains. At the same time, we discover the nature of general action completeness within large datasets, indicated by the per-frame diversity over time. This allows us to exploit two assets of transferable knowledge that can be shared across action samples and be helpful for action completion: boundary poses for determining the action start, and linear temporal transforms for capturing global action patterns. Therefore, we formulate the recovering stage as a two-step stochastic action completion with boundary pose-conditioned extrapolation followed by smooth linear transforms. Both the boundary poses and linear transforms can be efficiently learned from the whole dataset via clustering. We validate our approach on a cross-dataset setting with three skeleton action datasets, outperforming other domain generalization approaches by …
Poster
Wanhua Li · Zibin Meng · Jiawei Zhou · Donglai Wei · Chuang Gan · Hanspeter Pfister

[ East Exhibit Hall A-C ]

Abstract
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named SocialGPT, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. SocialGPT introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy …
Poster
Lianyu Pang · Jian Yin · Baoquan Zhao · Feize Wu · Fu Lee Wang · Qing Li · Xudong Mao

[ East Exhibit Hall A-C ]

Abstract
Recent advances in text-to-image models have enabled high-quality personalized image synthesis based on user-provided concepts with flexible textual control. In this work, we analyze the limitations of two primary techniques in text-to-image personalization: Textual Inversion and DreamBooth. When integrating the learned concept into new prompts, Textual Inversion tends to overfit the concept, while DreamBooth often overlooks it. We attribute these issues to the incorrect learning of the embedding alignment for the concept. To address this, we introduce AttnDreamBooth, a novel approach that separately learns the embedding alignment, the attention map, and the subject identity across different training stages. We also introduce a cross-attention map regularization term to enhance the learning of the attention map. Our method demonstrates significant improvements in identity preservation and text alignment compared to the baseline methods.
Poster
Jiapeng Ji · Kun Wei · Ziqi Zhang · Cheng Deng

[ East Exhibit Hall A-C ]

Abstract
Owing to advancements in image synthesis techniques, stylization methodologies for large models have garnered remarkable outcomes. However, when it comes to processing facial images, the outcomes frequently fall short of expectations. Facial stylization is predominantly challenged by two significant hurdles. Firstly, obtaining a large dataset of high-quality stylized images is difficult. The scarcity and diversity of artistic styles make it impractical to compile comprehensive datasets for each style. Secondly, while many methods can transfer colors and strokes from style images, these elements alone cannot fully capture a specific style, which encompasses both concrete and abstract visual elements. Additionally, facial stylization often alters the visual features of the face, making it challenging to balance these changes with the need to retain facial information. To address these issues, we propose a novel method called ACFun, which uses only one style image and one facial image for facial stylization. ACFun comprises an Abstract Fusion Module (AFun) and a Concrete Fusion Module (CFun), which separately learn the abstract and concrete features of the style and face. We also design a Face and Style Imagery Alignment Loss to align the style image with the face image in the latent space. Finally, we generate styled facial …
Poster
Sangyun Shin · Yuhang He · Madhu Vankadari · Ta-Ying Cheng · Qian Xie · Andrew Markham · Niki Trigoni

[ East Exhibit Hall A-C ]

Abstract
The performance of 3D object detection in large outdoor point clouds deteriorates significantly in an unseen environment due to the inter-domain gap. To address these challenges, most existing methods for domain adaptation harness self-training schemes and attempt to bridge the gap by focusing on a single factor that causes the inter-domain gap, such as objects' sizes, shapes, and foreground density variation. However, the resulting adaptations suggest that there is still a substantial inter-domain gap left to be minimized. We argue that this is due to two limitations: 1) Biased pseudo-label collection from self-training. 2) Multiple factors jointly contributing to how the object is perceived in the unseen target domain. In this work, we propose a grouping-exploration strategy framework, Group Explorer Domain Adaptation ($\textbf{GroupEXP-DA}$), to addresses those two issues. Specifically, our grouping divides the available label sets into multiple clusters and ensures all of them have equal learning attention with the group-equivariant spatial feature, avoiding dominant types of objects causing imbalance problems. Moreover, grouping learns to divide objects by considering inherent factors in a data-driven manner, without considering each factor separately as existing works. On top of the group-equivariant spatial feature that selectively detects objects similar to the input group, we …
Poster
Boqian Wu · Qiao Xiao · Shiwei Liu · Lu Yin · Mykola Pechenizkiy · Decebal Constantin Mocanu · Maurice Keulen · Elena Mocanu

[ East Exhibit Hall A-C ]

Abstract
Deep neural networks have evolved as the leading approach in 3D medical image segmentation due to their outstanding performance. However, the ever-increasing model size and computational cost of deep neural networks have become the primary barriers to deploying them on real-world, resource-limited hardware. To achieve both segmentation accuracy and efficiency, we propose a 3D medical image segmentation model called Efficient to Efficient Network (E2ENet), which incorporates two parametrically and computationally efficient designs. i. Dynamic sparse feature fusion (DSFF) mechanism: it adaptively learns to fuse informative multi-scale features while reducing redundancy. ii. Restricted depth-shift in 3D convolution: it leverages the 3D spatial information while keeping the model and computational complexity as 2D-based methods. We conduct extensive experiments on AMOS, Brain Tumor Segmentation and BTCV Challenge, demonstrating that E2ENet consistently achieves a superior trade-off between accuracy and efficiency than prior arts across various resource constraints. %In particular, with a single model and single scale, E2ENet achieves comparable accuracy on the large-scale challenge AMOS-CT, while saving over 69% parameter count and 27% FLOPs in the inference phase, compared with the previousbest-performing method. Our code has been made available at: https://github.com/boqian333/E2ENet-Medical.
Poster
Qianxiong Xu · Xuanyi Liu · Lanyun Zhu · Guosheng Lin · Cheng Long · Ziyue Li · Rui Zhao

[ East Exhibit Hall A-C ]

Abstract
Many few-shot segmentation (FSS) methods use cross attention to fuse support foreground (FG) into query features, regardless of the quadratic complexity. A recent advance Mamba can also well capture intra-sequence dependencies, yet the complexity is only linear. Hence, we aim to devise a cross (attention-like) Mamba to capture inter-sequence dependencies for FSS. A simple idea is to scan on support features to selectively compress them into the hidden state, which is then used as the initial hidden state to sequentially scan query features. Nevertheless, it suffers from (1) support forgetting issue: query features will also gradually be compressed when scanning on them, so the support features in hidden state keep reducing, and many query pixels cannot fuse sufficient support features; (2) intra-class gap issue: query FG is essentially more similar to itself rather than to support FG, i.e., query may prefer not to fuse support features but their own ones from the hidden state, yet the success of FSS relies on the effective use of support information. To tackle them, we design a hybrid Mamba network (HMNet), including (1) a support recapped Mamba to periodically recap the support features when scanning query, so the hidden state can always contain rich …
Poster
Bowen Jin · Ziqi Pang · Bingjun Guo · Yu-Xiong Wang · Jiaxuan You · Jiawei Han

[ East Exhibit Hall A-C ]

Abstract
In this paper, we approach an overlooked yet critical task Graph2Image: generating images from multimodal attributed graphs (MMAGs). This task poses significant challenges due to the explosion in graph size, dependencies among graph entities, and the need for controllability in graph conditions. To address these challenges, we propose a graph context-conditioned diffusion model called InstructG2I. InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling by combining personalized page rank and re-ranking based on vision-language features. Then, a graph QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process of diffusion. Finally, we propose graph classifier-free guidance, enabling controllable generation by varying the strength of graph guidance and multiple connected edges to a node. Extensive experiments conducted on three datasets from different domains demonstrate the effectiveness and controllability of our approach. The code is available at https://github.com/PeterGriffinJin/InstructG2I.
Poster
Qihang Yu · Mark Weber · Xueqing Deng · Xiaohui Shen · Daniel Cremers · Liang-Chieh Chen

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in generative models have highlighted the crucial role of image tokenization in the efficient synthesis of high-resolution images. Tokenization, which transforms images into latent representations, reduces computational demands compared to directly processing pixels and enhances the effectiveness and efficiency of the generation process. Prior methods, such as VQGAN, typically utilize 2D latent grids with fixed downsampling factors. However, these 2D tokenizations face challenges in managing the inherent redundancies present in images, where adjacent regions frequently display similarities. To overcome this issue, we introduce **T**ransformer-based 1-D**i**mensional **Tok**enizer (TiTok), an innovative approach that tokenizes images into 1D latent sequences. TiTok provides a more compact latent representation, yielding substantially more efficient and effective representations than conventional techniques. For example, a 256 × 256 × 3 image can be reduced to just **32** discrete tokens, a significant reduction from the 256 or 1024 tokens obtained by prior methods. Despite its compact nature, TiTok achieves competitive performance to state-of-the-art approaches. Specifically, using the same generator framework, TiTok attains **1.97** gFID, outperforming MaskGIT baseline significantly by 4.21 at ImageNet 256 × 256 benchmark. The advantages of TiTok become even more significant when it comes to higher resolution. At ImageNet 512 × 512 benchmark, TiTok …
Poster
Jiatao Gu · Ying Shen · Shuangfei Zhai · Yizhe Zhang · Navdeep Jaitly · Joshua Susskind

[ East Exhibit Hall A-C ]

Abstract
Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To address this issue, we present Kaleido, a novel approach that enhances the diversity of samples by incorporating autoregressive latent priors. Kaleido integrates an autoregressive language model that encodes the original caption and generates latent variables, serving as abstract and intermediary representations for guiding and facilitating the image generation process.In this paper, we explore a variety of discrete latent representations, including textual descriptions, detection bounding boxes, object blobs, and visual tokens. These representations diversify and enrich the input conditions to the diffusion models, enabling more diverse outputs.Our experimental results demonstrate that Kaleido effectively broadens the diversity of the generated image samples from a given textual description while maintaining high image quality. Furthermore, we show that Kaleido adheres closely to the guidance provided by the generated latent variables, demonstrating its capability to effectively control and direct the image generation process.
Poster
Lei Zhu · Fangyun Wei · Yanye Lu · Dong Chen

[ East Exhibit Hall A-C ]

Abstract
In the realm of image quantization exemplified by VQGAN, the process encodes images into discrete tokens drawn from a codebook with a predefined size. Recent advancements, particularly with LLAMA 3, reveal that enlarging the codebook significantly enhances model performance. However, VQGAN and its derivatives, such as VQGAN-FC (Factorized Codes) and VQGAN-EMA, continue to grapple with challenges related to expanding the codebook size and enhancing codebook utilization. For instance, VQGAN-FC is restricted to learning a codebook with a maximum size of 16,384, maintaining a typically low utilization rate of less than 12% on ImageNet. In this work, we propose a novel image quantization model named VQGAN-LC (Large Codebook), which extends the codebook size to 100,000, achieving an utilization rate exceeding 99%. Unlike previous methods that optimize each codebook entry, our approach begins with a codebook initialized with 100,000 features extracted by a pre-trained vision encoder. Optimization then focuses on training a projector that aligns the entire codebook with the feature distributions of the encoder in VQGAN-LC. We demonstrate the superior performance of our model over its counterparts across a variety of tasks, including image reconstruction, image classification, auto-regressive image generation using GPT, and image creation with diffusion- and flow-based generative models.
Poster
Zanlin Ni · Yulin Wang · Renping Zhou · Yizeng Han · Jiayi Guo · Zhiyuan Liu · Yuan Yao · Gao Huang

[ East Exhibit Hall A-C ]

Abstract
Recently, token-based generation approaches have demonstrated their effectiveness in synthesizing visual content. As a representative example, non-autoregressive Transformers (NATs) can generate decent-quality images in just a few steps. NATs perform generation in a progressive manner, where the latent tokens of a resulting image are incrementally revealed step-by-step. At each step, the unrevealed image regions are padded with [MASK] tokens and inferred by NAT, with the most reliable predictions preserved as newly revealed, visible tokens. In this paper, we delve into understanding the mechanisms behind the effectiveness of NATs and uncover two important interaction patterns that naturally emerge from NAT’s paradigm: Spatially (within a step), although [MASK] and visible tokens are processed uniformly by NATs, the interactions between them are highly asymmetric. In specific, [MASK] tokens mainly gather information for decoding. On the contrary, visible tokens tend to primarily provide information, and their deep representations can be built only upon themselves. Temporally (across steps), the interactions between adjacent generation steps mostly concentrate on updating the representations of a few critical tokens, while the computation for the majority of tokens is generally repetitive. Driven by these findings, we propose EfficientNAT (ENAT), a NAT model that explicitly encourages these critical interactions inherent in …
Poster
Qiyao Liang · Ziming Liu · Mitchell Ostrow · Ila Fiete

[ East Exhibit Hall A-C ]

Abstract
Diffusion models are capable of generating photo-realistic images that combine elements which do not appear together in natural images, demonstrating their ability to compositionally generalize. Nonetheless, the precise mechanism of compositionality and how it is acquired through training remains elusive. Here, we consider a highly reduced setting to examine whether diffusion models learn semantically meaningful and fully factorized representations of composable features. We performed extensive controlled experiments on conditional DDPMs trained to generate various forms of 2D Gaussian data. We demonstrate that the models learn factorized, semi-continuous manifold representations that are orthogonal in underlying continuous latent features of independent variations but are not aligned for different values of the same feature. With such representations, models demonstrate superior compositionality but have limited ability to interpolate over unseen values of a given feature. Our experimental results further demonstrate that diffusion models can attain compositionality with a small amount of compositional examples, suggesting a novel way to train DDPMs. Finally, we connect manifold formation in diffusion models to percolation theory in physics, thereby offering insights into the sudden onset of factorized representation learning. Our thorough toy experiments thus contribute a deeper understanding of how diffusion models capture compositional structure in data, paving the …
Poster
Zhicheng Sun · Zhenhao Yang · Yang Jin · Haozhe Chi · Kun Xu · Kun Xu · Liwei Chen · Hao Jiang · Yang Song · Kun Gai · Yadong Mu

[ East Exhibit Hall A-C ]

Abstract
Customizing diffusion models to generate identity-preserving images from user-provided reference images is an intriguing new problem. The prevalent approaches typically require training on extensive domain-specific images to achieve identity preservation, which lacks flexibility across different use cases. To address this issue, we exploit classifier guidance, a training-free technique that steers diffusion models using an existing classifier, for personalized image generation. Our study shows that based on a recent rectified flow framework, the major limitation of vanilla classifier guidance in requiring a special classifier can be resolved with a simple fixed-point solution, allowing flexible personalization with off-the-shelf image discriminators. Moreover, its solving procedure proves to be stable when anchored to a reference flow trajectory, with a convergence guarantee. The derived method is implemented on rectified flow with different off-the-shelf image discriminators, delivering advantageous personalization results for human faces, live subjects, and certain objects. Code is available at https://github.com/feifeiobama/RectifID.
Poster
Susung Hong

[ East Exhibit Hall A-C ]

Abstract
Conditional diffusion models have shown remarkable success in visual content generation, producing high-quality samples across various domains, largely due to classifier-free guidance (CFG). Recent attempts to extend guidance to unconditional models have relied on heuristic techniques, resulting in suboptimal generation quality and unintended effects. In this work, we propose Smoothed Energy Guidance (SEG), a novel training- and condition-free approach that leverages the energy-based perspective of the self-attention mechanism to enhance image generation. By defining the energy of self-attention, we introduce a method to reduce the curvature of the energy landscape of attention and use the output as the unconditional prediction. Practically, we control the curvature of the energy landscape by adjusting the Gaussian kernel parameter while keeping the guidance scale parameter fixed. Additionally, we present a query blurring method that is equivalent to blurring the entire attention weights without incurring quadratic complexity in the number of tokens. In our experiments, SEG achieves a Pareto improvement in both quality and the reduction of side effects. The code is available at https://github.com/SusungHong/SEG-SDXL.
Poster
Athanasios Tragakis · Marco Aversa · Chaitanya Kaul · Roderick Murray-Smith · Daniele Faccio

[ East Exhibit Hall A-C ]

Abstract
In this work, we introduce Pixelsmith, a zero-shot text-to-image generative framework to sample images at higher resolutions with a single GPU. We are the first to show that it is possible to scale the output of a pre-trained diffusion model by a factor of 1000, opening the road to gigapixel image generation at no extra cost. Our cascading method uses the image generated at the lowest resolution as baseline to sample at higher resolutions. For the guidance, we introduce the Slider, a mechanism that fuses the overall structure contained in the first-generated image with enhanced fine details. At each inference step, we denoise patches rather than the entire latent space, minimizing memory demands so that a single GPU can handle the process, regardless of the image's resolution. Our experimental results show that this method not only achieves higher quality and diversity compared to existing techniques but also reduces sampling time and ablation artifacts.
Poster
Qi Bi · Jingjun Yi · Hao Zheng · Haolan Zhan · Yawen Huang · Wei Ji · Yuexiang Li · Yefeng Zheng

[ East Exhibit Hall A-C ]

Abstract
The emerging vision foundation model (VFM) has inherited the ability to generalize to unseen images.Nevertheless, the key challenge of domain-generalized semantic segmentation (DGSS) lies in the domain gap attributed to the cross-domain styles, i.e., the variance of urban landscape and environment dependencies.Hence, maintaining the style-invariant property with varying domain styles becomes the key bottleneck in harnessing VFM for DGSS. The frequency space after Haar wavelet transformation provides a feasible way to decouple the style information from the domain-invariant content, since the content and style information are retained in the low- and high- frequency components of the space, respectively. To this end, we propose a novel Frequency-Adapted (FADA) learning scheme to advance the frontier.Its overall idea is to separately tackle the content and style information by frequency tokens throughout the learning process.Particularly, the proposed FADA consists of two branches, i.e., low- and high- frequency branches. The former one is able to stabilize the scene content, while the latter one learns the scene styles and eliminates its impact to DGSS. Experiments conducted on various DGSS settings show the state-of-the-art performance of our FADA and its versatility to a variety of VFMs.Source code is available at \url{https://github.com/BiQiWHU/FADA}.
Poster
Hikaru Shindo · Manuel Brack · Gopika Sudhakaran · Devendra S Dhami · Patrick Schramowski · Kristian Kersting

[ East Exhibit Hall A-C ]

Abstract
Large-scale, pre-trained neural networks have demonstrated strong capabilities in various tasks, including zero-shot image segmentation. To identify concrete objects in complex scenes, humans instinctively rely on deictic descriptions in natural language, i.e., referring to something depending on the context such as "The object that is on the desk and behind the cup.". However, deep learning approaches cannot reliably interpret such deictic representations due to their lack of reasoning capabilities in complex scenarios. To remedy this issue, we propose DeiSAM — a combination of large pre-trained neural networks with differentiable logic reasoners — for deictic promptable segmentation. Given a complex, textual segmentation description, DeiSAM leverages Large Language Models (LLMs) to generate first-order logic rules and performs differentiable forward reasoning on generated scene graphs. Subsequently, DeiSAM segments objects by matching them to the logically inferred image regions. As part of our evaluation, we propose the Deictic Visual Genome (DeiVG) dataset, containing paired visual input and complex, deictic textual prompts. Our empirical results demonstrate that DeiSAM is a substantial improvement over purely data-driven baselines for deictic promptable segmentation.
Poster
Zirui Liu · Yan Zhuang · Qi Liu · Jiatong Li · Yuren Zhang · Zhenya Huang · Jinze Wu · Shijin Wang

[ East Exhibit Hall A-C ]

Abstract
As the deep integration of machine learning and intelligent education, Computerized Adaptive Testing (CAT) has received more and more research attention. Compared to traditional paper-and-pencil tests, CAT can deliver both personalized and interactive assessments by automatically adjusting testing questions according to the performance of students during the test process. Therefore, CAT has been recognized as an efficient testing methodology capable of accurately estimating a student’s ability with a minimal number of questions, leading to its widespread adoption in mainstream selective exams such as the GMAT and GRE. However, just improving the accuracy of ability estimation is far from satisfactory in the real-world scenarios, since an accurate ranking of students is usually more important (e.g., in high-stakes exams). Considering the shortage of existing CAT solutions in student ranking, this paper emphasizes the importance of aligning test outcomes (student ranks) with the true underlying abilities of students. Along this line, different from the conventional independent testing paradigm among students, we propose a novel collaborative framework, Collaborative Computerized Adaptive Testing (CCAT), that leverages inter-student information to enhance student ranking. By using collaborative students as anchors to assist in ranking test-takers, CCAT can give both theoretical guarantees and experimental validation for ensuring ranking consistency.
Poster
Zhao Zhang · Ziwei Zhao · Dong Wang · Liwei Wang

[ East Exhibit Hall A-C ]

Abstract
Accurately restoring topology is both challenging and crucial in tubular structure extraction tasks, such as blood vessel segmentation and road network extraction. Diverging from traditional approaches based on pixel-level classification, our proposed method, named GraphMorph, focuses on branch-level features of tubular structures to achieve more topologically accurate predictions. GraphMorph comprises two main components: a Graph Decoder and a Morph Module. Utilizing multi-scale features extracted from an image patch by the segmentation network, the Graph Decoder facilitates the learning of branch-level features and generates a graph that accurately represents the tubular structure in this patch. The Morph Module processes two primary inputs: the graph and the centerline probability map, provided by the Graph Decoder and the segmentation network, respectively. Employing a novel SkeletonDijkstra algorithm, the Morph Module produces a centerline mask that aligns with the predicted graph. Furthermore, we observe that employing centerline masks predicted by GraphMorph significantly reduces false positives in the segmentation task, which is achieved by a simple yet effective post-processing strategy. The efficacy of our method in the centerline extraction and segmentation tasks has been substantiated through experimental evaluations across various datasets. Source code will be released soon.
Poster
Sai Wang · Yutian Lin · Yu Wu · Bo Du

[ East Exhibit Hall A-C ]

Abstract
Existing ultra image segmentation methods suffer from two major challenges, namely the scalability issue (i.e. they lack the stability and generality of standard segmentation models, as they are tailored to specific datasets), and the architectural issue (i.e. they are incompatible with real-world ultra image scenes, as they compromise between image size and computing resources).To tackle these issues, we revisit the classic sliding inference framework, upon which we propose a Surrounding Guided Segmentation framework (SGNet) for ultra image segmentation. The SGNet leverages a larger area around each image patch to refine the general segmentation results of local patches.Specifically, we propose a surrounding context integration module to absorb surrounding context information and extract specific features that are beneficial to local patches. Note that, SGNet can be seamlessly integrated to any general segmentation model.Extensive experiments on five datasets demonstrate that SGNet achieves competitive performance and consistent improvements across a variety of general segmentation models, surpassing the traditional ultra image segmentation methods by a large margin.
Poster
Wei Ji · Jingjing Li · Wenbo Li · Yilin Shen · Li cheng · Hongxia Jin

[ East Exhibit Hall A-C ]

Abstract
Thanks to the rapid progress in RGB & thermal imaging, also known as multispectral imaging, the task of multispectral video semantic segmentation, or MVSS in short, has recently drawn significant attentions. Noticeably, it offers new opportunities in improving segmentation performance under unfavorable visual conditions such as poor light or overexposure. Unfortunately, there are currently very few datasets available, including for example MVSeg dataset that focuses purely toward eye-level view; and it features the sparse annotation nature due to the intensive demands of labeling process. To address these key challenges of the MVSS task, this paper presents two major contributions: the introduction of MVUAV, a new MVSS benchmark dataset, and the development of a dedicated semi-supervised MVSS baseline - SemiMV. Our MVUAV dataset is captured via Unmanned Aerial Vehicles (UAV), which offers a unique oblique bird’s-eye view complementary to the existing MVSS datasets; it also encompasses a broad range of day/night lighting conditions and over 30 semantic categories. In the meantime, to better leverage the sparse annotations and extra unlabeled RGB-Thermal videos, a semi-supervised learning baseline, SemiMV, is proposed to enforce consistency regularization through a dedicated Cross-collaborative Consistency Learning (C3L) module and a denoised temporal aggregation strategy. Comprehensive empirical evaluations on …
Poster
Rongkun Zheng · Lu Qi · Xi Chen · Yi Wang · Kun Wang · Yu Qiao · Hengshuang Zhao

[ East Exhibit Hall A-C ]

Abstract
Recent DETR-based methods have advanced the development of Video Instance Segmentation (VIS) through transformers' efficiency and capability in modeling spatial and temporal information. Despite harvesting remarkable progress, existing works follow asynchronous designs, which model video sequences via either video-level queries only or adopting query-sensitive cascade structures, resulting in difficulties when handling complex and challenging video scenarios. In this work, we analyze the cause of this phenomenon and the limitations of the current solutions, and propose to conduct synchronized modeling via a new framework named SyncVIS. Specifically, SyncVIS explicitly introduces video-level query embeddings and designs two key modules to synchronize video-level query with frame-level query embeddings: a synchronized video-frame modeling paradigm and a synchronized embedding optimization strategy. The former attempts to promote the mutual learning of frame- and video-level embeddings with each other and the latter divides large video sequences into small clips for easier optimization. Extensive experimental evaluations are conducted on the challenging YouTube-VIS 2019 & 2021 & 2022, and OVIS benchmarks, and SyncVIS achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach. The code is available at https://github.com/rkzheng99/SyncVIS.
Poster
Raphael Baena · Syrine Kalleli · Mathieu Aubry

[ East Exhibit Hall A-C ]

Abstract
We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten text (HTR), with latin, chinese or ciphered characters. Detection-based approaches have until now largely been discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with diverse enough data to learn reasonable character localization in any script; (ii) modern transformer-based detectors can jointly detect a large number of instances and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach thus builds on a completely different paradigm than most state-of-the-art methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, our method demonstrates good performance on range of scripts, usually tackled with specialized approaches: latin script, chinese script, and ciphers, for which we significantly improve state-of-the-art performances. Our code and models are available at [https://github.com/raphael-baena/DTLR](https://github.com/raphael-baena/DTLR).
Poster
Yuedong Chen · Chuanxia Zheng · Haofei Xu · Bohan Zhuang · Andrea Vedaldi · Tat-Jen Cham · Jianfei Cai

[ East Exhibit Hall A-C ]

Abstract
We introduce MVSplat360, a feed-forward approach for 360° novel view synthesis (NVS) of diverse real-world scenes, using only sparse observations. This setting is inherently ill-posed due to minimal overlap among input views and insufficient visual information provided, making it challenging for conventional methods to achieve high-quality results. Our MVSplat360 addresses this by effectively combining geometry-aware 3D reconstruction with temporally consistent video generation. Specifically, it refactors a feed-forward 3D Gaussian Splatting (3DGS) model to render features directly into the latent space of a pre-trained Stable Video Diffusion (SVD) model, where these features then act as pose and visual cues to guide the denoising process and produce photorealistic 3D-consistent views. Our model is end-to-end trainable and supports rendering arbitrary views with as few as 5 sparse input views. To evaluate MVSplat360's performance, we introduce a new benchmark using the challenging DL3DV-10K dataset, where MVSplat360 achieves superior visual quality compared to state-of-the-art methods on wide-sweeping or even 360° NVS tasks. Experiments on the existing benchmark RealEstate10K also confirm the effectiveness of our model. Readers are highly recommended to view the video results at [donydchen.github.io/mvsplat360](https://donydchen.github.io/mvsplat360).
Spotlight Poster
Yupeng Zhou · Daquan Zhou · Ming-Ming Cheng · Jiashi Feng · Qibin Hou

[ East Exhibit Hall A-C ]

Abstract
For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a simple but effective self-attention mechanism, termed Consistent Self-Attention, that boosts the consistency between the generated images. It can be used to augment pre-trained diffusion-based text-to-image models in a zero-shot manner. Based on the images with consistent content, we further show that our method can be extended to long range video generation by introducing a semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from …
Poster
Gwanghyun Kim · Alonso Martinez · Yu-Chuan Su · Brendan Jou · Jose Lezama · Agrim Gupta · Lijun Yu · Lu Jiang · Aren Jansen · Jacob Walker · Krishna Somandepalli

[ East Exhibit Hall A-C ]

Abstract
Training diffusion models for audiovisual sequences allows for a range of generation tasks by learning conditional distributions of various input-output combinations of the two modalities. Nevertheless, this strategy often requires training a separate model for each task which is expensive. Here, we propose a novel training approach to effectively learn arbitrary conditional distributions in the audiovisual space. Our key contribution lies in how we parameterize the diffusion timestep in the forward diffusion process. Instead of the standard fixed diffusion timestep, we propose applying variable diffusion timesteps across the temporal dimension and across modalities of the inputs. This formulation offers flexibility to introduce variable noise levels for various portions of the input, hence the term mixture of noise levels. We propose a transformer-based audiovisual latent diffusion model and show that it can be trained in a task-agnostic fashion using our approach to enable a variety of audiovisual generation tasks at inference time. Experiments demonstrate the versatility of our method in tackling cross-modal and multimodal interpolation tasks in the audiovisual space. Notably, our proposed approach surpasses baselines in generating temporally and perceptually consistent samples conditioned on the input. Project page: neurips13025.github.io
Poster
PENGHUI RUAN · Pichao WANG · Divya Saxena · Jiannong Cao · Yuhui Shi

[ East Exhibit Hall A-C ]

Abstract
Despite advancements in Text-to-Video (T2V) generation, producing videos with realistic motion remains challenging. Current models often yield static or minimally dynamic outputs, failing to capture complex motions described by text. This issue stems from the internal biases in text encoding which overlooks motions, and inadequate conditioning mechanisms in T2V generation models. To address this, we propose a novel framework called DEcomposed MOtion (DEMO), which enhances motion synthesis in T2V generation by decomposing both text encoding and conditioning into content and motion components. Our method includes a content encoder for static elements and a motion encoder for temporal dynamics, alongside separate content and motion conditioning mechanisms. Crucially, we introduce text-motion and video-motion supervision to improve the model's understanding and generation of motion. Evaluations on benchmarks such as MSR-VTT, UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO's superior ability to produce videos with enhanced motion dynamics while maintaining high visual quality. Our approach significantly advances T2V generation by integrating comprehensive motion understanding directly from textual descriptions. Project page: https://PR-Ryan.github.io/DEMO-project/
Poster
Cheonjun Park · Mincheol Park · Hyunchan Moon · Myung Kuk Yoon · Seokjin Go · Suhyun Kim · Won Woo Ro

[ East Exhibit Hall A-C ]

Abstract
Depth-wise Separable Convolution (DSConv) has a powerful representation even with fewer parameters and computation, leading to its adoption by almost all of the state-of-the-art CNN models. DSConv models are already compact making it hard to apply pruning, and there are few previous pruning techniques that target depth-wise convolution (DW-conv).In this paper, we present Depth-wise Separable Convolution Pruning (DEPrune), a novel pruning method applied to both point-wise and depth-wise convolutions. DEPrune is optimized by analyzing the computation of DSConv on GPUs.DEPrune employs a fine-grained pruning approach, yet it achieves the structured sparsity typically absent in fine-grained pruning, enabling practical hardware acceleration. Moreover, this method maintains a high pruning ratio without causing any accuracy drop.We additionally represent techniques that further enhance DEPrune performance: 1) balanced workload tuning (BWT), and 2) hardware-aware sparsity recalibration (HSR).Experiment results show that DEPrune achieves up to $3.74\times$ practical speedup in DSConv inference on GPUs while maintaining the accuracy of EfficientNet-B0 on ImageNet.
Poster
Haowei Zhu · Ling Yang · Jun-Hai Yong · Hongzhi Yin · Jiawei Jiang · Meng Xiao · Wentao Zhang · Bin Wang

[ East Exhibit Hall A-C ]

Abstract
The scale and quality of a dataset significantly impact the performance of deep models. However, acquiring large-scale annotated datasets is both a costly and time-consuming endeavor. To address this challenge, dataset expansion technologies aim to automatically augment datasets, unlocking the full potential of deep models. Current data expansion techniques include image transformation and image synthesis methods. Transformation-based methods introduce only local variations, leading to limited diversity. In contrast, synthesis-based methods generate entirely new content, greatly enhancing informativeness. However, existing synthesis methods carry the risk of distribution deviations, potentially degrading model performance with out-of-distribution samples. In this paper, we propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model. DistDiff constructs hierarchical prototypes to approximate the real data distribution, optimizing latent data points within diffusion models with hierarchical energy guidance. We demonstrate its capability to generate distribution-consistent samples, significantly improving data expansion tasks. DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data. Furthermore, our approach consistently outperforms existing synthesis-based techniques and demonstrates compatibility with widely adopted transformation-based augmentation methods. Additionally, the expanded dataset exhibits robustness across various architectural frameworks.
Poster
Dingshuo Chen · Zhixun Li · Yuyan Ni · Guibin Zhang · Ding Wang · Qiang Liu · Shu Wu · Jeffrey Yu · Liang Wang

[ East Exhibit Hall A-C ]

Abstract
With the emergence of various molecular tasks and massive datasets, how to perform efficient training has become an urgent yet under-explored issue in the area. Data pruning (DP), as an oft-stated approach to saving training burdens, filters out less influential samples to form a coreset for training. However, the increasing reliance on pretrained models for molecular tasks renders traditional in-domain DP methods incompatible. Therefore, we propose a **Mol**ecular data **P**runing framework for **e**nhanced **G**eneralization (**MolPeg**), which focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models. By maintaining two models with different updating paces during training, we introduce a novel scoring function to measure the informativeness of samples based on the loss discrepancy. As a plug-and-play framework, MolPeg realizes the perception of both source and target domain and consistently outperforms existing DP methods across four downstream tasks. Remarkably, it can surpass the performance obtained from full-dataset training, even when pruning up to 60-70% of the data on HIV and PCBA dataset. Our work suggests that the discovery of effective data-pruning metrics could provide a viable path to both enhanced efficiency and superior generalization in transfer learning.
Poster
Han Lu · Yichen Xie · Xiaokang Yang · Junchi Yan

[ East Exhibit Hall A-C ]

Abstract
The pretraining-finetuning paradigm has gained widespread adoption in vision tasks and other fields. However, the finetuning phase still requires high-quality annotated samples. To overcome this challenge, the concept of active finetuning has emerged, aiming to select the most appropriate samples for model finetuning within a limited budget. Existing active learning methods struggle in this scenario due to their inherent bias in batch selection. Meanwhile, the recent active finetuning approach focuses solely on global distribution alignment but neglects the contributions of samples to local boundaries. Therefore, we propose a Bi-Level Active Finetuning framework (BiLAF) to select the samples for annotation in one shot, encompassing two stages: core sample selection for global diversity and boundary sample selection for local decision uncertainty. Without the need of ground-truth labels, our method can successfully identify pseudo-class centers, apply a novel denoising technique, and iteratively select boundary samples with designed evaluation metric. Extensive experiments provide qualitative and quantitative evidence of our method's superior efficacy, consistently outperforming the existing baselines.
Poster
Alexander Nikitin · Letizia Iannucci · Samuel Kaski

[ East Exhibit Hall A-C ]

Abstract
Time series data are essential in a wide range of machine learning (ML) applications. However, temporal data are often scarce or highly sensitive, limiting data sharing and the use of data-intensive ML methods. A possible solution to this problem is the generation of synthetic datasets that resemble real data. In this work, we introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling and evaluation of synthetic time series datasets. TSGM includes a broad repertoire of machine learning methods: generative models, probabilistic, simulation-based approaches, and augmentation techniques. The framework enables users to evaluate the quality of the produced data from different angles: similarity, downstream effectiveness, predictive consistency, diversity, fairness, and privacy. TSGM is extensible and user-friendly, which allows researchers to rapidly implement their own methods and compare them in a shareable environment. The framework has been tested on open datasets and in production and proved to be beneficial in both cases. https://github.com/AlexanderVNikitin/tsgm
Spotlight Poster
Seong Hyeon Park · Huiwon Jang · Byungwoo Jeon · Sukmin Yun · Paul Hongsuck Seo · Jinwoo Shin

[ East Exhibit Hall A-C ]

Abstract
Tracking points in video frames is essential for understanding video content. However, the task is fundamentally hindered by the computation demands for brute-force correspondence matching across the frames. As the current models down-sample the frame resolutions to mitigate this challenge, they fall short in accurately representing point trajectories due to information truncation. Instead, we address the challenge by pruning the search space for point tracking and let the model process only the important regions of the frames without down-sampling. Our first key idea is to identify the object instance and its trajectory over the frames, then prune the regions of the frame that do not contain the instance. Concretely, to estimate the instance’s trajectory, we track a group of points on the instance and aggregate their motion trajectories. Furthermore, to deal with the occlusions in complex scenes, we propose to compensate for the occluded points while tracking. To this end, we introduce a unified framework that jointly performs point tracking and segmentation, providing synergistic effects between the two tasks. For example, the segmentation results enable a tracking model to avoid the occluded points referring to the instance mask, and conversely, the improved tracking results can help to produce more accurate …
Poster
Qing Zhong · Guodong Ding · Angela Yao

[ East Exhibit Hall A-C ]

Abstract
Temporal context plays a significant role in temporal action segmentation. In an offline setting, the context is typically captured by the segmentation network after observing the entire sequence. However, capturing and using such context information in an online setting remains an under-explored problem. This work presents the first online framework for temporal action segmentation. At the core of the framework is an adaptive memory designed to accommodate dynamic changes in context over time, alongside a feature augmentation module that enhances the frames with the memory. In addition, we propose a post-processing approach to mitigate the severe over-segmentation in the online setting. On three common segmentation benchmarks, our approach achieves state-of-the-art performance.
Poster
Gianluca Mancusi · Mattia Bernardi · Aniello Panariello · Angelo Porrello · Rita Cucchiara · SIMONE CALDERARA

[ East Exhibit Hall A-C ]

Abstract
End-to-end transformer-based trackers have achieved remarkable performance on most human-related datasets. However, training these trackers in heterogeneous scenarios poses significant challenges, including negative interference - where the model learns conflicting scene-specific parameters - and limited domain generalization, which often necessitates expensive fine-tuning to adapt the models to new domains. In response to these challenges, we introduce Parameter-efficient Scenario-specific Tracking Architecture (PASTA), a novel framework that combines Parameter-Efficient Fine-Tuning (PEFT) and Modular Deep Learning (MDL). Specifically, we define key scenario attributes (e.g, camera-viewpoint, lighting condition) and train specialized PEFT modules for each attribute. These expert modules are combined in parameter space, enabling systematic generalization to new domains without increasing inference time. Extensive experiments on MOTSynth, along with zero-shot evaluations on MOT17 and PersonPath22 demonstrate that a neural tracker built from carefully selected modules surpasses its monolithic counterpart. We release models and code.
Poster
qingsong zhao · Yi Wang · Jilan Xu · Yinan He · Zifan Song · Limin Wang · Yu Qiao · Cairong Zhao

[ East Exhibit Hall A-C ]

Abstract
Video understanding relies on accurate action detection for temporal analysis. However, existing mainstream methods have limitations in real-world applications due to their offline and closed-set evaluation approaches, as well as their dependence on manual annotations. To address these challenges and enable real-time action understanding in open-world scenarios, we propose OV-OAD, a zero-shot online action detector that leverages vision-language models and learns solely from text supervision. By introducing an object-centered decoder unit into a Transformer-based model, we aggregate frames with similar semantics using video-text correspondence. Extensive experiments on four action detection benchmarks demonstrate that OV-OAD outperforms other advanced zero-shot methods. Specifically, it achieves 37.5\% mean average precision on THUMOS’14 and 73.8\% calibrated average precision on TVSeries. This research establishes a robust baseline for zero-shot transfer in online action detection, enabling scalable solutions for open-world temporal understanding. The code will be available for download at \url{https://github.com/OpenGVLab/OV-OAD}.
Spotlight Poster
Tieyuan Chen · Huabin Liu · Tianyao He · Yihang Chen · chaofan gan · Xiao Ma · Cheng Zhong · Yang Zhang · Yingxue Wang · Hui Lin · Weiyao Lin

[ East Exhibit Hall A-C ]

Abstract
Video causal reasoning aims to achieve a high-level understanding of video content from a causal perspective. However, current video reasoning tasks are limited in scope, primarily executed in a question-answering paradigm and focusing on short videos containing only a single event and simple causal relationships, lacking comprehensive and structured causality analysis for videos with multiple events. To fill this gap, we introduce a new task and dataset, Multi-Event Causal Discovery (MECD). It aims to uncover the causal relationships between events distributed chronologically across long videos. Given visual segments and textual descriptions of events, MECD requires identifying the causal associations between these events to derive a comprehensive, structured event-level video causal diagram explaining why and how the final result event occurred. To address MECD, we devise a novel framework inspired by the Granger Causality method, using an efficient mask-based event prediction model to perform an Event Granger Test, which estimates causality by comparing the predicted result event when premise events are masked versus unmasked. Furthermore, we integrate causal inference techniques such as front-door adjustment and counterfactual inference to address challenges in MECD like causality confounding and illusory causality. Experiments validate the effectiveness of our framework in providing causal relationships in multi-event …
Poster
Weiqin Yang · Jiawei Chen · Xin Xin · Sheng Zhou · Binbin Hu · Yan Feng · Chun Chen · Can Wang

[ East Exhibit Hall A-C ]

Abstract
Softmax Loss (SL) is widely applied in recommender systems (RS) and has demonstrated effectiveness. This work analyzes SL from a pairwise perspective, revealing two significant limitations: 1) the relationship between SL and conventional ranking metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false negative instances. Our analysis indicates that these limitations are primarily due to the use of the exponential function. To address these issues, this work extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL), which replaces the exponential function in SL with other appropriate activation functions. While the revision is minimal, we highlight three merits of PSL: 1) it serves as a tighter surrogate for DCG with suitable activation functions; 2) it better balances data contributions; and 3) it acts as a specific BPR loss enhanced by Distributionally Robust Optimization (DRO). We further validate the effectiveness and robustness of PSL through empirical experiments. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.
Poster
Mingxiang Liao · hannan lu · Qixiang Ye · Wangmeng Zuo · Fang Wan · Tianyu Wang · Yuzhong Zhao · Jingdong Wang · Xinyu Zhang

[ East Exhibit Hall A-C ]

Abstract
Comprehensive and constructive evaluation protocols play an important role when developing sophisticated text-to-video (T2V) generation models. Existing evaluation protocols primarily focus on temporal consistency and content continuity, yet largely ignore dynamics of video content. Such dynamics is an essential dimension measuring the visual vividness and the honesty of video content to text prompts. In this study, we propose an effective evaluation protocol, termed DEVIL, which centers on the dynamics dimension to evaluate T2V generation models, as well as improving existing evaluation metrics. In practice, we define a set of dynamics scores corresponding to multiple temporal granularities, and a new benchmark of text prompts under multiple dynamics grades. Upon the text prompt benchmark, we assess the generation capacity of T2V models, characterized by metrics of dynamics ranges and T2V alignment. Moreover, we analyze the relevance of existing metrics to dynamics metrics, improving them from the perspective of dynamics. Experiments show that DEVIL evaluation metrics enjoy up to about 90\% consistency with human ratings, demonstrating the potential to advance T2V generation models.
Spotlight Poster
Gantavya Bhatt · Arnav Das · Jeff A Bilmes

[ East Exhibit Hall A-C ]

Abstract
Submodular functions, crucial for various applications, often lack practical learning methods for their acquisition. Seemingly unrelated, learning a scaling from oracles offering graded pairwise preferences (GPC) is underexplored, despite a rich history in psychometrics. In this paper, we introduce deep submodular peripteral networks (DSPNs), a novel parametric family of submodular functions, and methods for their training using a GPC-based strategy to connect and then tackle both of the above challenges. We introduce newly devised GPC-style ``peripteral'' loss which leverages numerically graded relationships between pairs of objects (sets in our case). Unlike traditional contrastive learning, or RHLF preference ranking, our method utilizes graded comparisons, extracting more nuanced information than just binary-outcome comparisons, and contrasts sets of any size (not just two). We also define a novel suite of automatic sampling strategies for training, including active-learning inspired submodular feedback. We demonstrate DSPNs' efficacy in learning submodularity from a costly target submodular function and demonstrate its superiority both for experimental design and online streaming applications.
Poster
Zifan Liu · Amin Karbasi · Theodoros Rekatsinas

[ East Exhibit Hall A-C ]

Abstract
Finetuning foundation models for specific tasks is an emerging paradigm in modern machine learning. The efficacy of task-specific finetuning largely depends on the selection of appropriate training data. We present TSDS (Task-Specific Data Selection), a framework to select data for task-specific model finetuning, guided by a small but representative set of examples from the target task. To do so, we formulate data selection for task-specific finetuning as an optimization problem with a distribution alignment loss based on optimal transport to capture the discrepancy between the selected data and the target distribution. In addition, we add a regularizer to encourage the diversity of the selected data and incorporate kernel density estimation into the regularizer to reduce the negative effects of near-duplicates among the candidate data.We connect our optimization problem to nearest neighbor search and design efficient algorithms to compute the optimal solution based on approximate nearest neighbor search techniques.We evaluate our method on data selection for both continued pretraining and instruction tuning of language models.We show that instruction tuning using data selected by our method with a 1\% selection ratio often outperforms using the full dataset and beats the baseline selection methods by 1.5 points in F1 score on average.
Poster
Barath Chandran C

[ East Exhibit Hall A-C ]

Abstract

In this reproducibility study, we present our results and experience during replicating the paper, titled CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition(Ahn et al., 2023).Traditional datasets used in image recognition, such as ImageNet, are often synthetically balanced, meaning each class has an equal number of samples. In practical scenarios, datasets frequently exhibit significant class imbalances, with certain classes having a disproportionately larger number of samples compared to others. This discrepancy poses a challenge for traditional image recognition models, as they tend to favor classes with larger sample sizes, leading to poor performance on minority classes. CUDA proposes a class-wise data augmentation technique which can be used over any existing model to improve the accuracy for LTR: Long Tailed Recognition. We successfully replicated all of the results pertaining to the long-tailed CIFAR-100-LT dataset and extended our analysis to provide deeper insights into how CUDA efficiently tackles class imbalance. The code and the readings are available in https://anonymous.4open.science/r/CUDA-org--C2FD/README.md

Poster
Minui Hong · Junhyeog Yun · Insu Jeon · Gunhee Kim

[ East Exhibit Hall A-C ]

Abstract
Federated Learning (FL) allows multiple clients to collaboratively train models without directly sharing their private data. While various data augmentation techniques have been actively studied in the FL environment, most of these methods share input-level or feature-level data information over communication, posing potential privacy leakage. In response to this challenge, we introduce a federated data augmentation algorithm named FedAvP that shares only the augmentation policies, not the data-related information. For data security and efficient policy search, we interpret the policy loss as a meta update loss in standard FL algorithms and utilize the first-order gradient information to further enhance privacy and reduce communication costs. Moreover, we propose a meta-learning method to search for adaptive personalized policies tailored to heterogeneous clients. Our approach outperforms existing best performing augmentation policy search methods and federated data augmentation methods, in the benchmarks for heterogeneous FL.
Poster
Yuzheng Hu · Pingbang Hu · Han Zhao · Jiaqi Ma

[ East Exhibit Hall A-C ]

Abstract
How can we attribute the behaviors of machine learning models to their training data? While the classic influence function sheds light on the impact of individual samples, it often fails to capture the more complex and pronounced collective influence of a set of samples. To tackle this challenge, we study the Most Influential Subset Selection (MISS) problem, which aims to identify a subset of training samples with the greatest collective influence. We conduct a comprehensive analysis of the prevailing approaches in MISS, elucidating their strengths and weaknesses. Our findings reveal that influence-based greedy heuristics, a dominant class of algorithms in MISS, can provably fail even in linear regression. We delineate the failure modes, including the errors of influence function and the non-additive structure of the collective influence. Conversely, we demonstrate that an adaptive version of these heuristics which applies them iteratively, can effectively capture the interactions among samples and thus partially address the issues. Experiments on real-world datasets corroborate these theoretical findings, and further demonstrate that the merit of adaptivity can extend to more complex scenarios such as classification tasks and non-linear neural networks. We conclude our analysis by emphasizing the inherent trade-off between performance and computational efficiency, questioning the …
Poster
Minghao Chen · Yihang Li · Yanting Yang · Shiyu Yu · Binbin Lin · Xiaofei He

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.
Poster
Tinglin Huang · Zhenqiao Song · Rex Ying · Wengong Jin

[ East Exhibit Hall A-C ]

Abstract
Nucleic acid-based drugs like aptamers have recently demonstrated great therapeutic potential. However, experimental platforms for aptamer screening are costly, and the scarcity of labeled data presents a challenge for supervised methods to learn protein-aptamer binding. To this end, we develop an unsupervised learning approach based on the predicted pairwise contact map between a protein and a nucleic acid and demonstrate its effectiveness in protein-aptamer binding prediction. Our model is based on FAFormer, a novel equivariant transformer architecture that seamlessly integrates frame averaging (FA) within each transformer block. This integration allows our model to infuse geometric information into node features while preserving the spatial semantics of coordinates, leading to greater expressive power than standard FA models. Our results show that FAFormer outperforms existing equivariant models in contact map prediction across three protein complex datasets, with over 10% relative improvement. Moreover, we curate five real-world protein-aptamer interaction datasets and show that the contact map predicted by FAFormer serves as a strong binding indicator for aptamer screening.
Poster
Yuxuan Tong · Xiwen Zhang · Rui Wang · Ruidong Wu · Junxian He

[ East Exhibit Hall A-C ]

Abstract
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries.Hypothesizing that difficult queries are crucial to learning complex reasoning, we propose *Difficulty-Aware Rejection Tuning* (`DART`), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples.Utilizing `DART`, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4.We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called `DART-Math`.In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, `DART-Math` outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective …
Poster
Saurav Muralidharan · Sharath Turuvekere Sreenivas · Raviraj Joshi · Marcin Chochowski · Mostofa Patwary · Mohammad Shoeybi · Bryan Catanzaro · Jan Kautz · Pavlo Molchanov

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) targeting different deployment scales and sizes are currently produced by training each variant from scratch; this is extremely compute-intensive. In this paper, we investigate if pruning an existing LLM and then re-training it with a fraction <3% of the original training data can be a suitable alternative to repeated, full retraining. To this end, we develop a set of practical and effective **compression best practices** for LLMs that combine depth, width, attention and MLP pruning with knowledge distillation-based retraining; we arrive at these best practices through a detailed empirical exploration of pruning strategies for each axis, methods to combine axes, distillation strategies, and search techniques for arriving at optimal compressed architectures. We use this guide to compress the Nemotron-4 family of LLMs by a factor of 2-4x, and compare their performance to similarly-sized models on a variety of language modeling tasks. On these tasks, we perform better than Nemotron-3 8B and LLaMa2 7B using **up to 40x** fewer training tokens}, on par with Mistral 7B and Gemma 7B using **up to 85x fewer tokens** and slightly worse than LLaMa3 8B using **up to 159x fewer tokens**. Our models also compare favorably to state-of-the-art compression techniques from …
Poster
Xinyu Fang · Kangrui Mao · Haodong Duan · Xiangyu Zhao · Yining Li · Dahua Lin · Kai Chen

[ East Exhibit Hall A-C ]

Abstract
The advent of large vision-language models (LVLMs) has spurred research into their applications in multi-modal contexts, particularly in video understanding. Traditional VideoQA benchmarks, despite providing quantitative metrics, often fail to encompass the full spectrum of video content and inadequately assess models' temporal comprehension. To address these limitations, we introduce MMBench-Video, a quantitative benchmark designed to rigorously evaluate LVLMs' proficiency in video understanding. MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases. The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.We employ GPT-4 for automated assessment, demonstrating superior accuracy and robustness over earlier LLM-based evaluations. Utilizing MMBench-Video, we have conducted comprehensive evaluations that include both proprietary and open-source LVLMs for images and videos. MMBench-Video stands as a valuable resource for the research community, facilitating improved evaluation of LVLMs and catalyzing progress in the field of video understanding.
Poster
Ameya Prabhu · Shiven Sinha · Ponnurangam Kumaraguru · Philip Torr · Ozan Sener · Puneet Dokania

[ East Exhibit Hall A-C ]

Abstract
Continual learning has primarily focused on the issue of catastrophic forgetting and the associated stability-plasticity tradeoffs. However, little attention has been paid to the efficacy of continually learned representations, as representations are learned alongside classifiers throughout the learning process. Our primary contribution is empirically demonstrating that existing online continually trained deep networks produce inferior representations compared to a simple pre-defined random transforms. Our approach embeds raw pixels using a fixed random transform, approximating an RBF-Kernel initialized before any data is seen. We then train a simple linear classifier on top without storing any exemplars, processing one sample at a time in an online continual learning setting. This method, called RanDumb, significantly outperforms state-of-the-art continually learned representations across all standard online continual learning benchmarks. Our study reveals the significant limitations of representation learning, particularly in low-exemplar and online continual learning scenarios. Extending our investigation to popular exemplar-free scenarios with pretrained models, we find that training only a linear classifier on top of pretrained representations surpasses most continual fine-tuning and prompt-tuning strategies. Overall, our investigation challenges the prevailing assumptions about effective representation learning in the online continual learning.
Poster
Denis Korzhenkov · Christos Louizos

[ East Exhibit Hall A-C ]

Abstract
The problem of heterogeneous clients in federated learning has recently drawn a lot of attention. Spectral model sharding, i.e., partitioning the model parameters into low-rank matrices based on the singular value decomposition, has been one of the proposed solutions for more efficient on-device training in such settings. In this work we present two sampling strategies for such sharding, obtained as solutions to specific optimization problems. The first produces unbiased estimators of the original weights, while the second aims to minimize the squared approximation error. We discuss how both of these estimators can be incorporated in the federated learning loop and practical considerations that arise during local training. Empirically, we demonstrate that both of these methods can lead to improved performance in various commonly used datasets.
Poster
Prajwal Singhania · Siddharth Singh · Shwai He · Soheil Feizi · Abhinav Bhatele

[ East Exhibit Hall A-C ]

Abstract
Inference on large language models (LLMs) can be expensive in terms of thecompute and memory costs involved, especially when long sequence lengths areused. In particular, the self-attention mechanism used in LLM inference contributessignificantly to these costs, which has sparked an interest in approximating the self-attention computation to reduce such costs. In this work, we propose to approximateself-attention by focusing on the dimensionality of key vectors computed in theattention block. Our analysis reveals that key vectors lie in a significantly lower-dimensional space, consistently across several datasets and models. Exploiting thisobservation, we propose Loki, a novel sparse attention method that ranks and selectstokens in the KV-cache based on attention scores computed in low-dimensionalspace. Our evaluations show that Loki is able to speed up the attention computationdue to reduced data movement (load/store) and compute costs while maintainingthe efficacy of the models better than other popular approximation methods.
Poster
Miso Lee · Jihwan Kim · Jae-Pil Heo

[ East Exhibit Hall A-C ]

Abstract
Multi-scene absolute pose regression addresses the demand for fast and memory-efficient camera pose estimation across various real-world environments. Nowadays, transformer-based model has been devised to regress the camera pose directly in multi-scenes. Despite its potential, transformer encoders are underutilized due to the collapsed self-attention map, having low representation capacity. This work highlights the problem and investigates it from a new perspective: distortion of query-key embedding space. Based on the statistical analysis, we reveal that queries and keys are mapped in completely different spaces while only a few keys are blended into the query region. This leads to the collapse of the self-attention map as all queries are considered similar to those few keys. Therefore, we propose simple but effective solutions to activate self-attention. Concretely, we present an auxiliary loss that aligns queries and keys, preventing the distortion of query-key space and encouraging the model to find global relations by self-attention. In addition, the fixed sinusoidal positional encoding is adopted instead of undertrained learnable one to reflect appropriate positional clues into the inputs of self-attention. As a result, our approach resolves the aforementioned problem effectively, thus outperforming existing methods in both outdoor and indoor scenes.
Poster
Zhihao Shu · Xiaowei Yu · Zihao Wu · Wenqi Jia · Yinchen Shi · Miao Yin · Tianming Liu · Dajiang Zhu · Wei Niu

[ East Exhibit Hall A-C ]

Abstract
Mobile devices have become essential enablers for AI applications, particularly in scenarios that require real-time performance. Vision Transformer (ViT) has become a fundamental cornerstone in this regard due to its high accuracy. Recent efforts have been dedicated to developing various transformer architectures that offer im- proved accuracy while reducing the computational requirements. However, existing research primarily focuses on reducing the theoretical computational complexity through methods such as local attention and model pruning, rather than considering realistic performance on mobile hardware. Although these optimizations reduce computational demands, they either introduce additional overheads related to data transformation (e.g., Reshape and Transpose) or irregular computation/data-access patterns. These result in significant overhead on mobile devices due to their limited bandwidth, which even makes the latency worse than vanilla ViT on mobile. In this paper, we present ECP-ViT, a real-time framework that employs the core-periphery principle inspired by the brain functional networks to guide self-attention in ViTs and enable the deployment of ViT models on smartphones. We identify the main bottleneck in transformer structures caused by data transformation and propose a hardware-friendly core-periphery guided self-attention to decrease computation demands. Additionally, we design the system optimizations for intensive data transformation in pruned models. ECP-ViT, with the …
Poster
Zhenyu Zhang · Runjin Chen · Shiwei Liu · Zhewei Yao · Olatunji Ruwase · Beidi Chen · Xiaoxia Wu · Zhangyang &quot;Atlas&quot; Wang

[ East Exhibit Hall A-C ]

Abstract
This paper aims to overcome the ``lost-in-the-middle'' challenge of large language models (LLMs). While recent advancements have successfully enabled LLMs to perform stable language modeling with up to 4 million tokens, the persistent difficulty faced by most LLMs in identifying relevant information situated in the middle of the context has not been adequately tackled. To address this problem, this paper introduces Multi-scale Positional Encoding (Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of LLMs to handle the relevant information located in the middle of the context, without fine-tuning or introducing any additional overhead. Ms-PoE leverages the position indice rescaling to relieve the long-term decay effect introduced by RoPE, while meticulously assigning distinct scaling ratios to different attention heads to preserve essential knowledge learned during the pre-training step, forming a multi-scale context fusion from short to long distance. Extensive experiments with a wide range of LLMs demonstrate the efficacy of our approach. Notably, Ms-PoE achieves an average accuracy gain of up to 3.8 on the Zero-SCROLLS benchmark over the original LLMs. Code will be made public upon acceptence.
Poster
William Brandon · Mayank Mishra · Aniruddha Nrusimha · Rameswar Panda · Jonathan Ragan-Kelley

[ East Exhibit Hall A-C ]

Abstract
Key-value (KV) caching plays an essential role in accelerating decoding for transformer-based autoregressive large language models (LLMs). However, the amount of memory required to store the KV cache can become prohibitive at long sequence lengths and large batch sizes. Since the invention of the transformer, two of the most effective interventions discovered for reducing the size of the KV cache have been Multi-Query Attention (MQA) and its generalization, Grouped-Query Attention (GQA). MQA and GQA both modify the design of the attention block so that multiple query heads can share a single key/value head, reducing the number of distinct key/value heads by a large factor while only minimally degrading accuracy. In this paper, we show that it is possible to take Multi-Query Attention a step further by also sharing key and value heads between adjacent layers, yielding a new attention design we call Cross-Layer Attention (CLA). With CLA, we find that it is possible to reduce the size of the KV cache by another $2\times$ while maintaining nearly the same accuracy as unmodified MQA. In experiments training 1B- and 3B-parameter models from scratch, we demonstrate that CLA provides a Pareto improvement over the memory/accuracy tradeoffs which are possible with traditional MQA, …
Poster
Qiufeng Wang · Xu Yang · Fu Feng · Jingq Wang · Xin Geng

[ East Exhibit Hall A-C ]

Abstract
In recent years, the merging of vast datasets with powerful computational resources has led to the emergence of large pre-trained models in the field of deep learning. However, the common practices often overgeneralize the applicability of these models, overlooking the task-specific resource constraints. To mitigate this issue, we propose \textbf{Cluster-Learngene}, which effectively clusters critical internal modules from a large ancestry model and then inherits them to initialize descendant models of elastic scales. Specifically, based on the density characteristics of attention heads, our method adaptively clusters attention heads of each layer and position-wise feed-forward networks (FFNs) in the ancestry model as the learngene. Moreover, we introduce priority weight-sharing and learnable parameter transformations that expand the learngene to initialize descendant models of elastic scales. Through extensive experimentation, we demonstrate that Cluster-Learngene not only is more efficient compared to other initialization methods but also customizes models of elastic scales according to downstream task resources.
Poster
Markus Hiller · Krista A. Ehinger · Tom Drummond

[ East Exhibit Hall A-C ]

Abstract
We present a novel bi-directional Transformer architecture (BiXT) which scales linearly with input size in terms of computational cost and memory consumption, but does not suffer the drop in performance or limitation to only one input modality seen with other efficient Transformer-based approaches. BiXT is inspired by the Perceiver architectures but replaces iterative attention with an efficient bi-directional cross-attention module in which input tokens and latent variables attend to each other simultaneously, leveraging a naturally emerging attention-symmetry between the two. This approach unlocks a key bottleneck experienced by Perceiver-like architectures and enables the processing and interpretation of both semantics ('what') and location ('where') to develop alongside each other over multiple layers -- allowing its direct application to dense and instance-based tasks alike. By combining efficiency with the generality and performance of a full Transformer architecture, BiXT can process longer sequences like point clouds, text or images at higher feature resolutions and achieves competitive performance across a range of tasks like point cloud part segmentation, semantic image segmentation, image classification, hierarchical sequence modeling and document retrieval. Our experiments demonstrate that BiXT models outperform larger competitors by leveraging longer sequences more efficiently on vision tasks like classification and segmentation, and perform on …
Poster
Josh Alman · Zhao Song

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have made fundamental contributions over the last a few years. To train an LLM, one needs to alternatingly run `forward' computations and backward computations. The forward computation can be viewed as attention function evaluation, and the backward computation can be viewed as a gradient computation. In previous work by [Alman and Song, NeurIPS 2023], it was proved that the forward step can be performed in almost-linear time in certain parameter regimes, but that there is no truly sub-quadratic time algorithm in the remaining parameter regimes unless the popular hypothesis $\mathsf{SETH}$ is false. In this work, we show nearly identical results for the harder-seeming problem of computing the gradient of loss function of one layer attention network, and thus for the entire process of LLM training. This completely characterizes the fine-grained complexity of every step of LLM training.
Spotlight Poster
Yao Lai · Jinxin Liu · David Z. Pan · Ping Luo

[ East Exhibit Hall A-C ]

Abstract
Across a wide range of hardware scenarios, the computational efficiency and physical size of the arithmetic units significantly influence the speed and footprint of the overall hardware system. Nevertheless, the effectiveness of prior arithmetic design techniques proves inadequate, as they do not sufficiently optimize speed and area, resulting in increased latency and larger module size. To boost computing performance, this work focuses on the two most common and fundamental arithmetic modules, adders and multipliers. We cast the design tasks as single-player tree generation games, leveraging reinforcement learning techniques to optimize their arithmetic tree structures. This tree generation formulation allows us to efficiently navigate the vast search space and discover superior arithmetic designs that improve computational efficiency and hardware size within just a few hours. Our proposed method, **ArithTreeRL**, achieves significant improvements for both adders and multipliers. For adders, our approach discovers designs of 128-bit adders that achieve Pareto optimality in theoretical metrics. Compared with PrefixRL, it reduces delay and size by up to 26% and 30%, respectively. For multipliers, compared to RL-MUL, our method enhances speed and reduces size by as much as 49% and 45%. Additionally, ArithTreeRL's flexibility and scalability enable seamless integration into 7nm technology. We believe our …
Poster
Yang Li · Shaobo Han · Jonathan Shihao Ji

[ East Exhibit Hall A-C ]

Abstract
As the adoption of large language models increases and the need for per-user or per-task model customization grows, the parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA) and its variants, incur substantial storage and transmission costs. To further reduce stored parameters, we introduce a "divide-and-share" paradigm that breaks the barriers of low-rank decomposition across matrix dimensions, modules, and layers by sharing parameters globally via a vector bank. As an instantiation of the paradigm to LoRA, our proposed VB-LoRA composites all the low-rank matrices of LoRA from a shared vector bank with a differentiable top-$k$ admixture module. VB-LoRA achieves extreme parameter efficiency while maintaining comparable or better performance compared to state-of-the-art PEFT methods. Extensive experiments demonstrate the effectiveness of VB-LoRA on natural language understanding, natural language generation, instruction tuning, and mathematical reasoning tasks. When fine-tuning the Llama2-13B model, VB-LoRA only uses 0.4% of LoRA's stored parameters, yet achieves superior results. Our source code is available at https://github.com/leo-yangli/VB-LoRA. This method has been merged into the Hugging Face PEFT package.
Poster
Xavier Gonzalez · Andrew Warrington · Jimmy Smith · Scott Linderman

[ East Exhibit Hall A-C ]

Abstract
Transformers and linear state space models can be evaluated in parallel on modern hardware, but evaluating nonlinear RNNs appears to be an inherently sequential problem. Recently, however, Lim et al. '24 developed an approach called DEER, which evaluates nonlinear RNNs in parallel by posing the states as the solution to a fixed-point problem. They derived a parallel form of Newton's method to solve the fixed-point problem and achieved significant speedups over sequential evaluation. However, the computational complexity of DEER is cubic in the state size, and the algorithm can suffer from numerical instability. We address these limitations with two novel contributions. To reduce the computational complexity, we apply quasi-Newton approximations and show they converge comparably to Newton, use less memory, and are faster. To stabilize DEER, we leverage a connection between the Levenberg-Marquardt algorithm and Kalman smoothing, which we call ELK. This connection allows us to stabilize Newton's method while using efficient parallelized Kalman smoothing algorithms to retain performance. Through several experiments, we show that these innovations allow for parallel evaluation of nonlinear RNNs at larger scales and with greater stability.
Poster
Jun-Hyuk Kim · Seungeon Kim · Won-Hee Lee · Dokwan Oh

[ East Exhibit Hall A-C ]

Abstract
Designing a fast and effective entropy model is challenging but essential for practical application of neural codecs. Beyond spatial autoregressive entropy models, more efficient backward adaptation-based entropy models have been recently developed. They not only reduce decoding time by using smaller number of modeling steps but also maintain or even improve rate--distortion performance by leveraging more diverse contexts for backward adaptation. Despite their significant progress, we argue that their performance has been limited by the simple adoption of the design convention for forward adaptation: using only a single type of hyper latent representation, which does not provide sufficient contextual information, especially in the first modeling step. In this paper, we propose a simple yet effective entropy modeling framework that leverages sufficient contexts for forward adaptation without compromising on bit-rate. Specifically, we introduce a strategy of diversifying hyper latent representations for forward adaptation, i.e., using two additional types of contexts along with the existing single type of context. In addition, we present a method to effectively use the diverse contexts for contextualizing the current elements to be encoded/decoded. By addressing the limitation of the previous approach, our proposed framework leads to significant performance improvements. Experimental results on popular datasets show that …
Poster
Han Lu · Xu-Yang Chen · Han-Jia Ye · De-Chuan Zhan

[ East Exhibit Hall A-C ]

Abstract
Multivariate time series forecasting plays a crucial role in various fields such as finance, traffic management, energy, and healthcare. Recent studies have highlighted the advantages of channel independence to resist distribution drift but neglect channel correlations, limiting further enhancements. Several methods utilize mechanisms like attention or mixer to address this by capturing channel correlations, but they either introduce excessive complexity or rely too heavily on the correlation to achieve satisfactory results under distribution drifts, particularly with a large number of channels. Addressing this gap, this paper presents an efficient MLP-based model, the Series-cOre Fused Time Series forecaster (SOFTS), which incorporates a novel STar Aggregate-Redistribute (STAR) module. Unlike traditional approaches that manage channel interactions through distributed structures, \textit{e.g.}, attention, STAR employs a centralized strategy to improve efficiency and reduce reliance on the quality of each channel. It aggregates all series to form a global core representation, which is then dispatched and fused with individual series representations to facilitate channel interactions effectively. SOFTS achieves superior performance over existing state-of-the-art methods with only linear complexity. The broad applicability of the STAR module across different forecasting models is also demonstrated empirically. We have made our code publicly available at https://github.com/Secilia-Cxy/SOFTS.
Poster
Seongmin Hong · Suh Yoon Jeon · Kyeonghyun Lee · Ernest Ryu · Se Young Chun

[ East Exhibit Hall A-C ]

Abstract
In latent diffusion models (LDMs), denoising diffusion process efficiently takes place on latent space whose dimension is lower than that of pixel space. Decoder is typically used to transform the representation in latent space to that in pixel space. While a decoder is assumed to have an encoder as an accurate inverse, exact encoder-decoder pair rarely exists in practice even though applications often require precise inversion of decoder. In other words, encoder is not the left-inverse but the right-inverse of the decoder; decoder inversion seeks the left-inverse. Prior works for decoder inversion in LDMs employed gradient descent inspired by inversions of generative adversarial networks. However, gradient-based methods require larger GPU memory and longer computation time for larger latent space. For example, recent video LDMs can generate more than 16 frames, but GPUs with 24 GB memory can only perform gradient-based decoder inversion for 4 frames. Here, we propose an efficient gradient-free decoder inversion for LDMs, which can be applied to diverse latent models. Theoretical convergence property of our proposed inversion has been investigated not only for the forward step method, but also for the inertial Krasnoselskii-Mann (KM) iterations under mild assumption on cocoercivity that is satisfied by recent LDMs. Our …
Poster
Bozhen Hu · Cheng Tan · Jun Xia · Yue Liu · Lirong Wu · Jiangbin Zheng · Yongjie Xu · Yufei Huang · Stan Z. Li

[ East Exhibit Hall A-C ]

Abstract
Learning effective representations is imperative for comprehending proteins and deciphering their biological functions. Recent strides in language models and graph neural networks have empowered protein models to harness primary or tertiary structure information for representation learning. Nevertheless, the absence of practical methodologies to appropriately model intricate inter-dependencies between protein sequences and structures has resulted in embeddings that exhibit low performance on tasks such as protein function prediction. In this study, we introduce CoupleNet, a novel framework designed to interlink protein sequences and structures to derive informative protein representations. CoupleNet integrates multiple levels and scales of features in proteins, encompassing residue identities and positions for sequences, as well as geometric representations for tertiary structures from both local and global perspectives. A two-type dynamic graph is constructed to capture adjacent and distant sequential features and structural geometries, achieving completeness at the amino acid and backbone levels. Additionally, convolutions are executed on nodes and edges simultaneously to generate comprehensive protein embeddings. Experimental results on benchmark datasets showcase that CoupleNet outperforms state-of-the-art methods, exhibiting particularly superior performance in low-sequence similarities scenarios, adeptly identifying infrequently encountered functions and effectively capturing remote homology relationships in proteins.
Poster
Dmitrii Avdiukhin · Vaggos Chatziafratis · Orr Fischer · Grigory Yaroslavtsev

[ East Exhibit Hall A-C ]

Abstract
We study the embedding dimension of distance comparison data in two settings: contrastive learning and $k$-nearest neighbors ($k$-NN). In both cases, the goal is to find the smallest dimension $d$ of an $\ell_p$-space in which a given dataset can be represented. We show that the arboricity of the associated graphs plays a key role in designing embeddings. Using this approach, for the most frequently used $\ell_2$-distance, we get matching upper and lower bounds in both settings. In contrastive learning, we are given $m$ labeled samples of the form $(x_i, y_i^+, z_i^-)$ representing the fact that the positive example $y_i$ is closer to the anchor $x_i$ than the negative example $z_i$. We show that for representing such dataset in:- $\ell_2$: $d = \Theta(\sqrt{m})$ is necessary and sufficient.- $\ell_p$ for $p \ge 1$: $d = O(m)$ is sufficient and $d = \tilde \Omega(\sqrt{m})$ is necessary.- $\ell_\infty$: $d = O(m^{2/3})$ is sufficient and $d = \tilde \Omega(\sqrt{m})$ is necessary.We also give results for the more general scenario when $t$ negatives are allowed.In $k$-NN, for each of the $n$ data points we are given an ordered set of the closest $k$ points. We show that for preserving the ordering of the $k$-NN for every …
Poster
Zilong Huang · Qinghao Ye · Bingyi Kang · Jiashi Feng · Haoqi Fan

[ East Exhibit Hall A-C ]

Abstract
We introduce SuperClass, a super simple classification method for vision-language pre-training on image-text data. Unlike its contrastive counterpart CLIP who contrast with a text encoder, SuperClass directly utilizes tokenized raw text as supervised classification labels, without the need for additional text filtering or selection. Due to the absence of the text encoding as contrastive target, SuperClass does not require a text encoder and does not need to maintain a large batch size as CLIP does. SuperClass demonstrated superior performance on various downstream tasks, including classic computer vision benchmarks and vision language downstream tasks. We further explored the scaling behavior of SuperClass on model size, training length, or data size, and reported encouraging results and comparisons to CLIP. https://github.com/x-cls/superclass
Poster
Tong Wu · Yanpeng Zhao · Zilong Zheng

[ East Exhibit Hall A-C ]

Abstract
Recently, many methods have been developed to extend the context length of pre-trained large language models (LLMs), but they often require fine-tuning at the target length ($\gg4K$) and struggle to effectively utilize information from the middle part of the context. To address these issues, we propose $\textbf{C}$ontinuity-$\textbf{R}$elativity ind$\textbf{E}$xing with g$\textbf{A}$ussian $\textbf{M}$iddle ($\texttt{CREAM}$), which interpolates positional encodings by manipulating position indices. Apart from being simple, $\texttt{CREAM}$ is training-efficient: it only requires fine-tuning at the pre-trained context window (e.g., Llama 2-4K) and can extend LLMs to a much longer target context length (e.g., 256K). To ensure that the model focuses more on the information in the middle, we introduce a truncated Gaussian to encourage sampling from the middle part of the context during fine-tuning, thus alleviating the ''Lost-in-the-Middle'' problem faced by long-context LLMs. Experimental results show that $\texttt{CREAM}$ successfully extends LLMs to the target length for both Base and Chat versions of $\texttt{Llama2-7B}$ with ``Never Miss A Beat''. Our code is publicly available at https://github.com/bigai-nlco/cream.
Poster
Honglin Liu · Peng Hu · Changqing Zhang · Yunfan Li · Xi Peng

[ East Exhibit Hall A-C ]

Abstract
In the absence of class priors, recent deep clustering methods resort to data augmentation and pseudo-labeling strategies to generate supervision signals. Though achieved remarkable success, existing works struggle to discriminate hard samples at cluster boundaries, mining which is particularly challenging due to their unreliable cluster assignments. To break such a performance bottleneck, we propose incorporating user interaction to facilitate clustering instead of exhaustively mining semantics from the data itself. To be exact, we present Interactive Deep Clustering (IDC), a plug-and-play method designed to boost the performance of pre-trained clustering models with minimal interaction overhead. More specifically, IDC first quantitatively evaluates sample values based on hardness, representativeness, and diversity, where the representativeness avoids selecting outliers and the diversity prevents the selected samples from collapsing into a small number of clusters. IDC then queries the cluster affiliations of high-value samples in a user-friendly manner. Finally, it utilizes the user feedback to finetune the pre-trained clustering model. Extensive experiments demonstrate that IDC could remarkably improve the performance of various pre-trained clustering models, at the expense of low user interaction costs. The code could be accessed at pengxi.me.
Poster
Marco Fumero · Marco Pegoraro · Valentino Maiorca · Francesco Locatello · Emanuele Rodolà

[ East Exhibit Hall A-C ]

Abstract
Neural models learn data representations that lie on low-dimensional manifolds, yet modeling the relation between these representational spaces is an ongoing challenge.By integrating spectral geometry principles into neural modeling, we show that this problem can be better addressed in the functional domain, mitigating complexity, while enhancing interpretability and performances on downstream tasks. To this end, we introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces.We validate our framework on various applications, ranging from stitching to retrieval tasks, and on multiple modalities, demonstrating that Latent Functional Maps can serve as a swiss-army knife for representation alignment.
Poster
Md Yousuf Harun · Kyungbok Lee · Gianmarco Gallardo · Giri Krishnan · Christopher Kanan

[ East Exhibit Hall A-C ]

Abstract
Embeddings produced by pre-trained deep neural networks (DNNs) are widely used; however, their efficacy for downstream tasks can vary widely. We study the factors influencing transferability and out-of-distribution (OOD) generalization of pre-trained DNN embeddings through the lens of the tunnel effect hypothesis, which is closely related to intermediate neural collapse. This hypothesis suggests that deeper DNN layers compress representations and hinder OOD generalization. Contrary to earlier work, our experiments show this is not a universal phenomenon. We comprehensively investigate the impact of DNN architecture, training data, image resolution, and augmentations on transferability. We identify that training with high-resolution datasets containing many classes greatly reduces representation compression and improves transferability. Our results emphasize the danger of generalizing findings from toy datasets to broader contexts.
Poster
Rachel S.Y. Teo · Tan Nguyen

[ East Exhibit Hall A-C ]

Abstract
Sparse Mixture of Experts (SMoE) has become the key to unlocking unparalleled scalability in deep learning. SMoE has the potential to exponentially increase in parameter count while maintaining the efficiency of the model by only activating a small subset of these parameters for a given sample. However, it has been observed that SMoE suffers from unstable training and has difficulty adapting to new distributions, leading to the model's lack of robustness to data contamination. To overcome these limitations, we first establish a connection between the dynamics of the expert representations in SMoEs and gradient descent on a multi-objective optimization problem. Leveraging our framework, we then integrate momentum into SMoE and propose a new family of SMoEs, named MomentumSMoE. We theoretically prove and numerically validate that MomentumSMoE is more stable and robust than SMoE. In particular, we verify the advantages of MomentumSMoE over SMoE on a variety of practical tasks including ImageNet-1K object recognition and WikiText-103 language modeling. We demonstrate the applicability of MomentumSMoE to many types of SMoE models, including those in the Sparse MoE model for vision (V-MoE) and the Generalist Language Model (GLaM). We also show that other advanced momentum-based optimization methods, such as Adam, can be easily …
Poster
Matthias König · Annelot W. Bosman · Holger H. Hoos · Jan N. Van Rijn

[ East Exhibit Hall A-C ]

Abstract

Recent research has proposed various methods to formally verify neural networks against minimal input perturbations; this verification task is also known as local robustness verification. The research area of local robustness verification is highly diverse, as verifiers rely on a multitude of techniques, including mixed integer programming and satisfiability modulo theories. At the same time, the problem instances encountered when performing local robustness verification differ based on the network to be verified, the property to be verified and the specific network input. This raises the question of which verification algorithm is most suitable for solving specific types of instances of the local robustness verification problem. To answer this question, we performed a systematic performance analysis of several CPU- and GPU-based local robustness verification systems on a newly and carefully assembled set of 79 neural networks, of which we verified a broad range of robustness properties, while taking a practitioner's point of view -- a perspective that complements the insights from initiatives such as the VNN competition, where the participating tools are carefully adapted to the given benchmarks by their developers. Notably, we show that no single best algorithm dominates performance across all verification problem instances. Instead, our results reveal complementarities …

Poster
Xiaoshuai Hao · Mengchuan Wei · Yifan Yang · Haimei Zhao · Hui Zhang · Yi ZHOU · Qiang Wang · Weiming Li · Lingdong Kong · Jing Zhang

[ East Exhibit Hall A-C ]

Abstract
Driving systems often rely on high-definition (HD) maps for precise environmental information, which is crucial for planning and navigation. While current HD map constructors perform well under ideal conditions, their resilience to real-world challenges, \eg, adverse weather and sensor failures, is not well understood, raising safety concerns. This work introduces MapBench, the first comprehensive benchmark designed to evaluate the robustness of HD map construction methods against various sensor corruptions. Our benchmark encompasses a total of 29 types of corruptions that occur from cameras and LiDAR sensors. Extensive evaluations across 31 HD map constructors reveal significant performance degradation of existing methods under adverse weather conditions and sensor failures, underscoring critical safety concerns. We identify effective strategies for enhancing robustness, including innovative approaches that leverage multi-modal fusion, advanced data augmentation, and architectural techniques. These insights provide a pathway for developing more reliable HD map construction methods, which are essential for the advancement of autonomous driving technology. The benchmark toolkit and affiliated code and model checkpoints have been made publicly accessible.
Poster
Marco Nurisso · Pierrick Leroy · Francesco Vaccarino

[ East Exhibit Hall A-C ]

Abstract
Studying the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks is a fundamental step for understanding their behavior in more complex settings.This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow. We discuss how the homogeneous nature of the ReLU activation function constrains the training trajectories to lie on a product of quadric hypersurfaces whose shape depends on the particular initialization of the network's parameters. When the neural network's output is a single scalar, we prove that these quadrics can have multiple connected components, limiting the set of reachable parameters during training. We analytically compute the number of these components and discuss the possibility of mapping one to the other through neuron rescaling and permutation. In this simple setting, we find that the non-connectedness results in a topological obstruction, which, depending on the initialization, can make the global optimum unreachable. We validate this result with numerical experiments.
Poster
Arna Ghosh · Kumar Krishna Agrawal · Shagun Sodhani · Adam Oberman · Blake Richards

[ East Exhibit Hall A-C ]

Abstract
Recent progress in self-supervised (SSL) visual representation learning has led to the development of several different proposed frameworks that rely on augmentations of images but use different loss functions. However, there are few theoretically grounded principles to guide practice, so practical implementation of each SSL framework requires several heuristics to achieve competitive performance.In this work, we build on recent analytical results to design practical recommendations for competitive and efficient SSL that are grounded in theory. Specifically, recent theory tells us that existing SSL frameworks are actually minimizing the same idealized loss, which is to learn features that best match the data similarity kernel defined by the augmentations used.We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute.We study the implicit bias of using gradient descent to minimize our reformulated loss function, and find that using a stronger orthogonalization constraint with a reduced projector dimensionality should yield good representations.Furthermore, the theory tells us that approximating the reformulated loss should be improved by increasing the number of augmentations, and as such using multiple augmentations should lead to improved convergence.We empirically verify our findings on CIFAR, STL and Imagenet datasets, wherein we demonstrate …
Poster
Jinhong Lin · Cheng-En Wu · Yibing Wei · Pedro Morgado

[ East Exhibit Hall A-C ]

Abstract
Our work tackles the computational challenges of contrastive learning methods, particularly for the pretraining of Vision Transformers (ViTs). Despite the effectiveness of contrastive learning, the substantial computational resources required for training often hinder their practical application. To mitigate this issue, we propose an acceleration framework, leveraging ViT's unique ability to generalize across inputs of varying sequence lengths. Our method employs a mix of sequence compression strategies, including randomized token dropout and flexible patch scaling, to reduce the cost of gradient estimation and accelerate convergence. We further provide an in-depth analysis of the gradient estimation error of various acceleration strategies as well as their impact on downstream tasks, offering valuable insights into the trade-offs between acceleration and performance. We also propose a novel procedure to identify an optimal acceleration schedule to adjust the sequence compression ratios to the training progress, ensuring efficient training without sacrificing downstream performance. Our approach significantly reduces computational overhead across various self-supervised learning algorithms on large-scale datasets. In ImageNet, our method achieves speedups of 4$\times$ in MoCo, 3.3$\times$ in SimCLR, and 2.5$\times$ in DINO, demonstrating substantial efficiency gains.
Poster
Sri Harsha Dumpala · Aman Jaiswal · Chandramouli Shama Sastry · Evangelos Milios · Sageev Oore · Hassan Sajjad

[ East Exhibit Hall A-C ]

Abstract
Despite their remarkable successes, state-of-the-art large language models (LLMs), including vision-and-language models (VLMs) and unimodal language models (ULMs), fail to understand precise semantics. For example, semantically equivalent sentences expressed using different lexical compositions elicit diverging representations. The degree of this divergence and its impact on encoded semantics is not very well understood. In this paper, we introduce the SUGARCREPE++ dataset to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations. Each sample in SUGARCREPE++ dataset consists of an image and a corresponding triplet of captions: a pair of semantically equivalent but lexically different positive captions and one hard negative caption. This poses a 3-way semantic (in)equivalence problem to the language models. We comprehensively evaluate VLMs and ULMs that differ in architecture, pre-training objectives and datasets to benchmark the performance of SUGARCREPE++ dataset. Experimental results highlight the difficulties of VLMs in distinguishing between lexical and semantic variations, particularly to object attributes and spatial relations. Although VLMs with larger pre-training datasets, model sizes, and multiple pre-training objectives achieve better performance on SUGARCREPE++, there is a significant opportunity for improvement. We demonstrate that models excelling on compositionality datasets may not perform equally well on SUGARCREPE++. This indicates that compositionality alone …
Poster
Yuli Slavutsky · Yuval Benjamini

[ East Exhibit Hall A-C ]

Abstract
Zero-shot learning methods typically assume that the new, unseen classes encountered during deployment come from the same distribution as the the classes in the training set. However, real-world scenarios often involve class distribution shifts (e.g., in age or gender for person identification), posing challenges for zero-shot classifiers that rely on learned representations from training classes. In this work, we propose and analyze a model that assumes that the attribute responsible for the shift is unknown in advance. We show that in this setting, standard training may lead to non-robust representations. To mitigate this, we develop an algorithm for learning robust representations in which (a) synthetic data environments are constructed via hierarchical sampling, and (b) environment balancing penalization, inspired by out-of-distribution problems, is applied. We show that our algorithm improves generalization to diverse class distributions in both simulations and experiments on real-world datasets.
Poster
ZAITANG LI · Pin-Yu Chen · Tsung-Yi Ho

[ East Exhibit Hall A-C ]

Abstract
Current studies on adversarial robustness mainly focus on aggregating \textit{local} robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true \textit{global} robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called \textit{GREAT Score}, for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench \cite{croce2021robustbench}. (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness …
Poster
Daksh Mittal · Yuanzhe Ma · Shalmali Joshi · Hongseok Namkoong

[ East Exhibit Hall A-C ]

Abstract
Datasets often suffer severe selection bias; clinical labels are only available on patients for whom doctors ordered medical exams. To assess model performance outside the support of available data, we present a computational framework for adaptive labeling, providing cost-efficient model evaluations under severe distribution shifts. We formulate the problem as a Markov Decision Process over states defined by posterior beliefs on model performance. Each batch of new labels incurs a “state transition” to sharper beliefs, and we choose batches to minimize uncertainty on model performance at the end of the label collection process. Instead of relying on high-variance REINFORCE policy gradient estimators that do not scale, our adaptive labeling policy is optimized using path-wise policy gradients computed by auto-differentiating through simulated roll-outs. Our framework is agnostic to different uncertainty quantification approaches and highlights the virtue of planning in adaptive labeling. On synthetic and real datasets, we empirically demonstrate even a one-step lookahead policy substantially outperforms active learning-inspired heuristics.
Poster
alireza abdollahpour · Mahed Abroshan · Seyed-Mohsen Moosavi-Dezfooli

[ East Exhibit Hall A-C ]

Abstract
Deep neural networks have been known to be vulnerable to adversarial examples, which are inputs that are modified slightly to fool the network into making incorrect predictions. This has led to a significant amount of research on evaluating the robustness of these networks against such perturbations. One particularly important robustness metric is the robustness to minimal $\ell_{2}$ adversarial perturbations. However, existing methods for evaluating this robustness metric are either computationally expensive or not very accurate. In this paper, we introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency. Our proposed attacks are generalizations of the well-known DeepFool (DF) attack, while they remain simple to understand and implement. We demonstrate that our attacks outperform existing methods in terms of both effectiveness and computational efficiency. Our proposed attacks are also suitable for evaluating the robustness of large models and can be used to perform adversarial training (AT) to achieve state-of-the-art robustness to minimal $\ell_{2}$ adversarial perturbations.
Poster
Zheng Wang · Geyong Min · Wenjie Ruan

[ East Exhibit Hall A-C ]

Abstract
The implicit bias of gradient descent has long been considered the primary mechanism explaining the superior generalization of over-parameterized neural networks without overfitting, even when the training error is zero. However, the implicit bias toward adversarial robustness has rarely been considered in the research community, although it is crucial for the trustworthiness of machine learning models. To fill this gap, in this paper, we explore whether consecutive layers collaborate to strengthen adversarial robustness during gradient descent. By quantifying this collaboration between layers using our proposed concept, co-correlation, we demonstrate a monotonically increasing trend in co-correlation, which implies a decreasing trend in adversarial robustness during gradient descent. Additionally, we observe different behaviours between narrow and wide neural networks during gradient descent. We conducted extensive experiments that verified our proposed theorems.
Poster
Taejong Joo · Diego Klabjan

[ East Exhibit Hall A-C ]

Abstract
Self-training often falls short under distribution shifts due to an increased discrepancy between prediction confidence and actual accuracy. This typically necessitates computationally demanding methods such as neighborhood or ensemble-based label corrections. Drawing inspiration from insights on early learning regularization, we develop a principled method to improve self-training under distribution shifts based on temporal consistency. Specifically, we build an uncertainty-aware temporal ensemble with a simple relative thresholding. Then, this ensemble smooths noisy pseudo labels to promote selective temporal consistency. We show that our temporal ensemble is asymptotically correct and our label smoothing technique can reduce the optimality gap of self-training. Our extensive experiments validate that our approach consistently improves self-training performances by 8% to 16% across diverse distribution shift scenarios without a computational overhead. Besides, our method exhibits attractive properties, such as improved calibration performance and robustness to different hyperparameter choices.
Poster
Jun Xia · Zhihao Yue · Yingbo Zhou · Zhiwei Ling · Yiyu Shi · Xian Wei · Mingsong Chen

[ East Exhibit Hall A-C ]

Abstract
Due to the increasing popularity of Artificial Intelligence (AI), more and more backdoor attacks are designed to mislead Deep Neural Network (DNN) predictions by manipulating training samples or processes. Although backdoor attacks have been investigated in various scenarios, they still suffer from the problems of both low fidelity of poisoned samples and non-negligible transfer in latent space, which make them easily identified by existing backdoor detection algorithms. To overcome this weakness, this paper proposes a novel frequency-based backdoor attack method named WaveAttack, which obtains high-frequency image features through Discrete Wavelet Transform (DWT) to generate highly stealthy backdoor triggers. By introducing an asymmetric frequency obfuscation method, our approach adds an adaptive residual to the training and inference stages to improve the impact of triggers, thus further enhancing the effectiveness of WaveAttack. Comprehensive experimental results show that, WaveAttack can not only achieve higher effectiveness than state-of-the-art backdoor attack methods, but also outperform them in the fidelity of images (i.e., by up to 28.27\% improvement in PSNR, 1.61\% improvement in SSIM, and 70.59\% reduction in IS). Our code is available at https://github.com/BililiCode/WaveAttack.
Poster
Charles Guille-Escuret · Pierre-André Noël · Ioannis Mitliagkas · David Vazquez · Joao Monteiro

[ East Exhibit Hall A-C ]

Abstract
Deployed machine learning systems require some mechanism to detect out-of-distribution (OOD) inputs. Existing research mainly focuses on one type of distribution shift: detecting samples from novel classes, absent from the training set. However, real-world systems encounter a broad variety of anomalous inputs, and the OOD literature neglects this diversity. This work categorizes five distinct types of distribution shifts and critically evaluates the performance of recent OOD detection methods on each of them. We publicly release our benchmark under the name BROAD (Benchmarking Resilience Over Anomaly Diversity). We find that while these methods excel in detecting novel classes, their performances are inconsistent across other types of distribution shifts. In other words, they can only reliably detect unexpected inputs that they have been specifically designed to expect. As a first step toward broad OOD detection, we learn a Gaussian mixture generative model for existing detection scores, enabling an ensemble detection approach that is more consistent and comprehensive for broad OOD detection, with improved performances over existing methods. We release code to build BROAD to facilitate a more comprehensive evaluation of novel OOD detectors.
Poster
Jeongjin Park · Nicole Yang · Nisha Chandramoorthy

[ East Exhibit Hall A-C ]

Abstract
Conventional notions of generalization often fail to describe the ability of learned models to capture meaningful information from dynamical data. A neural network that learns complex dynamics with a small test error may still fail to reproduce its \emph{physical} behavior, including associated statistical moments and Lyapunov exponents. To address this gap, we propose an ergodic theoretic approach to generalization of complex dynamical models learned from time series data. Our main contribution is to define and analyze generalization of a broad suite of neural representations of classes of ergodic systems, including chaotic systems, in a way that captures emulating underlying invariant, physical measures. Our results provide theoretical justification for why regression methods for generators of dynamical systems (Neural ODEs) fail to generalize, and why their statistical accuracy improves upon adding Jacobian information during training. We verify our results on a number of ergodic chaotic systems and neural network parameterizations, including MLPs, ResNets, Fourier Neural layers, and RNNs.
Poster
JunHoo Lee · Hyunho Lee · Kyomin Hwang · Nojun Kwak

[ East Exhibit Hall A-C ]

Abstract
Deep learning has achieved tremendous success. However, unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria. This paper addresses these issues by identifying support vectors in deep learning models. To this end, we propose the DeepKKT condition, an adaptation of the traditional Karush-Kuhn-Tucker (KKT) condition for deep learning models, and confirm that generated Deep Support Vectors (DSVs) using this condition exhibit properties similar to traditional support vectors. This allows us to apply our method to few-shot dataset distillation problems and alleviate the black-box characteristics of deep learning models. Additionally, we demonstrate that the DeepKKT condition can transform conventional classification models into generative models with high fidelity, particularly as latent generation models using class labels as latent variables. We validate the effectiveness of DSVs using common datasets (ImageNet, CIFAR10 and CIFAR100) on the general architectures (ResNet and ConvNet), proving their practical applicability.
Poster
Chang hoon Song · Yesom Park · Myungjoo Kang

[ East Exhibit Hall A-C ]

Abstract
This paper analyzes the inverse relationship between the order of partial differential equations (PDEs) and the convergence of gradient descent in physics-informed neural networks (PINNs) with the power of ReLU activation. The integration of the PDE into a loss function endows PINNs with a distinctive feature to require computing derivatives of model up to the PDE order. Although it has been empirically observed that PINNs encounter difficulties in convergence when dealing with high-order or high-dimensional PDEs, a comprehensive theoretical understanding of this issue remains elusive. This paper offers theoretical support for this pathological behavior by demonstrating that the gradient flow converges in a lower probability when the PDE order is higher. In addition, we show that PINNs struggle to address high-dimensional problems because the influence of dimensionality on convergence is exacerbated with increasing PDE order. To address the pathology, we use the insights garnered to consider variable splitting that decomposes the high-order PDE into a system of lower-order PDEs. We prove that by reducing the differential order, the gradient flow of variable splitting is more likely to converge to the global optimum. Furthermore, we present numerical experiments in support of our theoretical claims.
Poster
Julia Nakhleh · Joseph Shenouda · Robert Nowak

[ East Exhibit Hall A-C ]

Abstract
This paper studies the properties of solutions to multi-task shallow ReLU neural network learning problems, wherein the network is trained to fit a dataset with minimal sum of squared weights. Remarkably, the solutions learned for each individual task resemble those obtained by solving a kernel regression problem, revealing a novel connection between neural networks and kernel methods. It is known that single-task neural network learning problems are equivalent to a minimum norm interpolation problem in a non-Hilbertian Banach space, and that the solutions of such problems are generally non-unique. In contrast, we prove that the solutions to univariate-input, multi-task neural network interpolation problems are almost always unique, and coincide with the solution to a minimum-norm interpolation problem in a Sobolev (Reproducing Kernel) Hilbert Space. We also demonstrate a similar phenomenon in the multivariate-input case; specifically, we show that neural network learning problems with large numbers of tasks are approximately equivalent to an $\ell^2$ (Hilbert space) minimization problem over a fixed kernel determined by the optimal neurons.
Poster
Nikita Karagodin · Yury Polyanskiy · Philippe Rigollet

[ East Exhibit Hall A-C ]

Abstract
This work presents a modification of the self-attention dynamics proposed in Geshkovski et al to better reflect the practically relevant, causally masked attention used in transformer architectures for generative AI. This modification translates into an interacting particle system that cannot be interpreted as a mean-field gradient flow. Despite this loss of structure, we significantly strengthen the results of Geshkovski et al in this context: While previous rigorous results focused on cases where all three matrices (key, query, and value) were scaled identities, we prove asymptotic convergence to a single cluster for arbitrary key-query matrices and value matrix equal to the identity.Additionally, we establish a connection to the classical R\'enyi parking problem from combinatorial geometry to make initial theoretical steps towards demonstrating the existence of meta-stable states.
Poster
Jin-Hwa Kim

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.
Poster
Alexander Decruyenaere · Heidelinde Dehaene · Paloma Rabaey · Johan Decruyenaere · Christiaan Polet · Thomas Demeester · Stijn Vansteelandt

[ East Exhibit Hall A-C ]

Abstract
While synthetic data hold great promise for privacy protection, their statistical analysis poses significant challenges that necessitate innovative solutions. The use of deep generative models (DGMs) for synthetic data generation is known to induce considerable bias and imprecision into synthetic data analyses, compromising their inferential utility as opposed to original data analyses. This bias and uncertainty can be substantial enough to impede statistical convergence rates, even in seemingly straightforward analyses like mean calculation. The standard errors of such estimators then exhibit slower shrinkage with sample size than the typical 1 over root-$n$ rate. This complicates fundamental calculations like p-values and confidence intervals, with no straightforward remedy currently available. In response to these challenges, we propose a new strategy that targets synthetic data created by DGMs for specific data analyses. Drawing insights from debiased and targeted machine learning, our approach accounts for biases, enhances convergence rates, and facilitates the calculation of estimators with easily approximated large sample variances. We exemplify our proposal through a simulation study on toy data and two case studies on real-world data, highlighting the importance of tailoring DGMs for targeted data analysis. This debiasing strategy contributes to advancing the reliability and applicability of synthetic data in statistical …
Poster
yoonsoo nam · Nayara Fonseca · Seok Hyeong Lee · Chris Mingard · Ard Louis

[ East Exhibit Hall A-C ]

Abstract
Deep learning models can exhibit what appears to be a sudden ability to solve a new problem as training time, training data, or model size increases, a phenomenon known as emergence. In this paper, we present a framework where each new ability (a skill) is represented as a basis function. We solve a simple multi-linear model in this skill-basis, finding analytic expressions for the emergence of new skills, as well as for scaling laws of the loss with training time, data size, model size, and optimal compute. We compare our detailed calculations to direct simulations of a two-layer neural network trained on multitask sparse parity, where the tasks in the dataset are distributed according to a power-law. Our simple model captures, using a single fit parameter, the sigmoidal emergence of multiple new skills as training time, data size or model size increases in the neural network.
Spotlight Poster
Bobak Kiani · Jason Wang · Melanie Weber

[ East Exhibit Hall A-C ]

Abstract
The manifold hypothesis presumes that high-dimensional data lies on or near a low-dimensional manifold. While the utility of encoding geometric structure has been demonstrated empirically, rigorous analysis of its impact on the learnability of neural networks is largely missing. Several recent results have established hardness results for learning feedforward and equivariant neural networks under i.i.d. Gaussian or uniform Boolean data distributions. In this paper, we investigate the hardness of learning under the manifold hypothesis. We ask, which minimal assumptions on the curvature and regularity of the manifold, if any, render the learning problem efficiently learnable. We prove that learning is hard under input manifolds of bounded curvature by extending proofs of hardness in the SQ and cryptographic settings for boolean data inputs to the geometric setting. On the other hand, we show that additional assumptions on the volume of the data manifold alleviate these fundamental limitations and guarantee learnability via a simple interpolation argument. Notable instances of this regime are manifolds which can be reliably reconstructed via manifold learning. Looking forward, we comment on and empirically explore intermediate regimes of manifolds, which have heterogeneous features commonly found in real world data.
Poster
Alessandro Betti · Marco Gori

[ East Exhibit Hall A-C ]

Abstract
The spectacular results achieved in machine learning, including the recent advances in generative AI, rely on large data collections. On the opposite, intelligent processes in nature arises without the need for such collections, but simply by on-line processing of the environmental information. In particular, natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way to respect spatiotemporal locality. This paper shows that such a feature arises from a pre-algorithmic view of learning that is inspired by related studies in Theoretical Physics. We show that the algorithmic interpretation of the derived “laws of learning”, which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity. This opens the doors to machine learning studies based on full on-line information processing that are based on the replacement of Backpropagation with the proposed spatiotemporal local algorithm.
Poster
Kedar Karhadkar · Michael Murray · Guido Montufar

[ East Exhibit Hall A-C ]

Abstract
Bounds on the smallest eigenvalue of the neural tangent kernel (NTK) are a key ingredient in the analysis of neural network optimization and memorization. However, existing results require distributional assumptions on the data and are limited to a high-dimensional setting, where the input dimension $d_0$ scales at least logarithmically in the number of samples $n$. In this work we remove both of these requirements and instead provide bounds in terms of a measure of distance between data points: notably these bounds hold with high probability even when $d_0$ is held constant versus $n$. We prove our results through a novel application of the hemisphere transform.
Poster
cheng Luo · Jiawei Zhao · Zhuoming Chen · Beidi Chen · Animashree Anandkumar

[ East Exhibit Hall A-C ]

Abstract
We introduce Mini-Sequence Transformer (MsT), a simple and effective methodology for highly efficient and accurate LLM training with extremely long sequences. MsT partitions input sequences and iteratively processes mini-sequences to reduce intermediate memory usage. Integrated with activation recomputation, it enables significant memory savings in both forward and backward passes. In experiments with the Llama3-8B model, with MsT, we measure no degradation in throughput or convergence even with 12x longer sequences than standard implementations. MsT is fully general, implementation-agnostic, and requires minimal code changes to integrate with existing LLM training frameworks. Integrated with the huggingface library, MsT successfully extends the maximum context length of Qwen, Mistral, and Gemma-2 by 12-24x.
Poster
Jaehyun Nam · Kyuyoung Kim · Seunghyuk Oh · Jihoon Tack · Jaehyung Kim · Jinwoo Shin

[ East Exhibit Hall A-C ]

Abstract
In tabular prediction tasks, tree-based models combined with automated feature engineering methods often outperform deep learning approaches that rely on learned representations. While these feature engineering techniques are effective, they typically depend on a pre-defined search space and primarily use validation scores for feature selection, thereby missing valuable insights from previous experiments.To address these limitations, we propose a novel tabular learning framework that utilizes large language models (LLMs), termed Optimizing Column feature generator with decision Tree reasoning (OCTree). Our key idea is to leverage the reasoning capabilities of LLMs to identify effective feature generation rules without manually specifying the search space and provide language-based reasoning information highlighting past experiments as feedback for iterative rule improvements. We use decision trees to convey this reasoning information, as they can be easily represented in natural language, effectively providing knowledge from prior experiments (i.e., the impact of the generated features on performance) to the LLMs. Our empirical results demonstrate that OCTree consistently enhances the performance of various prediction models across diverse benchmarks, outperforming competing automated feature engineering methods. Code is available at https://github.com/jaehyun513/OCTree.
Poster
Hui-Po Wang · Mario Fritz

[ East Exhibit Hall A-C ]

Abstract
Despite the widespread use of statistical prior models in various fields, such models for neural network gradients have long been overlooked. The inherent challenge stems from their high-dimensional structures and complex interdependencies, which complicate effective modeling. In this work, we demonstrate the potential of large language models (LLMs) to act as gradient priors in a zero-shot setting. We examine the property by considering lossless gradient compression -- a critical application in distributed learning -- that depends heavily on precise probability modeling. To achieve this, we introduce LM-GC, a novel method that integrates LLMs with arithmetic coding. Our technique converts plain gradients into text-like formats, enhancing token efficiency by up to 38 times compared to their plain representations. We ensure that this data conversion maintains a close alignment with the structure of plain gradients and the symbols commonly recognized by LLMs. Our experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods, improving compression rates by 10% up to 17.2% across various datasets and architectures. Additionally, our approach shows promising compatibility with lossy compression techniques such as quantization and sparsification. These findings highlight the significant potential of LLMs as a model for effectively handling gradients. Code is available at https://github.com/hui-po-wang/LM-GC.
Poster
Bobby He · Lorenzo Noci · Daniele Paliotta · Imanol Schlag · Thomas Hofmann

[ East Exhibit Hall A-C ]

Abstract
Outlier Features (OFs) are neurons whose activation magnitudes significantly exceed the average over a neural network's (NN) width. They are well known to emerge during standard transformer training and have the undesirable effect of hindering quantisation in afflicted models. Despite their practical importance, little is known behind why OFs emerge during training, nor how one can minimise them.Our work focuses on the above questions, first identifying several quantitative metrics, such as the kurtosis over neuron activation norms, to measure OFs. With these metrics, we study how architectural and optimisation choices influence OFs, and provide practical insights to minimise OFs during training. As highlights, we introduce a novel unnormalised transformer block, the Outlier Protected block, and present a previously unknown benefit of non-diagonal preconditioning optimisers, finding both approaches to significantly reduce OFs and improve quantisation without compromising convergence speed, at scales of up to 7B parameters. Notably, our combination of OP block and non-diagonal preconditioner (SOAP) achieves 14.87 weight-and-activation int8 perplexity (from 14.71 in standard precision), compared to 63.4 int8 perplexity (from 16.00) with a default OF-prone combination of Pre-Norm model and Adam, when quantising OPT-125m models post-training.
Poster
Jiesong Liu · Feng Zhang · Jiawei Guan · Xipeng Shen

[ East Exhibit Hall A-C ]

Abstract
Hyperparameter Optimization (HPO) plays a pivotal role in unleashing the potential of iterative machine learning models. This paper addresses a crucial aspect that has largely been overlooked in HPO: the impact of uncertainty in ML model training. The paper introduces the concept of uncertainty-aware HPO and presents a novel approach called the UQ-guided scheme for quantifying uncertainty. This scheme offers a principled and versatile method to empower HPO techniques in handling model uncertainty during their exploration of the candidate space.By constructing a probabilistic model and implementing probability-driven candidate selection and budget allocation, this approach enhances the quality of the resulting model hyperparameters. It achieves a notable performance improvement of over 50\% in terms of accuracy regret and exploration time.
Poster
Ruisi Cai · Yeonju Ro · Geon-Woo Kim · Peihao Wang · Babak Ehteshami Bejnordi · Aditya Akella · Zhangyang &quot;Atlas&quot; Wang

[ East Exhibit Hall A-C ]

Abstract
The proliferation of large language models (LLMs) has led to the adoption of Mixture-of-Experts (MoE) architectures that dynamically leverage specialized subnetworks for improved efficiency and performance. Despite their benefits, MoE models face significant challenges during inference, including inefficient memory management and suboptimal batching, due to misaligned design choices between the model architecture and the system policies. Furthermore, the conventional approach of training MoEs from scratch is increasingly prohibitive in terms of cost. In this paper, we propose a novel framework $\textit{Read-ME}$ that transforms pre-trained dense LLMs into smaller MoE models (in contrast to ``upcycling" generalist MoEs), avoiding the high costs of ground-up training. Our approach employs activation sparsity to extract experts. To compose experts, we examine the widely-adopted layer-wise router design and show its redundancy, and thus we introduce the pre-gating router decoupled from the MoE backbone that facilitates system-friendly pre-computing and lookahead scheduling, enhancing expert-aware batching and caching.Our codesign therefore addresses critical gaps on both the algorithmic and system fronts, establishing a scalable and efficient alternative for LLM inference in resource-constrained settings.$\textit{Read-ME}$ outperforms other popular open-source dense models of similar scales, achieving improvements of up to 10.1\% on MMLU, and improving mean end-to-end latency up to 6.1\%. Codes are …
Poster
Lucas Laird · Circe Hsu · Asilata Bapat · Robin Walters

[ East Exhibit Hall A-C ]

Abstract
Group theory has been used in machine learning to provide a theoretically grounded approach for incorporating known symmetry transformations in tasks from robotics to protein modeling. In these applications, equivariant neural networks use knownsymmetry groups with predefined representations to learn over geometric input data. We propose MatrixNet, a neural network architecture that learns matrix representations of group element inputs instead of using predefined representations. MatrixNet achieves higher sample efficiency and generalization over several standard baselines in prediction tasks over the several finite groups and the Artin braid group. We also show that MatrixNet respects group relations allowing generalization to group elements of greater word length than in the training set. Our code is available at https://github.com/lucas-laird/MatrixNet.
Poster
Shukai Duan · Heng Ping · Nikos Kanakaris · Xiongye Xiao · Panagiotis Kyriakis · Nesreen K. Ahmed · Peiyu Zhang · Guixiang Ma · Mihai Capotă · Shahin Nazarian · Theodore Willke · Paul Bogdan

[ East Exhibit Hall A-C ]

Abstract
Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes correspond to mathematical operations and are used widely as abstractions in optimizations of neural networks. The device placement problem aims to identify optimal allocations of those nodes to a set of (potentially heterogeneous) devices. Existing approaches rely on two types of architectures known as grouper-placer and encoder-placer, respectively. In this work, we bridge the gap between encoder-placer and grouper-placer techniques and propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into account the DAG nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and jointed, personalized graph partitioning, using an unspecified number of groups. To train the entire framework, we use reinforcement learning using the execution time of the placement as a reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted …
Poster
Bernardo Esteves · Miguel Vasco · Francisco S. Melo

[ East Exhibit Hall A-C ]

Abstract
We contribute NeuralSolver, a novel recurrent solver that can efficiently and consistently extrapolate, i.e., learn algorithms from smaller problems (in terms of observation size) and execute those algorithms in large problems. Contrary to previous recurrent solvers, NeuralSolver can be naturally applied in both same-size problems, where the input and output sizes are the same, and in different-size problems, where the size of the input and output differ. To allow for this versatility, we design NeuralSolver with three main components: a recurrent module, that iteratively processes input information at different scales, a processing module, responsible for aggregating the previously processed information, and a curriculum-based training scheme, that improves the extrapolation performance of the method.To evaluate our method we introduce a set of novel different-size tasks and we show that NeuralSolver consistently outperforms the prior state-of-the-art recurrent solvers in extrapolating to larger problems, considering smaller training problems and requiring less parameters than other approaches.
Poster
Ildus Sadrtdinov · Maxim Kodryan · Eduard Pokonechny · Ekaterina Lobacheva · Dmitry Vetrov

[ East Exhibit Hall A-C ]

Abstract
It is generally accepted that starting neural networks training with large learning rates (LRs) improves generalization. Following a line of research devoted to understanding this effect, we conduct an empirical study in a controlled setting focusing on two questions: 1) how large an initial LR is required for obtaining optimal quality, and 2) what are the key differences between models trained with different LRs? We discover that only a narrow range of initial LRs slightly above the convergence threshold lead to optimal results after fine-tuning with a small LR or weight averaging. By studying the local geometry of reached minima, we observe that using LRs from this optimal range allows for the optimization to locate a basin that only contains high-quality minima. Additionally, we show that these initial LRs result in a sparse set of learned features, with a clear focus on those most relevant for the task. In contrast, starting training with too small LRs leads to unstable minima and attempts to learn all features simultaneously, resulting in poor generalization. Conversely, using initial LRs that are too large fails to detect a basin with good solutions and extract meaningful patterns from the data.
Poster
Junhan Kim · Chungman Lee · Eulrang Cho · Kyungphil Park · Ho-young Kim · Joonyoung Kim · Yongkweon Jeon

[ East Exhibit Hall A-C ]

Abstract
With the increasing complexity of generative AI models, post-training quantization (PTQ) has emerged as a promising solution for deploying hyper-scale models on edge devices such as mobile and TVs.Existing PTQ schemes, however, consume considerable time and resources, which could be a bottleneck in real situations where frequent model updates and multiple hyperparameter tunings are required.As a cost-effective alternative, learning-free PTQ schemes have been proposed. However, the performance is somewhat limited because they cannot consider the inter-layer dependency within the attention module, which is a significant feature of Transformers.In this paper, we thus propose a novel PTQ algorithm that balances accuracy and efficiency.The key idea of the proposed algorithm called aespa is to perform quantization layer-wise for efficiency while targeting attention-wise reconstruction to consider the cross-layer dependency.Through extensive experiments on various language models and complexity analysis, we demonstrate that aespa is accurate and efficient in quantizing Transformer models. The code will be available at https: //github.com/SamsungLabs/aespa.
Spotlight Poster
Tomer Porian · Mitchell Wortsman · Jenia Jitsev · Ludwig Schmidt · Yair Carmon

[ East Exhibit Hall A-C ]

Abstract
Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW $\beta_2$ parameter is essential at lower batch sizes.
Oral Poster
Felix Petersen · Hilde Kuehne · Christian Borgelt · Julian Welzel · Stefano Ermon

[ East Exhibit Hall A-C ]

Abstract
With the increasing inference cost of machine learning models, there is a growing interest in models with fast and efficient inference. Recently, an approach for learning logic gate networks directly via a differentiable relaxation was proposed. Logic gate networks are faster than conventional neural network approaches because their inference only requires logic gate operators such as NAND, OR, and XOR, which are the underlying building blocks of current hardware and can be efficiently executed. We build on this idea, extending it by deep logic gate tree convolutions, logical OR pooling, and residual initializations. This allows scaling logic gate networks up by over one order of magnitude and utilizing the paradigm of convolution. On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
Poster
Shengbo Wang · Jose Blanchet · Peter W Glynn

[ East Exhibit Hall A-C ]

Abstract
Overparameterized stochastic differential equation (SDE) models have achieved remarkable success in various complex environments, such as PDE-constrained optimization, stochastic control and reinforcement learning, financial engineering, and neural SDEs. These models often feature system evolution coefficients that are parameterized by a high-dimensional vector $\theta \in \mathbb{R}^n$, aiming to optimize expectations of the SDE, such as a value function, through stochastic gradient ascent. Consequently, designing efficient gradient estimators for which the computational complexity scales well with $n$ is of significant interest. This paper introduces a novel unbiased stochastic gradient estimator—the generator gradient estimator—for which the computation time remains stable in $n$. In addition to establishing the validity of our methodology for general SDEs with jumps, we also perform numerical experiments that test our estimator in linear-quadratic control problems parameterized by high-dimensional neural networks. The results show a significant improvement in efficiency compared to the widely used pathwise differentiation method: Our estimator achieves near-constant computation times, increasingly outperforms its counterpart as $n$ increases, and does so without compromising estimation variance. These empirical findings highlight the potential of our proposed methodology for optimizing SDEs in contemporary applications.
Poster
Yijun Yang · Ruiyuan Gao · Xiao Yang · Jianyuan Zhong · Qiang Xu

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in Text-to-Image models have raised significant safety concerns about their potential misuse for generating inappropriate or Not-Safe-For-Work contents, despite existing countermeasures such as Not-Safe-For-Work classifiers or model fine-tuning for inappropriate concept removal. Addressing this challenge, our study unveils GuardT2I a novel moderation framework that adopts a generative approach to enhance Text-to-Image models’ robustness against adversarial prompts. Instead of making a binary classification, GuardT2I utilizes a large language model to conditionally transform text guidance embeddings within the Text-to-Image models into natural language for effective adversarial prompt detection, without compromising the models’ inherent performance. Our extensive experiments reveal that GuardT2I outperforms leading commercial solutions like OpenAI-Moderation and Microsoft Azure Moderator by a significant margin across diverse adversarial scenarios. Our framework is available at https://github.com/cure-lab/GuardT2I.
Poster
Archit Sharma · Sedrick Scott Keh · Eric Mitchell · Chelsea Finn · Kushal Arora · Thomas Kollar

[ East Exhibit Hall A-C ]

Abstract
Learning from AI feedback (LAIF) is a popular paradigm for improving the instruction-following abilities of powerful pre-trained language models. LAIF first performs supervised fine-tuning (SFT) using demonstrations from a teacher model and then further fine-tunes the model with reinforcement learning (RL) or direct preference optimization (DPO), using feedback from a critic model. While recent popular open-source models have demonstrated substantial improvements in performance from the RL step, in this paper we question whether the complexity of this RL step is truly warranted for AI feedback. We show that the improvements of the RL step are virtually entirely due to the widespread practice of using a weaker teacher model (e.g. GPT-3.5) for SFT data collection than the critic (e.g., GPT-4) used for AI feedback generation. Specifically, we show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing LAIF pipelines. More generally, we find that the gains from LAIF vary substantially across base model families, test-time evaluation protocols, and critic models. Finally, we provide a mechanistic explanation for when SFT may outperform the full two-step LAIF pipeline as well as suggestions for making LAIF maximally useful in practice.
Spotlight Poster
Alexander Kolesov · Petr Mokrov · Igor Udovichenko · Milena Gazdieva · Gudmund Pammer · Anastasis Kratsios · Evgeny Burnaev · Aleksandr Korotin

[ East Exhibit Hall A-C ]

Abstract
Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seamlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including *non-Euclidean* cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications. Our code is available at https://github.com/justkolesov/EnergyGuidedBarycenters.
Poster
Hyosoon Jang · Yunhui Jang · Minsu Kim · Jinkyoo Park · Sungsoo Ahn

[ East Exhibit Hall A-C ]

Abstract
This paper studies Generative Flow Networks (GFlowNets), which learn to sample objects proportionally to a given reward function through the trajectory of state transitions. In this work, we observe that GFlowNets tend to under-exploit the high-reward objects due to training on insufficient number of trajectories, which may lead to a large gap between the estimated flow and the (known) reward value. In response to this challenge, we propose a pessimistic backward policy for GFlowNets (PBP-GFN), which maximizes the observed flow to align closely with the true reward for the object. We extensively evaluate PBP-GFN across eight benchmarks, including hyper-grid environment, bag generation, structured set generation, molecular generation, and four RNA sequence generation tasks. In particular, PBP-GFN enhances the discovery of high-reward objects, maintains the diversity of the objects, and consistently outperforms existing methods.
Poster
Jingwei Zhao · Gus Xia · Ziyu Wang · Ye Wang

[ East Exhibit Hall A-C ]

Abstract
In the realm of music AI, arranging rich and structured multi-track accompaniments from a simple lead sheet presents significant challenges. Such challenges include maintaining track cohesion, ensuring long-term coherence, and optimizing computational efficiency. In this paper, we introduce a novel system that leverages prior modelling over disentangled style factors to address these challenges. Our method presents a two-stage process: initially, a piano arrangement is derived from the lead sheet by retrieving piano texture styles; subsequently, a multi-track orchestration is generated by infusing orchestral function styles into the piano arrangement. Our key design is the use of vector quantization and a unique multi-stream Transformer to model the long-term flow of the orchestration style, which enables flexible, controllable, and structured music generation. Experiments show that by factorizing the arrangement task into interpretable sub-stages, our approach enhances generative capacity while improving efficiency. Additionally, our system supports a variety of music genres and provides style control at different composition hierarchies. We further show that our system achieves superior coherence, structure, and overall arrangement quality compared to existing baselines.
Poster
Shyam Sundhar Ramesh · Yifan Hu · Iason Chaimalas · Viraj Mehta · Pier Giuseppe Sessa · Haitham Bou Ammar · Ilija Bogunovic

[ East Exhibit Hall A-C ]

Abstract
Adapting large language models (LLMs) for specific tasks usually involves fine-tuning through reinforcement learning with human feedback (RLHF) on preference data. While these data often come from diverse labelers' groups (e.g., different demographics, ethnicities, company teams, etc.), traditional RLHF approaches adopt a "one-size-fits-all" approach, i.e., they indiscriminately assume and optimize a single preference model, thus not being robust to unique characteristics and needs of the various groups. To address this limitation, we propose a novel Group Robust Preference Optimization (GRPO) method to align LLMs to individual groups' preferences robustly. Our approach builds upon reward-free direct preference optimization methods, but unlike previous approaches, it seeks a robust policy which maximizes the worst-case group performance. To achieve this, GRPO adaptively and sequentially weights the importance of different groups, prioritizing groups with worse cumulative loss. We theoretically study the feasibility of GRPO and analyze its convergence for the log-linear policy class. By fine-tuning LLMs with GRPO using diverse group-based global opinion data, we significantly improved performance for the worst-performing groups, reduced loss imbalances across groups, and improved probability accuracies compared to non-robust baselines.
Poster
Zeyang Liu · Xinrui Yang · Shiguang Sun · Long Qian · Lipeng Wan · Xingyu Chen · Xuguang Lan

[ East Exhibit Hall A-C ]

Abstract
Recent progress in generative models has stimulated significant innovations in many fields, such as image generation and chatbots. Despite their success, these models often produce sketchy and misleading solutions for complex multi-agent decision-making problems because they miss the trial-and-error experience and reasoning as humans. To address this limitation, we explore a paradigm that integrates a language-guided simulator into the multi-agent reinforcement learning pipeline to enhance the generated answer. The simulator is a world model that separately learns dynamics and reward, where the dynamics model comprises an image tokenizer as well as a causal transformer to generate interaction transitions autoregressively, and the reward model is a bidirectional transformer learned by maximizing the likelihood of trajectories in the expert demonstrations under language guidance. Given an image of the current state and the task description, we use the world model to train the joint policy and produce the image sequence as the answer by running the converged policy on the dynamics model. The empirical results demonstrate that this framework can improve the answers for multi-agent decision-making problems by showing superior performance on the training and unseen tasks of the StarCraft Multi-Agent Challenge benchmark. In particular, it can generate consistent interaction sequences and explainable …
Spotlight Poster
Kun Yan · Zeyu Wang · Lei Ji · Yuntao Wang · Nan Duan · Shuai Ma

[ East Exhibit Hall A-C ]

Abstract
In recent years, the integration of vision and language understanding has led to significant advancements in artificial intelligence, particularly through Vision-Language Models (VLMs). However, existing VLMs face challenges in handling real-world applications with complex scenes and multiple objects, as well as aligning their focus with the diverse attention patterns of human users. In this paper, we introduce gaze information, feasibly collected by ubiquitous wearable devices such as MR glasses, as a proxy for human attention to guide VLMs. We propose a novel approach, Voila-A, for gaze alignment to enhance the effectiveness of these models in real-world applications. First, we collect hundreds of minutes of gaze data to demonstrate that we can mimic human gaze modalities using localized narratives. We then design an automatic data annotation pipeline utilizing GPT-4 to generate the VOILA-COCO dataset. Additionally, we introduce a new model VOILA-A that integrate gaze information into VLMs while maintain pretrained knowledge from webscale dataset. We evaluate Voila-A using a hold-out validation set and a newly collected VOILA-GAZE testset, which features real-life scenarios captured with a gaze-tracking device. Our experimental results demonstrate that Voila-A significantly outperforms several baseline models. By aligning model attention with human gaze patterns, Voila-A paves the way for …
Poster
Yimeng Zhang · Xin Chen · Jinghan Jia · Yihua Zhang · Chongyu Fan · Jiancheng Liu · Mingyi Hong · Ke Ding · Sijia Liu

[ East Exhibit Hall A-C ]

Abstract
Diffusion models (DMs) have achieved remarkable success in text-to-image generation, but they also pose safety risks, such as the potential generation of harmful content and copyright violations. The techniques of machine unlearning, also known as concept erasing, have been developed to address these risks. However, these techniques remain vulnerable to adversarial prompt attacks, which can prompt DMs post-unlearning to regenerate undesired images containing concepts (such as nudity) meant to be erased. This work aims to enhance the robustness of concept erasing by integrating the principle of adversarial training (AT) into machine unlearning, resulting in the robust unlearning framework referred to as AdvUnlearn. However, achieving this effectively and efficiently is highly nontrivial. First, we find that a straightforward implementation of AT compromises DMs’ image generation quality post-unlearning. To address this, we develop a utility-retaining regularization on an additional retain set, optimizing the trade-off between concept erasure robustness and model utility in AdvUnlearn. Moreover, we identify the text encoder as a more suitable module for robustification compared to UNet, ensuring unlearning effectiveness. And the acquired text encoder can serve as a plug-and-play robust unlearner for various DM types. Empirically, we perform extensive experiments to demonstrate the robustness advantage of AdvUnlearn across various …
Poster
Nikita Kornilov · Petr Mokrov · Alexander Gasnikov · Aleksandr Korotin

[ East Exhibit Hall A-C ]

Abstract
Over the several recent years, there has been a boom in development of Flow Matching (FM) methods for generative modeling. One intriguing property pursued by the community is the ability to learn flows with straight trajectories which realize the Optimal Transport (OT) displacements. Straightness is crucial for the fast integration (inference) of the learned flow's paths. Unfortunately, most existing flow straightening methods are based on non-trivial iterative FM procedures which accumulate the error during training or exploit heuristics based on minibatch OT. To address these issues, we develop and theoretically justify the novel Optimal Flow Matching approach which allows recovering the straight OT displacement for the quadratic transport in just one FM step. The main idea of our approach is the employment of vector field for FM which are parameterized by convex functions. The code of our OFM implementation and the conducted experiments is available at https://github.com/Jhomanik/Optimal-Flow-Matching
Poster
Kiwoong Yoo · Owen Oertell · Junhyun Lee · Sanghoon Lee · Jaewoo Kang

[ East Exhibit Hall A-C ]

Abstract
Navigating the vast chemical space of druggable compounds is a formidable challenge in drug discovery, where generative models are increasingly employed to identify viable candidates. Conditional 3D structure-based drug design (3D-SBDD) models, which take into account complex three-dimensional interactions and molecular geometries, are particularly promising. Scaffold hopping is an efficient strategy that facilitates the identification of similar active compounds by strategically modifying the core structure of molecules, effectively narrowing the wide chemical space and enhancing the discovery of drug-like products. However, the practical application of 3D-SBDD generative models is hampered by their slow processing speeds. To address this bottleneck, we introduce TurboHopp, an accelerated pocket-conditioned 3D scaffold hopping model that merges the strategic effectiveness of traditional scaffold hopping with rapid generation capabilities of consistency models. This synergy not only enhances efficiency but also significantly boosts generation speeds, achieving up to 30 times faster inference speed as well as superior generation quality compared to existing diffusion-based models, establishing TurboHopp as a powerful tool in drug discovery. Supported by faster inference speed, we further optimize our model, using Reinforcement Learning for Consistency Models (RLCM), to output desirable molecules. We demonstrate the broad applicability of TurboHopp across multiple drug discovery scenarios, underscoring its …
Poster
Sirine Ayadi · Leon Hetzel · Johanna Sommer · Fabian Theis · Stephan Günnemann

[ East Exhibit Hall A-C ]

Abstract
Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain, which has experienced great attention through the success of generative models and, in particular, diffusion models. However, current molecular diffusion models are tailored towards a specific downstream task and lack adaptability. We introduce UniGuide, a framework for controlled geometric guidance of unconditional diffusion models that allows flexible conditioning during inference without the requirement of extra training or networks. We show how applications such as structure-based, fragment-based, and ligand-based drug design are formulated in the UniGuide framework and demonstrate on-par or superior performance compared to specialised models. Offering a more versatile approach, UniGuide has the potential to streamline the development of molecular generative models, allowing them to be readily used in diverse application scenarios.
Spotlight Poster
Itai Gat · Tal Remez · Neta Shaul · Felix Kreuk · Ricky T. Q. Chen · Gabriel Synnaeve · Yossi Adi · Yaron Lipman

[ East Exhibit Hall A-C ]

Abstract
Despite Flow Matching and diffusion models having emerged as powerful generative paradigms for continuous variables such as images and videos, their application to high-dimensional discrete data, such as language, is still limited. In this work, we present Discrete Flow Matching, a novel discrete flow paradigm designed specifically for generating discrete data. Discrete Flow Matching offers several key contributions: (i) it works with a general family of probability paths interpolating between source and target distributions; (ii) it allows for a generic formula for sampling from these probability paths using learned posteriors such as the probability denoiser ($x$-prediction) and noise-prediction ($\epsilon$-prediction); (iii) practically, focusing on specific probability paths defined with different schedulers improves generative perplexity compared to previous discrete diffusion and flow models; and (iv) by scaling Discrete Flow Matching models up to 1.7B parameters, we reach 6.7% Pass@1 and 13.4% Pass@10 on HumanEval and 6.7% Pass@1 and 20.6% Pass@10 on 1-shot MBPP coding benchmarks. Our approach is capable of generating high-quality discrete data in a non-autoregressive fashion, significantly closing the gap between autoregressive models and discrete flow models.
Poster
Yifei Shen · XINYANG JIANG · Yifan Yang · Yezhen Wang · Dongqi Han · Dongsheng Li

[ East Exhibit Hall A-C ]

Abstract
Adding additional guidance to pretrained diffusion models has become an increasingly popular research area, with extensive applications in computer vision, reinforcement learning, and AI for science. Recently, several studies have proposed training-free loss-based guidance by using off-the-shelf networks pretrained on clean images. This approach enables zero-shot conditional generation for universal control formats, which appears to offer a free lunch in diffusion guidance. In this paper, we aim to develop a deeper understanding of training-free guidance, as well as overcome its limitations. We offer a theoretical analysis that supports training-free guidance from the perspective of optimization, distinguishing it from classifier-based (or classifier-free) guidance. To elucidate their drawbacks, we theoretically demonstrate that training-free guidance is more susceptible to misaligned gradients and exhibits slower convergence rates compared to classifier guidance. We then introduce a collection of techniques designed to overcome the limitations, accompanied by theoretical rationale and empirical evidence. Our experiments in image and motion generation confirm the efficacy of these techniques.
Poster
Tim Salimans · Thomas Mensink · Jonathan Heek · Emiel Hoogeboom

[ East Exhibit Hall A-C ]

Abstract
We present a new method for making diffusion models faster to sample. The method distills many-step diffusion models into few-step models by matching conditional expectations of the clean data given noisy data along the sampling trajectory. Our approach extends recently proposed one-step methods to the multi-step case, and provides a new perspective by interpreting these approaches in terms of moment matching. By using up to 8 sampling steps, we obtain distilled models that outperform not only their one-step versions but also their original many-step teacher models, obtaining new state-of-the-art results on the Imagenet dataset. We also show promising results on a large text-to-image model where we achieve fast generation of high resolution images directly in image space, without needing autoencoders or upsamplers.
Poster
Zhenyu Zhou · Defang Chen · Can Wang · Chun Chen · Siwei Lyu

[ East Exhibit Hall A-C ]

Abstract
Diffusion-based generative models have demonstrated their powerful performance across various tasks, but this comes at a cost of the slow sampling speed. To achieve both efficient and high-quality synthesis, various distillation-based accelerated sampling methods have been developed recently. However, they generally require time-consuming fine tuning with elaborate designs to achieve satisfactory performance in a specific number of function evaluation (NFE), making them difficult to employ in practice. To address this issue, we propose **S**imple and **F**ast **D**istillation (SFD) of diffusion models, which simplifies the paradigm used in existing methods and largely shortens their fine-tuning time up to $1000\times$. We begin with a vanilla distillation-based sampling method and boost its performance to state of the art by identifying and addressing several small yet vital factors affecting the synthesis efficiency and quality. Our method can also achieve sampling with variable NFEs using a single distilled model. Extensive experiments demonstrate that SFD strikes a good balance between the sample quality and fine-tuning costs in few-step image generation task. For example, SFD achieves 4.53 FID (NFE=2) on CIFAR-10 with only **0.64 hours** of fine-tuning on a single NVIDIA A100 GPU.
Poster
Hengkang Wang · Xu Zhang · Taihui Li · Yuxiang Wan · Tiancong Chen · Ju Sun

[ East Exhibit Hall A-C ]

Abstract
Pretrained diffusion models (DMs) have recently been popularly used in solving inverse problems (IPs). The existing methods mostly interleave iterative steps in the reverse diffusion process and iterative steps to bring the iterates closer to satisfying the measurement constraint. However, such interleaving methods struggle to produce final results that look like natural objects of interest (i.e., manifold feasibility) and fit the measurement (i.e., measurement feasibility), especially for nonlinear IPs. Moreover, their capabilities to deal with noisy IPs with unknown types and levels of measurement noise are unknown. In this paper, we advocate viewing the reverse process in DMs as a function and propose a novel plug-in method for solving IPs using pretrained DMs, dubbed DMPlug. DMPlug addresses the issues of manifold feasibility and measurement feasibility in a principled manner, and also shows great potential for being robust to unknown types and levels of noise. Through extensive experiments across various IP tasks, including two linear and three nonlinear IPs, we demonstrate that DMPlug consistently outperforms state-of-the-art methods, often by large margins especially for nonlinear IPs.
Poster
Oscar Davis · Samuel Kessler · Mircea Petrache · Ismail Ceylan · Michael Bronstein · Joey Bose

[ East Exhibit Hall A-C ]

Abstract
Generative modeling over discrete data has recently seen numerous success stories, with applications spanning language modeling, biological sequence design, and graph-structured molecular data. The predominant generative modeling paradigm for discrete data is still autoregressive, with more recent alternatives based on diffusion or flow-matching falling short of their impressive performance in continuous data settings, such as image or video generation. In this work, we introduce Fisher-Flow, a novel flow-matching model for discrete data. Fisher-Flow takes a manifestly geometric perspectiveby considering categorical distributions over discrete data as points residing on a statistical manifold equipped with its natural Riemannian metric: the \emph{Fisher-Rao metric}. As a result, we demonstrate discrete data itself can be continuously reparameterised to points on the positive orthant of the $d$-hypersphere $\mathbb{S}^d_+$, which allows us to define flows that map any source distribution to target in a principled manner by transporting mass along (closed-form) geodesics of $\mathbb{S}^d_+$. Furthermore, the learned flows in Fisher-Flow can be further bootstrapped by leveraging Riemannian optimal transport leading to improved training dynamics. We prove that the gradient flow induced by Fisher-FLow is optimal in reducing the forward KL divergence. We evaluate Fisher-Flow on an array of synthetic and diverse real-world benchmarks, including designing DNA Promoter, …
Poster
Yichao Fu · Siqi Zhu · Runlong Su · Aurick Qiao · Ion Stoica · Hao Zhang

[ East Exhibit Hall A-C ]

Abstract
In Large Language Model (LLM) inference, the output length of an LLM request is typically regarded as not known a priori. Consequently, most LLM serving systems employ a simple First-come-first-serve (FCFS) scheduling strategy, leading to Head-Of-Line (HOL) blocking and reduced throughput and service quality. In this paper, we reexamine this assumption -- we show that, although predicting the exact generation length of each request is infeasible, it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank. The ranking information offers valuable guidance for scheduling requests. Building on this insight, we develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches. We integrate this scheduler with the state-of-the-art LLM serving system and show significant performance improvement in several important applications: 2.8x lower latency in chatbot serving and 6.5x higher throughput in synthetic data generation. Our code is available at https://github.com/hao-ai-lab/vllm-ltr.git
Poster
Sangeek Hyun · Jae-Pil Heo

[ East Exhibit Hall A-C ]

Abstract
Most advances in 3D Generative Adversarial Networks (3D GANs) largely depend on ray casting-based volume rendering, which incurs demanding rendering costs. One promising alternative is rasterization-based 3D Gaussian Splatting (3D-GS), providing a much faster rendering speed and explicit 3D representation. In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics. However, in an adversarial framework, we observe that a na\"ive generator architecture suffers from training instability and lacks the capability to adjust the scale of Gaussians. This leads to model divergence and visual artifacts due to the absence of proper guidance for initialized positions of Gaussians and densification to manage their scales adaptively. To address these issues, we introduce GSGAN, a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians. Specifically, we design a hierarchy of Gaussians where finer-level Gaussians are parameterized by their coarser-level counterparts; the position of finer-level Gaussians would be located near their coarser-level counterparts, and the scale would monotonically decrease as the level becomes finer, modeling both coarse and fine details of the 3D scene. Experimental results demonstrate that ours achieves a significantly faster rendering speed (×100) …
Poster
Yuhong Li · Yingbing Huang · Bowen Yang · Bharat Venkitesh · Acyr Locatelli · Hanchen Ye · Tianle Cai · Patrick Lewis · Deming Chen

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have made remarkable progress in processing extensive contexts, with the Key-Value (KV) cache playing a vital role in enhancing their performance. However, the growth of the KV cache in response to increasing input length poses challenges to memory and time efficiency. To address this problem, this paper introduces SnapKV, an innovative and fine-tuning-free approach that efficiently minimizes KV cache size while still delivering comparable performance in real-world applications.We discover that each attention head in the model consistently focuses on specific prompt attention features during generation. Meanwhile, this robust pattern can be obtained from an `observation' window located at the end of the prompts. Drawing on this insight, SnapKV automatically compresses KV caches by selecting clustered important KV positions for each attention head. Our approach significantly reduces the growing computational overhead and memory footprint when processing long input sequences. Specifically, SnapKV achieves a consistent decoding speed with a 3.6x increase in generation speed and an 8.2x enhancement in memory efficiency compared to baseline when processing inputs of 16K tokens. At the same time, it maintains comparable performance to baseline models across 16 long sequence datasets. Moreover, SnapKV can process up to 380K context tokens on a single …
Poster
Xuan Shen · Pu Zhao · Yifan Gong · Zhenglun Kong · Zheng Zhan · Yushu Wu · Ming Lin · Chao Wu · Xue Lin · Yanzhi Wang

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs.However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs.In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration.Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data.Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks.Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.
Poster
Panwang Pan · Zhuo Su · Chenguo Lin · Zhen Fan · Yongjie Zhang · Zeming Li · Tingting Shen · Yadong Mu · Yebin Liu

[ East Exhibit Hall A-C ]

Abstract
Despite recent advancements in high-fidelity human reconstruction techniques, the requirements for densely captured images or time-consuming per-instance optimization significantly hinder their applications in broader scenarios. To tackle these issues, we present **HumanSplat**, which predicts the 3D Gaussian Splatting properties of any human from a single input image in a generalizable manner.Specifically, HumanSplat comprises a 2D multi-view diffusion model and a latent reconstruction Transformer with human structure priors that adeptly integrate geometric priors and semantic features within a unified framework. A hierarchical loss that incorporates human semantic information is devised to achieve high-fidelity texture modeling and impose stronger constraints on the estimated multiple views. Comprehensive experiments on standard benchmarks and in-the-wild images demonstrate that HumanSplat surpasses existing state-of-the-art methods in achieving photorealistic novel-view synthesis. Project page: https://humansplat.github.io.
Poster
David Mayo · Christopher Wang · Asa Harbin · Abdulrahman Alabdulkareem · Albert Shaw · Boris Katz · Andrei Barbu

[ East Exhibit Hall A-C ]

Abstract
When evaluating stimuli reconstruction results it is tempting to assume that higher fidelity text and image generation is due to an improved understanding of the brain or more powerful signal extraction from neural recordings. However, in practice, new reconstruction methods could improve performance for at least three other reasons: learning more about the distribution of stimuli, becoming better at reconstructing text or images in general, or exploiting weaknesses in current image and/or text evaluation metrics. Here we disentangle how much of the reconstruction is due to these other factors vs. productively using the neural recordings. We introduce BrainBits, a method that uses a bottleneck to quantify the amount of signal extracted from neural recordings that is actually necessary to reproduce a method's reconstruction fidelity. We find that it takes surprisingly little information from the brain to produce reconstructions with high fidelity. In these cases, it is clear that the priors of the methods' generative models are so powerful that the outputs they produce extrapolate far beyond the neural signal they decode. Given that reconstructing stimuli can be improved independently by either improving signal extraction from the brain or by building more powerful generative models, improving the latter may fool us …
Poster
Youngwan Lee · Kwanyong Park · Yoorhim Cho · Yong-Ju Lee · Sung Ju Hwang

[ East Exhibit Hall A-C ]

Abstract
As text-to-image (T2I) synthesis models increase in size, they demand higher inference costs due to the need for more expensive GPUs with larger memory, which makes it challenging to reproduce these models in addition to the restricted access to training datasets. Our study aims to reduce these inference costs and explores how far the generative capabilities of T2I models can be extended using only publicly available datasets and open-source models. To this end, by using the de facto standard text-to-image model, Stable Diffusion XL (SDXL), we present three key practices in building an efficient T2I model: (1) Knowledge distillation: we explore how to effectively distill the generation capability of SDXL into an efficient U-Net and find that self-attention is the most crucial part. (2) Data: despite fewer samples, high-resolution images with rich captions are more crucial than a larger number of low-resolution images with short captions. (3) Teacher: Step-distilled Teacher allows T2I models to reduce the noising steps. Based on these findings, we build two types of efficient text-to-image models, called KOALA-Turbo & -Lightning, with two compact U-Nets (1B & 700M), reducing the model size up to 54% and 69% of the SDXL U-Net. In particular, the KOALA-Lightning-700M is 4 …
Poster
Junyi Wu · Haoxuan Wang · Yuzhang Shang · Mubarak Shah · Yan Yan

[ East Exhibit Hall A-C ]

Abstract
The recent introduction of Diffusion Transformers (DiTs) has demonstrated exceptional capabilities in image generation by using a different backbone architecture, departing from traditional U-Nets and embracing the scalable nature of transformers. Despite their advanced capabilities, the wide deployment of DiTs, particularly for real-time applications, is currently hampered by considerable computational demands at the inference stage. Post-training Quantization (PTQ) has emerged as a fast and data-efficient solution that can significantly reduce computation and memory footprint by using low-bit weights and activations. However, its applicability to DiTs has not yet been explored and faces non-trivial difficulties due to the unique design of DiTs. In this paper, we propose PTQ4DiT, a specifically designed PTQ method for DiTs. We discover two primary quantization challenges inherent in DiTs, notably the presence of salient channels with extreme magnitudes and the temporal variability in distributions of salient activation over multiple timesteps. To tackle these challenges, we propose Channel-wise Salience Balancing (CSB) and Spearmen's $\rho$-guided Salience Calibration (SSC). CSB leverages the complementarity property of channel magnitudes to redistribute the extremes, alleviating quantization errors for both activations and weights. SSC extends this approach by dynamically adjusting the balanced salience to capture the temporal variations in activation. Additionally, to eliminate …
Poster
He Qiyuan · Jinghao Wang · Ziwei Liu · Angela Yao

[ East Exhibit Hall A-C ]

Abstract
Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or image is less understood. Common approaches interpolate linearly in the conditioning space but tend to result in inconsistent images with poor fidelity. This work introduces a novel training-free technique named \textbf{Attention Interpolation via Diffusion (AID)}. AID has two key contributions: \textbf{1)} a fused inner/outer interpolated attention layer to boost image consistency and fidelity; and \textbf{2)} selection of interpolation coefficients via a beta distribution to increase smoothness. Additionally, we present an AID variant called \textbf{Prompt-guided Attention Interpolation via Diffusion (PAID)}, which \textbf{3)} treats interpolation as a condition-dependent generative process. Experiments demonstrate that our method achieves greater consistency, smoothness, and efficiency in condition-based interpolation, aligning closely with human preferences. Furthermore, PAID offers substantial benefits for compositional generation, controlled image editing, image morphing and image-controlled generation, all while remaining training-free.
Poster
Jiahua Dong · Wenqi Liang · Hongliu Li · Duzhen Zhang · Meng Cao · Henghui Ding · Salman Khan · Fahad Shahbaz Khan

[ East Exhibit Hall A-C ]

Abstract
Custom diffusion models (CDMs) have attracted widespread attention due to their astonishing generative ability for personalized concepts. However, most existing CDMs unreasonably assume that personalized concepts are fixed and cannot change over time. Moreover, they heavily suffer from catastrophic forgetting and concept neglect on old personalized concepts when continually learning a series of new concepts. To address these challenges, we propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM), which can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner. Specifically, to surmount the catastrophic forgetting of old concepts, we develop a concept consolidation loss and an elastic weight aggregation module. They can explore task-specific and task-shared knowledge during training, and aggregate all low-rank weights of old concepts based on their contributions during inference. Moreover, in order to address concept neglect, we devise a context-controllable synthesis strategy that leverages expressive region features and noise estimation to control the contexts of generated images according to user conditions. Experiments validate that our CIDM surpasses existing custom diffusion models. The source codes are available at https://github.com/JiahuaDong/CIFC.
Poster
Sandeep Mishra · Oindrila Saha · Alan Bovik

[ East Exhibit Hall A-C ]

Abstract
3D generation guided by text-to-image diffusion models enables the creation of visually compelling assets. However previous methods explore generation based on image or text. The boundaries of creativity are limited by what can be expressed through words or the images that can be sourced. We present YouDream, a method to generate high-quality anatomically controllable animals. YouDream is guided using a text-to-image diffusion model controlled by 2D views of a 3D pose prior. Our method is capable of generating novel imaginary animals that previous text-to-3D generative methods are unable to create. Additionally, our method can preserve anatomic consistency in the generated animals, an area where prior approaches often struggle. Moreover, we design a fully automated pipeline for generating commonly observed animals. To circumvent the need for human intervention to create a 3D pose, we propose a multi-agent LLM that adapts poses from a limited library of animal 3D poses to represent the desired animal. A user study conducted on the outcomes of YouDream demonstrates the preference of the animal models generated by our method over others. Visualizations and code are available at https://youdream3d.github.io/.
Poster
Ilker Oguz · Niyazi Dinc · Mustafa Yildirim · Junjie Ke · Innfarn Yoo · Qifei Wang · Feng Yang · Christophe Moser · Demetri Psaltis

[ East Exhibit Hall A-C ]

Abstract
Diffusion models generate new samples by progressively decreasing the noise from the initially provided random distribution. This inference procedure generally utilizes a trained neural network numerous times to obtain the final output, creating significant latency and energy consumption on digital electronic hardware such as GPUs. In this study, we demonstrate that the propagation of a light beam through a transparent medium can be programmed to implement a denoising diffusion model on image samples. This framework projects noisy image patterns through passive diffractive optical layers, which collectively only transmit the predicted noise term in the image. The optical transparent layers, which are trained with an online training approach, backpropagating the error to the analytical model of the system, are passive and kept the same across different steps of denoising. Hence this method enables high-speed image generation with minimal power consumption, benefiting from the bandwidth and energy efficiency of optical information processing.
Poster
Kyungmin Lee · Sangkyung Kwak · Kihyuk Sohn · Jinwoo Shin

[ East Exhibit Hall A-C ]

Abstract
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, can generate visuals with a high degree of consistency. However, such fine-tuned models are not robust; they often fail to compose with concepts of pretrained model or other fine-tuned models. To address this, we propose a novel fine-tuning objective, dubbed Direct Consistency Optimization, which controls the deviation between fine-tuning and pretrained models to retain the pretrained knowledge during fine-tuning. Through extensive experiments on subject and style customization, we demonstrate that our method positions itself on a superior Pareto frontier between subject (or style) consistency and image-text alignment over all previous baselines; it not only outperforms regular fine-tuning objective in image-text alignment, but also shows higher fidelity to the reference images than the method that fine-tunes with additional prior dataset. More importantly, the models fine-tuned with our method can be merged without interference, allowing us to generate custom subjects in a custom style by composing separately customized subject and style models. Notably, we show that our approach achieves better prompt fidelity and subject fidelity than those post-optimized for merging regular fine-tuned models.
Poster
Wei Pang · Masoumeh Shafieinejad · Lucy Liu · Stephanie Hazlewood · Xi He

[ East Exhibit Hall A-C ]

Abstract
Recent research in tabular data synthesis has focused on single tables, whereas real-world applications often involve complex data with tens or hundreds of interconnected tables. Previous approaches to synthesizing multi-relational (multi-table) data fall short in two key aspects: scalability for larger datasets and capturing long-range dependencies, such as correlations between attributes spread across different tables. Inspired by the success of diffusion models in tabular data modeling, we introduce \textbf{C}luster \textbf{La}tent \textbf{Va}riable guided \textbf{D}enoising \textbf{D}iffusion \textbf{P}robabilistic \textbf{M}odels (ClavaDDPM). This novel approach leverages clustering labels as intermediaries to model relationships between tables, specifically focusing on foreign key constraints. ClavaDDPM leverages the robust generation capabilities of diffusion models while incorporating efficient algorithms to propagate the learned latent variables across tables. This enables ClavaDDPM to capture long-range dependencies effectively. Extensive evaluations on multi-table datasets of varying sizes show that ClavaDDPM significantly outperforms existing methods for these long-range dependencies while remaining competitive on utility metrics for single-table data.
Poster
Ziyang Chen · Daniel Geng · Andrew Owens

[ East Exhibit Hall A-C ]

Abstract
Spectrograms are 2D representations of sound that look very different from the images found in our visual world. And natural images, when played as spectrograms, make unnatural sounds. In this paper, we show that it is possible to synthesize spectrograms that simultaneously look like natural images and sound like natural audio. We call these visual spectrograms *images that sound*. Our approach is simple and zero-shot, and it leverages pre-trained text-to-image and text-to-spectrogram diffusion models that operate in a shared latent space. During the reverse process, we denoise noisy latents with both the audio and image diffusion models in parallel, resulting in a sample that is likely under both models. Through quantitative evaluations and perceptual studies, we find that our method successfully generates spectrograms that align with a desired audio prompt while also taking the visual appearance of a desired image prompt.
Poster
Giangiacomo Mercatali · Yogesh Verma · Andre Freitas · Vikas Garg

[ East Exhibit Hall A-C ]

Abstract
We introduce a novel score-based diffusion framework named Twigs that incorporates multiple co-evolving flows for enriching conditional generation tasks. Specifically, a central or trunk diffusion process is associated with a primary variable (e.g., graph structure), and additional offshoot or stem processes are dedicated to dependent variables (e.g., graph properties or labels). A new strategy, which we call loop guidance, effectively orchestrates the flow of information between the trunk and the stem processes during sampling. This approach allows us to uncover intricate interactions and dependencies, and unlock new generative capabilities. We provide extensive experiments to demonstrate strong performance gains of the proposed method over contemporary baselines in the context of conditional graph generation, underscoring the potential of Twigs in challenging generative tasks such as inverse molecular design and molecular optimization. Code is available at https://github.com/Aalto-QuML/Diffusion_twigs.
Poster
Chengshuai Shi · Kun Yang · Zihan Chen · Jundong Li · Jing Yang · Cong Shen

[ East Exhibit Hall A-C ]

Abstract
The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically finding good prompts, i.e., prompt optimization. Most existing works follow the scheme of selecting from a pre-generated pool of candidate prompts. However, these designs mainly focus on the generation strategy, while limited attention has been paid to the selection method. Especially, the cost incurred during the selection (e.g., accessing LLM and evaluating the responses) is rarely explicitly considered. To overcome this limitation, this work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint. TRIPLE is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich toolbox from BAI-FB systematically and also incorporating unique characteristics of prompt optimization. Extensive experiments on multiple well-adopted tasks using various LLMs demonstrate the remarkable performance improvement of TRIPLE over baselines while satisfying the limited budget constraints. As an extension, variants of TRIPLE are proposed to efficiently select examples for few-shot prompts, also achieving superior empirical performance.
Poster
Hanzhang Zhou · Zijian Feng · Zixiao Zhu · Junlang Qian · Kezhi Mao

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have demonstrated impressive capabilities in various tasks using the in-context learning (ICL) paradigm. However, their effectiveness is often compromised by inherent bias, leading to prompt brittleness—sensitivity to design settings such as example selection, order, and prompt formatting. Previous studies have addressed LLM bias through external adjustment of model outputs, but the internal mechanisms that lead to such bias remain unexplored. Our work delves into these mechanisms, particularly investigating how feedforward neural networks (FFNs) and attention heads result in the bias of LLMs. By Interpreting the contribution of individual FFN vectors and attention heads, we identify the biased LLM components that skew LLMs' prediction toward specific labels. To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads. Extensive experiments across 12 NLP datasets demonstrate that UniBias significantly enhances ICL performance and alleviates prompt brittleness of LLMs.
Poster
Yingcong Li · Ankit Rawat · Samet Oymak

[ East Exhibit Hall A-C ]

Abstract
Recent research has shown that Transformers with linear attention are capable of in-context learning (ICL) by implementing a linear estimator through gradient descent steps. However, the existing results on the optimization landscape apply under stylized settings where task and feature vectors are assumed to be IID and the attention weights are fully parameterized. In this work, we develop a stronger characterization of the optimization and generalization landscape of ICL through contributions on architectures, low-rank parameterization, and correlated designs: (1) We study the landscape of 1-layer linear attention and 1-layer H3, a state-space model. Under a suitable correlated design assumption, we prove that both implement 1-step preconditioned gradient descent. We show that thanks to its native convolution filters, H3 also has the advantage of implementing sample weighting and outperforming linear attention in suitable settings. (2) By studying correlated designs, we provide new risk bounds for retrieval augmented generation (RAG) and task-feature alignment which reveal how ICL sample complexity benefits from distributional alignment. (3) We derive the optimal risk for low-rank parameterized attention weights in terms of covariance spectrum. Through this, we also shed light on how LoRA can adapt to a new distribution by capturing the shift between task covariances. Experimental …
Spotlight Poster
Wenyang Hu · Yao Shu · Zongmin Yu · Zhaoxuan Wu · Xiaoqiang Lin · Zhongxiang Dai · See-Kiong Ng · Bryan Kian Hsiang Low

[ East Exhibit Hall A-C ]

Abstract
The efficacy of large language models (LLMs) in understanding and generating natural language has aroused a wide interest in developing prompt-based methods to harness the power of black-box LLMs. Existing methodologies usually prioritize a global optimization for finding the global optimum, which however will perform poorly in certain tasks. This thus motivates us to re-think the necessity of finding a global optimum in prompt optimization. To answer this, we conduct a thorough empirical study on prompt optimization and draw two major insights. Contrasting with the rarity of global optimum, local optima are usually prevalent and well-performed, which can be more worthwhile for efficient prompt optimization (**Insight I**). The choice of the input domain, covering both the generation and the representation of prompts, affects the identification of well-performing local optima (**Insight II**). Inspired by these insights, we propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO), which incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization. Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency, which we demonstrate through extensive experiments.
Poster
Zhaoxuan Wu · Xiaoqiang Lin · Zhongxiang Dai · Wenyang Hu · Yao Shu · See-Kiong Ng · Patrick Jaillet · Bryan Kian Hsiang Low

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have shown impressive capabilities in real-world applications. The capability of *in-context learning* (ICL) allows us to adapt an LLM to downstream tasks by including input-label exemplars in the prompt without model fine-tuning. However, the quality of these exemplars in the prompt greatly impacts performance, highlighting the need for an effective automated exemplar selection method. Recent studies have explored retrieval-based approaches to select exemplars tailored to individual test queries, which can be undesirable due to extra test-time computation and an increased risk of data exposure. Moreover, existing methods fail to adequately account for the impact of exemplar ordering on the performance. On the other hand, the impact of the *instruction*, another essential component in the prompt given to the LLM, is often overlooked in existing exemplar selection methods. To address these challenges, we propose a novel method named $\texttt{EASE}$, which leverages the hidden embedding from a pre-trained language model to represent ordered sets of exemplars and uses a neural bandit algorithm to optimize the sets of exemplars *while accounting for exemplar ordering*. Our $\texttt{EASE}$ can efficiently find an ordered set of exemplars that *performs well for all test queries* from a given task, thereby eliminating test-time computation. …
Poster
Dake Bu · Wei Huang · Andi Han · Atsushi Nitanda · Taiji Suzuki · Qingfu Zhang · Hau-San Wong

[ East Exhibit Hall A-C ]

Abstract
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities. Existing empirical studies have revealed a strong connection between these LLMs' impressive emergence abilities and their in-context learning (ICL) capacity, allowing them to solve new tasks using only task-specific prompts without further fine-tuning. On the other hand, existing empirical and theoretical studies also show that there is a linear regularity of the multi-concept encoded semantic representation behind transformer-based LLMs. However, existing theoretical work fail to build up an understanding of the connection between this regularity and the innovative power of ICL. Additionally, prior work often focuses on simplified, unrealistic scenarios involving linear transformers or unrealistic loss functions, and they achieve only linear or sub-linear convergence rates. In contrast, this work provides a fine-grained mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities, offering insights into how transformers innovate solutions for certain unseen tasks encoded with multiple cross-concept semantics. Inspired by empirical studies on the linear latent geometry of LLMs, the analysis is based on a concept-based low-noise sparse coding prompt model. Leveraging advanced techniques, this work showcases the exponential 0-1 loss convergence over the highly …
Poster
Henry Li · Marcus Pereira

[ East Exhibit Hall A-C ]

Abstract
Existing approaches to diffusion-based inverse problem solvers frame the signal recovery task as a probabilistic sampling episode, where the solution is drawn from the desired posterior distribution. This framework suffers from several critical drawbacks, including the intractability of the conditional likelihood function, strict dependence on the score network approximation, and poor $\mathbf{x}_0$ prediction quality. We demonstrate that these limitations can be sidestepped by reframing the generative process as a discrete optimal control episode. We derive a diffusion-based optimal controller inspired by the iterative Linear Quadratic Regulator (iLQR) algorithm. This framework is fully general and able to handle any differentiable forward measurement operator, including super-resolution, inpainting, Gaussian deblurring, nonlinear deblurring, and even highly nonlinear neural classifiers. Furthermore, we show that the idealized posterior sampling equation can be recovered as a special case of our algorithm. We then evaluate our method against a selection of neural inverse problem solvers, and establish a new baseline in image reconstruction with inverse problems.
Poster
qinpeng cui · yixuan liu · Xinyi Zhang · Qiqi Bao · Qingmin Liao · liwang Amd · Lu Tian · Zicheng Liu · Zhongdao Wang · Emad Barsoum

[ East Exhibit Hall A-C ]

Abstract
Diffusion-based image super-resolution (SR) models have attracted substantial interest due to their powerful image restoration capabilities. However, prevailing diffusion models often struggle to strike an optimal balance between efficiency and performance. Typically, they either neglect to exploit the potential of existing extensive pretrained models, limiting their generative capacity, or they necessitate a dozens of forward passes starting from random noises, compromising inference efficiency. In this paper, we present DoSSR, a $\textbf{Do}$main $\textbf{S}$hift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models while significantly enhancing efficiency by initiating the diffusion process with low-resolution (LR) images. At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models. This integration not only improves the use of diffusion prior but also boosts inference efficiency. Moreover, we advance our method by transitioning the discrete shift process to a continuous formulation, termed as DoS-SDEs. This advancement leads to the fast and customized solvers that further enhance sampling efficiency. Empirical results demonstrate that our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring $\textbf{\emph{only 5 sampling steps}}$. Compared to previous diffusion prior based methods, our approach achieves a remarkable speedup of 5-7 …
Poster
Baoyu Jing · Shuqi Gu · Tianyu Chen · Zhiyu Yang · Dongsheng Li · Jingrui He · Kan Ren

[ East Exhibit Hall A-C ]

Abstract
Synthesizing time series data is pivotal in modern society, aiding effective decision making and ensuring privacy preservation in various scenarios. Time series are associated with various attributes, including trends, seasonality, and external information such as location. Recent research has predominantly focused on random unconditional synthesis or conditional synthesis. Nonetheless, these paradigms generate time series from scratch and are incapable of manipulating existing time series samples. This paper introduces a novel task, called Time Series Editing (TSE), to synthesize time series by manipulating existing time series. The objective is to modify the given time series according to the specified attributes while preserving other properties unchanged. This task is not trivial due to the inadequacy of data coverage and the intricate relationships between time series and their attributes. To address these issues, we introduce a novel diffusion model, called TEdit. The proposed TEdit is trained using a novel bootstrap learning algorithm that effectively enhances the coverage of the original data. It is also equipped with an innovative multi-resolution modeling and generation paradigm to capture the complex relationships between time series and their attributes. Experimental results demonstrate the efficacy of TEdit for editing specified attributes upon the existing time series data. The project …
Spotlight Poster
Hamid Kamkari · Brendan Ross · Rasa Hosseinzadeh · Jesse Cresswell · Gabriel Loaiza-Ganem

[ East Exhibit Hall A-C ]

Abstract
High-dimensional data commonly lies on low-dimensional submanifolds, and estimating the local intrinsic dimension (LID) of a datum -- i.e. the dimension of the submanifold it belongs to -- is a longstanding problem. LID can be understood as the number of local factors of variation: the more factors of variation a datum has, the more complex it tends to be. Estimating this quantity has proven useful in contexts ranging from generalization in neural networks to detection of out-of-distribution data, adversarial examples, and AI-generated text. The recent successes of deep generative models present an opportunity to leverage them for LID estimation, but current methods based on generative models produce inaccurate estimates, require more than a single pre-trained model, are computationally intensive, or do not exploit the best available deep generative models: diffusion models (DMs). In this work, we show that the Fokker-Planck equation associated with a DM can provide an LID estimator which addresses the aforementioned deficiencies. Our estimator, called FLIPD, is easy to implement and compatible with all popular DMs. Applying FLIPD to synthetic LID estimation benchmarks, we find that DMs implemented as fully-connected networks are highly effective LID estimators that outperform existing baselines. We also apply FLIPD to natural images …
Poster
Fu-Yun Wang · Zhaoyang Huang · Alexander Bergman · Dazhong Shen · Peng Gao · Michael Lingelbach · Keqiang Sun · Weikang Bian · Guanglu Song · Yu Liu · Xiaogang Wang · Hongsheng Li

[ East Exhibit Hall A-C ]

Abstract
Consistency Models (CMs) have made significant progress in accelerating the generation of diffusion models. However, their application to high-resolution, text-conditioned image generation in the latent space remains unsatisfactory. In this paper, we identify three key flaws in the current design of Latent Consistency Models~(LCMs). We investigate the reasons behind these limitations and propose Phased Consistency Models (PCMs), which generalize the design space and address the identified limitations. Our evaluations demonstrate that PCMs outperform LCMs across 1--16 step generation settings. While PCMs are specifically designed for multi-step refinement, they achieve comparable 1-step generation results to previously state-of-the-art specifically designed 1-step methods. Furthermore, we show the methodology of PCMs is versatile and applicable to video generation, enabling us to train the state-of-the-art few-step text-to-video generator. Our code is available at https://github.com/G-U-N/Phased-Consistency-Model.
Poster
JIYING ZHANG · Zijing Liu · Yu Wang · Bin Feng · Yu Li

[ East Exhibit Hall A-C ]

Abstract
Molecular representation learning has shown great success in advancing AI-based drug discovery. A key insight of many recent works is that the 3D geometric structure of molecules provides essential information about their physicochemical properties. Recently, denoising diffusion probabilistic models have achieved impressive performance in molecular 3D conformation generation. However, most existing molecular diffusion models treat each atom as an independent entity, overlooking the dependency among atoms within the substructures. This paper introduces a novel approach that enhances molecular representation learning by incorporating substructural information in the diffusion model framework. We propose a novel diffusion model termed SubgDiff for involving the molecular subgraph information in diffusion. Specifically, SubgDiff adopts three vital techniques: i) subgraph prediction, ii) expectation state, and iii) k-step same subgraph diffusion, to enhance the perception of molecular substructure in the denoising network. Experiments on extensive downstream tasks, especially the molecular force predictions, demonstrate the superior performance of our approach.
Poster
Chengzhengxu Li · Xiaoming Liu · Zhaohan Zhang · Yichen Wang · Chen Liu · Yu Lan · Chao Shen

[ East Exhibit Hall A-C ]

Abstract
Recent advances in prompt optimization have notably enhanced the performance of pre-trained language models (PLMs) on downstream tasks. However, the potential of optimized prompts on domain generalization has been under-explored. To explore the nature of prompt generalization on unknown domains, we conduct pilot experiments and find that (i) Prompts gaining more attention weight from PLMs’ deep layers are more generalizable and (ii) Prompts with more stable attention distributions in PLMs’ deep layers are more generalizable. Thus, we offer a fresh objective towards domain-generalizable prompts optimization named ''Concentration'', which represents the ''lookback'' attention from the current decoding token to the prompt tokens, to increase the attention strength on prompts and reduce the fluctuation of attention distribution.We adapt this new objective to popular soft prompt and hard prompt optimization methods, respectively. Extensive experiments demonstrate that our idea improves comparison prompt optimization methods by 1.42% for soft prompt generalization and 2.16% for hard prompt generalization in accuracy on the multi-source domain generalization setting, while maintaining satisfying in-domain performance. The promising results validate the effectiveness of our proposed prompt optimization objective and provide key insights into domain-generalizable prompts.
Poster
Rohan Baskar Prabhakar · Hengrui Zhang · David Wentzlaff

[ East Exhibit Hall A-C ]

Abstract
Large Transformer networks are increasingly used in settings where low inference latency is necessary to enable new applications and improve the end-user experience.However, autoregressive inference is resource intensive and requires parallelism for efficiency.Parallelism introduces collective communication that is both expensive and represents a phase when hardware resources are underutilized.Towards mitigating this, Kraken is an evolution of the standard Transformer architecture that is designed to complement existing tensor parallelism schemes for efficient inference on multi-device systems.By introducing a fixed degree of intra-layer model parallelism, the architecture allows collective operations to be overlapped with compute, decreasing latency and increasing hardware utilization.When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers while also preserving their language modeling capabilities as evaluated on the SuperGLUE benchmark.Importantly, when tested on multi-GPU systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes, context lengths, and degrees of tensor parallelism.
Poster
Yizhang Zhu · Shiyin Du · Boyan Li · Yuyu Luo · Nan Tang

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g. LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g. GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential. Our source code and data are available at https://statqa.github.io/.
Poster
Kaiqu Liang · Zixu Zhang · Jaime Fisac

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions through proper grounding. However, LLM hallucination may result in robots confidently executing plans that are misaligned with user goals or even unsafe in critical scenarios. Additionally, inherent ambiguity in natural language instructions can introduce uncertainty into the LLM's reasoning and planning. We propose introspective planning, a systematic approach that guides LLMs to refine their own uncertainty in alignment with inherent task ambiguity. Our approach constructs a knowledge base containing introspective reasoning examples as post-hoc rationalizations of human-selected safe and compliant plans, which are retrieved during deployment. Evaluations on three tasks, including a new safe mobile manipulation benchmark, indicate that introspection substantially improves both compliance and safety over state-of-the-art LLM-based planning methods. Additionally, we empirically show that introspective planning, in combination with conformal prediction, achieves tighter confidence bounds, maintaining statistical success guarantees while minimizing unnecessary user clarification requests.
Poster
Liyi Chen · Panrong Tong · Zhongming Jin · Ying Sun · Jieping Ye · Hui Xiong

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Poster
Chenghao Fan · Zhenyi Lu · Wei Wei · Jie Tian · Xiaoye Qu · Dangyang Chen · Yu Cheng

[ East Exhibit Hall A-C ]

Abstract
Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging.Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. \thm{Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training?} In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question.Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance. To surmount these limitations,we propose a dynamic logit fusion approach that works with a series of task-specific small models, each specialized in a different task. This method adaptively allocates weights among these models at each decoding step,learning the weights through Kullback-Leibler divergence constrained optimization problems. We conduct extensive experiments across various benchmarks in both single-task and multi-task settings, achieving leading results.By transferring expertise from the 7B model to the 13B model, our method closes the performance gap by 96.4\% in single-task scenarios and by 86.3\% in multi-task scenarios compared to full fine-tuning of the 13B model. Notably, we …
Poster
Sadegh Mahdavi · Raquel Aoki · Keyi Tang · Yanshuai Cao

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have shown remarkable performance in various natural language tasks, but they often struggle with planning problems that require structured reasoning. To address this limitation, the conversion of planning problems into the Planning Domain Definition Language (PDDL) has been proposed as a potential solution, enabling the use of automated planners. However, generating accurate PDDL files typically demands human inputs or correction, which can be time-consuming and costly. In this paper, we propose a novel approach that leverages LLMs and environment feedback to automatically generate PDDL domain and problem description files without the need for human intervention. Our method introduces an iterative refinement process that generates multiple problem PDDL candidates and progressively refines the domain PDDL based on feedback obtained from interacting with the environment. To guide the refinement process, we develop an Exploration Walk (EW) metric, which provides rich feedback signals for LLMs to update the PDDL file. We evaluate our approach on $10$ PDDL environments. We achieve an average task solve rate of 66\% compared to a 29\% solve rate by GPT-4's intrinsic planning with chain-of-thought prompting. Our work enables the automated modeling of planning environments using LLMs and environment feedback, eliminating the need for human …
Poster
Sean McLeish · Arpit Bansal · Alex Stein · Neel Jain · John Kirchenbauer · Brian Bartoldson · Bhavya Kailkhura · Abhinav Bhatele · Jonas Geiping · Avi Schwarzschild · Tom Goldstein

[ East Exhibit Hall A-C ]

Abstract
The poor performance of transformers on arithmetic tasks seems to stem in large part from their inability to keep track of the exact position of each digit inside of a large span of digits. We mend this problem by adding an embedding to each digit that encodes its position relative to the start of the number. In addition to the boost these embeddings provide on their own, we show that this fix enables architectural modifications such as input injection and recurrent layers to improve performance even further.With positions resolved, we can study the logical extrapolation ability of transformers. Can they solve arithmetic problems that are larger and more complex than those in their training data? We find that training on only 20 digit numbers with a single GPU for one day, we can reach state-of-the-art performance, achieving up to 99% accuracy on 100 digit addition problems. Finally, we show that these gains in numeracy also unlock improvements on other multi-step reasoning tasks including sorting and multiplication.
Oral Poster
Gabriel Poesia · David Broman · Nick Haber · Noah Goodman

[ East Exhibit Hall A-C ]

Abstract
How did humanity coax mathematics from the aether? We explore the Platonic view that mathematics can be discovered from its axioms---a game of conjecture and proof. We describe an agent that jointly learns to pose challenging problems for itself (conjecturing) and solve them (theorem proving). Given a mathematical domain axiomatized in dependent type theory, we first combine methods for constrained decoding and type-directed synthesis to sample valid conjectures from a language model. Our method guarantees well-formed conjectures by construction, even as we start with a randomly initialized model. We use the same model to represent a policy and value function for guiding proof search. Our agent targets generating hard but provable conjectures --- a moving target, since its own theorem proving ability also improves as it trains. We propose novel methods for hindsight relabeling on proof search trees to significantly improve the agent's sample efficiency in both tasks. Experiments on 3 axiomatic domains (propositional logic, arithmetic and group theory) demonstrate that our agent can bootstrap from only the axioms, self-improving in generating true and challenging conjectures and in finding proofs.
Poster
Zhonghao Wang · Danyu Sun · Sheng Zhou · Haobo Wang · Jiapei Fan · Longtao Huang · Jiajun Bu

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs) exhibit strong potential in node classification task through a message-passing mechanism. However, their performance often hinges on high-quality node labels, which are challenging to obtain in real-world scenarios due to unreliable sources or adversarial attacks. Consequently, label noise is common in real-world graph data, negatively impacting GNNs by propagating incorrect information during training. To address this issue, the study of Graph Neural Networks under Label Noise (GLN) has recently gained traction. However, due to variations in dataset selection, data splitting, and preprocessing techniques, the community currently lacks a comprehensive benchmark, which impedes deeper understanding and further development of GLN. To fill this gap, we introduce NoisyGL in this paper, the first comprehensive benchmark for graph neural networks under label noise. NoisyGL enables fair comparisons and detailed analyses of GLN methods on noisy labeled graph data across various datasets, with unified experimental settings and interface. Our benchmark has uncovered several important insights that were missed in previous research, and we believe these findings will be highly beneficial for future studies. We hope our open-source benchmark library will foster further advancements in this field. The code of the benchmark can be found in https://github.com/eaglelab-zju/NoisyGL.
Poster
Zhibiao Wang · Xiao Wang · Haoyue Deng · Nian Liu · Shirui Pan · Chunming Hu

[ East Exhibit Hall A-C ]

Abstract
Graph self-supervised learning, as a powerful pre-training paradigm for Graph Neural Networks (GNNs) without labels, has received considerable attention. We have witnessed the success of graph self-supervised learning on pre-training the parameters of GNNs, leading many not to doubt that whether the learned GNNs parameters are all useful. In this paper, by presenting the experimental evidence and analysis, we surprisingly discover that the graph self-supervised learning models are highly redundant at both of neuron and layer levels, e.g., even randomly removing 51.6\% of parameters, the performance of graph self-supervised learning models still retains at least 96.2\%. This discovery implies that the parameters of graph self-supervised models can be largely reduced, making simultaneously fine-tuning both graph self-supervised learning models and prediction layers more feasible. Therefore, we further design a novel graph pre-training and fine-tuning paradigm called SLImming DE-correlation Fine-tuning (SLIDE). The effectiveness of SLIDE is verified through extensive experiments on various benchmarks, and the performance can be even improved with fewer parameters of models in most cases. For example, in comparison with full fine-tuning GraphMAE on Amazon-Computers dataset, even randomly reducing 40\% of parameters, we can still achieve the improvement of 0.24\% and 0.27\% for Micro-F1 and Macro-F1 scores respectively.
Poster
Isaac Osafo Nkansah · Neil Gallagher · Ruchi Sandilya · Conor Liston · Logan Grosenick

[ East Exhibit Hall A-C ]

Abstract
Convolutional neural networks (CNNs) have led to a revolution in analyzing array data. However, many important sources of data, such as biological and social networks, are naturally structured as graphs rather than arrays, making the design of graph neural network (GNN) architectures that retain the strengths of CNNs an active and exciting area of research. Here, we introduce Quantized Graph Convolution Networks (QGCNs), the first framework for GNNs that formally and directly extends CNNs to graphs. QGCNs do this by decomposing the convolution operation into non-overlapping sub-kernels, allowing them to fit graph data while reducing to a 2D CNN layer on array data. We generalize this approach to graphs of arbitrary size and dimension by approaching sub-kernel assignment as a learnable multinomial assignment problem. Integrating this approach into a residual network architecture, we demonstrate performance that matches or exceeds other state-of-the-art GNNs on benchmark graph datasets and for predicting properties of nonlinear dynamics on a new finite element graph dataset. In summary, QGCNs are a novel GNN framework that generalizes CNNs and their strengths to graph data, allowing for more accurate and expressive models.
Poster
Jingbo Zhou · Yixuan Du · Ruqiong Zhang · Jun Xia · Zhizhi Yu · Zelin Zang · Di Jin · Carl Yang · Rui Zhang · Stan Z. Li

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs), a type of neural network that can learn from graph-structured data through neighborhood information aggregation, have shown superior performance in various downstream tasks. However, as the number of layers increases, node representations becomes indistinguishable, which is known as over-smoothing. To address this issue, many residual methods have emerged. In this paper, we focus on the over-smoothing issue and related residual methods. Firstly, we revisit over-smoothing from the perspective of overlapping neighborhood subgraphs, and based on this, we explain how residual methods can alleviate over-smoothing by integrating multiple orders neighborhood subgraphs to avoid the indistinguishability of the single high-order neighborhood subgraphs. Additionally, we reveal the drawbacks of previous residual methods, such as the lack of node adaptability and severe loss of high-order neighborhood subgraph information, and propose a \textbf{Posterior-Sampling-based, Node-Adaptive Residual module (PSNR)}. We theoretically demonstrate that PSNR can alleviate the drawbacks of previous residual methods. Furthermore, extensive experiments verify the superiority of the PSNR module in fully observed node classification and missing feature scenarios. Our codeis available at \href{https://github.com/jingbo02/PSNR-GNN}{https://github.com/jingbo02/PSNR-GNN}.
Poster
Li Jiao · Qiuxia LAI · YU LI · Qiang Xu

[ East Exhibit Hall A-C ]

Abstract
Continual learning requires to overcome catastrophic forgetting when training a single model on a sequence of tasks. Recent top-performing approaches are prompt-based methods that utilize a set of learnable parameters (i.e., prompts) to encode task knowledge, from which appropriate ones are selected to guide the fixed pre-trained model in generating features tailored to a certain task. However, existing methods rely on predicting prompt identities for prompt selection, where the identity prediction process cannot be optimized with task loss. This limitation leads to sub-optimal prompt selection and inadequate adaptation of pre-trained features for a specific task. Previous efforts have tried to address this by directly generating prompts from input queries instead of selecting from a set of candidates. However, these prompts are continuous, which lack sufficient abstraction for task knowledge representation, making them less effective for continual learning. To address these challenges, we propose VQ-Prompt, a prompt-based continual learning method that incorporates Vector Quantization (VQ) into end-to-end training of a set of discrete prompts. In this way, VQ-Prompt can optimize the prompt selection process with task loss and meanwhile achieve effective abstraction of task knowledge for continual learning. Extensive experiments show that VQ-Prompt outperforms state-of-the-art continual learning methods across a variety …
Poster
Maya Bechler-Speicher · Amir Globerson · Ran Gilad-Bachrach

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs) have emerged as the predominant approach for learning over graph-structured data. However, most GNNs operate as black-box models and require post-hoc explanations, which may not suffice in high-stakes scenarios where transparency is crucial.In this paper, we present a GNN that is interpretable by design. Our model, Graph Neural Additive Network (GNAN), is a novel extension of the interpretable class of Generalized Additive Models, and can be visualized and fully understood by humans. GNAN is designed to be fully interpretable, offering both global and local explanations at the feature and graph levels through direct visualization of the model. These visualizations describe exactly how the model uses the relationships between the target variable, the features, and the graph. We demonstrate the intelligibility of GNANs in a series of examples on different tasks and datasets. In addition, we show that the accuracy of GNAN is on par with black-box GNNs, making it suitable for critical applications where transparency is essential, alongside high accuracy.
Oral Poster
Yulia Rubanova · Tatiana Lopez-Guevara · Kelsey Allen · Will Whitney · Kimberly Stachenfeld · Tobias Pfaff

[ East Exhibit Hall A-C ]

Abstract
Simulating large scenes with many rigid objects is crucial for a variety of applications, such as robotics, engineering, film and video games. Rigid interactions are notoriously hard to model: small changes to the initial state or the simulation parameters can lead to large changes in the final state. Recently, learned simulators based on graph networks (GNNs) were developed as an alternative to hand-designed simulators like MuJoCo and Bullet. They are able to accurately capture dynamics of real objects directly from real-world observations. However, current state-of-the-art learned simulators operate on meshes and scale poorly to scenes with many objects or detailed shapes. Here we present SDF-Sim, the first learned rigid-body simulator designed for scale. We use learned signed-distance functions (SDFs) to represent the object shapes and to speed up distance computation. We design the simulator to leverage SDFs and avoid the fundamental bottleneck of the previous simulators associated with collision detection.For the first time in literature, we demonstrate that we can scale the GNN-based simulators to scenes with hundreds of objects and up to 1.1 million nodes, where mesh-based approaches run out of memory. Finally, we show that SDF-Sim can be applied to real world scenes by extracting SDFs from multi-view …
Poster
Robert Wang · Aseem Baranwal · Kimon Fountoulakis

[ East Exhibit Hall A-C ]

Abstract
Machine learning for node classification on graphs is a prominent area driven by applications such as recommendation systems. State-of-the-art models often use multiple graph convolutions on the data, as empirical evidence suggests they can enhance performance. However, it has been shown empirically and theoretically, that too many graph convolutions can degrade performance significantly, a phenomenon known as oversmoothing. In this paper, we provide a rigorous theoretical analysis, based on the two-class contextual stochastic block model (CSBM), of the performance of vanilla graph convolution from which we remove the principal eigenvector to avoid oversmoothing. We perform a spectral analysis for $k$ rounds of corrected graph convolutions, and we provide results for partial and exact classification. For partial classification, we show that each round of convolution can reduce the misclassification error exponentially up to a saturation level, after which performance does not worsen. We also extend this analysis to the multi-class setting with features distributed according to a Gaussian mixture model. For exact classification, we show that the separability threshold can be improved exponentially up to $O({\log{n}}/{\log\log{n}})$ corrected convolutions.
Poster
YUJIE MO · Zhihe Lu · Runpeng Yu · Xiaofeng Zhu · Xinchao Wang

[ East Exhibit Hall A-C ]

Abstract
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios. However, while existing SHGL methods share a similar essential with clustering approaches, they encounter two significant limitations: (i) noise in graph structures is often introduced during the message-passing process to weaken node representations, and (ii) cluster-level information may be inadequately captured and leveraged, diminishing the performance in downstream tasks. In this paper, we address these limitations by theoretically revisiting SHGL from the spectral clustering perspective and introducing a novel framework enhanced by rank and dual consistency constraints. Specifically, our framework incorporates a rank-constrained spectral clustering method that refines the affinity matrix to exclude noise effectively. Additionally, we integrate node-level and cluster-level consistency constraints that concurrently capture invariant and clustering information to facilitate learning in downstream tasks. We theoretically demonstrate that the learned representations are divided into distinct partitions based on the number of classes and exhibit enhanced generalization ability across tasks. Experimental results affirm the superiority of our method, showcasing remarkable improvements in several downstream tasks compared to existing methods.
Poster
Sam Adam-Day · Michael Benedikt · Ismail Ceylan · Ben Finkelshtein

[ East Exhibit Hall A-C ]

Abstract
We present a new angle on the expressive power of graph neural networks (GNNs) by studying how the predictions of real-valued GNN classifiers, such as those classifying graphs probabilistically, evolve as we apply them on larger graphs drawn from some random graph model. We show that the output converges to a constant function, which upper-bounds what these classifiers can uniformly express. This strong convergence phenomenon applies to a very wide class of GNNs, including state of the art models, with aggregates including mean and the attention-based mechanism of graph transformers. Our results apply to a broad class of random graph models, including sparse and dense variants of the Erdős-Rényi model, the stochastic block model, and the Barabási-Albert model. We empirically validate these findings, observing that the convergence phenomenon appears not only on random graphs but also on some real-world graphs.
Poster
Guy Bar-Shalom · Yam Eitan · Fabrizio Frasca · Haggai Maron

[ East Exhibit Hall A-C ]

Abstract
Subgraph GNNs enhance message-passing GNNs expressivity by representing graphs as sets of subgraphs, demonstrating impressive performance across various tasks. However, their scalability is hindered by the need to process large numbers of subgraphs. While previous approaches attempted to generate smaller subsets of subgraphs through random or learnable sampling, these methods often yielded suboptimal selections or were limited to small subset sizes, ultimately compromising their effectiveness. This paper introduces a new Subgraph GNN framework to address these issues. Our approach diverges from most previous methods by associating subgraphs with node clusters rather than with individual nodes. We show that the resulting collection of subgraphs can be viewed as the product of coarsened and original graphs, unveiling a new connectivity structure on which we perform generalized message passing.Crucially, controlling the coarsening function enables meaningful selection of any number of subgraphs. In addition, we reveal novel permutation symmetries in the resulting node feature tensor, characterize associated linear equivariant layers, and integrate them into our Subgraph GNN. We also introduce novel node marking strategies and provide a theoretical analysis of their expressive power and other key aspects of our approach. Extensive experiments on multiple graph learning benchmarks demonstrate that our method is significantly more …
Oral Poster
Raffaele Paolino · Sohir Maskey · Pascal Welke · Gitta Kutyniok

[ East Exhibit Hall A-C ]

Abstract
We introduce $r$-loopy Weisfeiler-Leman ($r$-$\ell$WL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, $r$-$\ell$MPNN, that can count cycles up to length $r{+}2$. Most notably, we show that $r$-$\ell$WL can count homomorphisms of cactus graphs. This extends 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to $k$-WL for any fixed $k$. We empirically validate the expressive and counting power of $r$-$\ell$MPNN on several synthetic datasets and demonstrate the scalability and strong performance on various real-world datasets, particularly on sparse graphs.
Oral Poster
Ioannis Kalogeropoulos · Giorgos Bouritsas · Yannis Panagakis

[ East Exhibit Hall A-C ]

Abstract
This paper pertains to an emerging machine learning paradigm: learning higher- order functions, i.e. functions whose inputs are functions themselves, particularly when these inputs are Neural Networks (NNs). With the growing interest in architectures that process NNs, a recurring design principle has permeated the field: adhering to the permutation symmetries arising from the connectionist structure ofNNs. However, are these the sole symmetries present in NN parameterizations? Zooming into most practical activation functions (e.g. sine, ReLU, tanh) answers this question negatively and gives rise to intriguing new symmetries, which we collectively refer to as scaling symmetries, that is, non-zero scalar multiplications and divisions of weights and biases. In this work, we propose Scale Equivariant Graph MetaNetworks - ScaleGMNs, a framework that adapts the Graph Metanetwork (message-passing) paradigm by incorporating scaling symmetries and thus rendering neuron and edge representations equivariant to valid scalings. We introduce novel building blocks, of independent technical interest, that allow for equivariance or invariance with respect to individual scalar multipliers or their product and use them in all components of ScaleGMN. Furthermore, we prove that, under certain expressivity conditions, ScaleGMN can simulate the forward and backward pass of any input feedforward neural network. Experimental results demonstrate that our …
Poster
Paolo Pellizzoni · Till Hendrik Schulz · Dexiong Chen · Karsten Borgwardt

[ East Exhibit Hall A-C ]

Abstract
Graph neural networks (GNNs) employing message passing for graph classification are inherently limited by the expressive power of the Weisfeiler-Leman (WL) test for graph isomorphism. Node individualization schemes, which assign unique identifiers to nodes (e.g., by adding random noise to features), are a common approach for achieving universal expressiveness. However, the ability of GNNs endowed with individualization schemes to generalize beyond the training data is still an open question. To address this question, this paper presents a theoretical analysis of the sample complexity of such GNNs from a statistical learning perspective, employing Vapnik–Chervonenkis (VC) dimension and covering number bounds. We demonstrate that node individualization schemes that are permutation-equivariant result in lower sample complexity, and design novel individualization schemes that exploit these results. As an application of this analysis, we also develop a novel architecture that can perform substructure identification (i.e., subgraph isomorphism) while having a lower VC dimension compared to competing methods. Finally, our theoretical findings are validated experimentally on both synthetic and real-world datasets.
Poster
Dong Li · Aijia Zhang · Junqi Gao · Biqing Qi

[ East Exhibit Hall A-C ]

Abstract
Graph incremental learning has gained widespread attention for its ability to mitigate catastrophic forgetting for graph neural networks (GNN). Conventional methods typically require numerous labels for node classification. However, obtaining abundant labels is often challenging in practice, which makes graph few-shot incremental learning necessary. Current approaches rely on large number of samples from meta-learning to construct memories, and heavy fine-tuning of the GNN parameters that lead to the loss of past knowledge. These result in significant memory consumption and loss of past knowledge information, respectively. To tackle these issues, We introduce Mecoin to efficient construct and Preserve memory. For efficient storage and update of class prototypes, Mecoin use Structured Memory Unit (SMU) to cache prototypes of the seen classes and update new class prototypes through interaction between nodes and the cached prototypes by Memory Construction module(MeCo). Besides, to avoid extensive parameter fine-tuning and forgetting, we introduce a Memory Representation Adaptive Module called MRaM to separate the learning of prototypes and class representations and use Graph Knowledge Interchange Module (GKIM) to injects past knowledge information into GNN. We analyze the effectiveness of our paradigm from the perspectives of generalization error, and discuss the impact of different distillation methods on model performance …
Poster
Arseny Skryagin · Felix Divo · Mohammad Amin Ali · Devendra S Dhami · Kristian Kersting

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs) are non-Euclidean deep learning models for graph-structured data. Despite their successful and diverse applications, oversmoothing prohibits deep architectures due to node features converging to a single fixed point. This severely limits their potential to solve complex tasks. To counteract this tendency, we propose a plug-and-play module consisting of three steps: Cluster→Normalize→Activate (CNA). By applying CNA modules, GNNs search and form super nodes in each layer, which are normalized and activated individually. We demonstrate in node classification and property prediction tasks that CNA significantly improves the accuracy over the state-of-the-art. Particularly, CNA reaches 94.18% and 95.75% accuracy on Cora and CiteSeer, respectively. It further benefits GNNs in regression tasks as well, reducing the mean squared error compared to all baselines. At the same time, GNNs with CNA require substantially fewer learnable parameters than competing architectures.
Poster
Maciej Sypetkowski · Frederik Wenkel · Farimah Poursafaei · Nia Dickson · Karush Suri · Philip Fradkin · Dominique Beaini

[ East Exhibit Hall A-C ]

Abstract
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs for supervised pretraining. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules and associated labels. A major factor is the diversity of the pretraining data that comprises thousands of labels per molecule derived from bio-assays, quantum simulations, transcriptomics and phenomic imaging. We further demonstrate strong finetuning scaling behavior on 38 highly competitive downstream tasks, outclassing previous large models. This gives rise to MolGPS, a new graph foundation model that allows to navigate the chemical space, outperforming the previous state-of-the-arts on 26 out the 38 downstream tasks. We hope that our …
Poster
Shangshang Yang · Mingyang Chen · Ziwen Wang · Xiaoshan Yu · Panpan Zhang · Haiping Ma · Xingyi Zhang

[ East Exhibit Hall A-C ]

Abstract
Existing graph learning-based cognitive diagnosis (CD) methods have made relatively good results, but their student, exercise, and concept representations are learned and exchanged in an implicit unified graph, which makes the interaction-agnostic exercise and concept representations be learned poorly, failing to provide high robustness against noise in students' interactions. Besides, lower-order exercise latent representations obtained in shallow layers are not well explored when learning the student representation. To tackle the issues, this paper suggests a meta multigraph-assisted disentangled graph learning framework for CD (DisenGCD), which learns three types of representations on three disentangled graphs: student-exercise-concept interaction, exercise-concept relation, and concept dependency graphs, respectively. Specifically, the latter two graphs are first disentangled from the interaction graph. Then, the student representation is learned from the interaction graph by a devised meta multigraph learning module; multiple learnable propagation paths in this module enable current student latent representation to access lower-order exercise latent representations,which can lead to more effective nad robust student representations learned; the exercise and concept representations are learned on the relation and dependency graphs by graph attention modules. Finally, a novel diagnostic function is devised to handle three disentangled representations for prediction. Experiments show better performance and robustness of DisenGCD than …
Poster
Sofiane ENNADIR · Johannes Lutzeyer · Michalis Vazirgiannis · El Houcine Bergou

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs) have demonstrated remarkable performance across a spectrum of graph-related tasks, however concerns persist regarding their vulnerability to adversarial perturbations. While prevailing defense strategies focus primarily on pre-processing techniques and adaptive message-passing schemes, this study delves into an under-explored dimension: the impact of weight initialization and associated hyper-parameters, such as training epochs, on a model’s robustness.We introduce a theoretical framework bridging the connection between initialization strategies and a network's resilience to adversarial perturbations. Our analysis reveals a direct relationship between initial weights, number of training epochs and the model’s vulnerability, offering new insights into adversarial robustness beyond conventional defense mechanisms. While our primary focus is on GNNs, we extend our theoretical framework, providing a general upper-bound applicable to Deep Neural Networks.Extensive experiments, spanning diverse models and real-world datasets subjected to various adversarial attacks, validate our findings. We illustrate that selecting appropriate initialization not only ensures performance on clean datasets but also enhances model robustness against adversarial perturbations, with observed gaps of up to 50\% compared to alternative initialization approaches.
Poster
Ruijiang Gao · Mingzhang Yin · Maytal Saar-Tsechansky

[ East Exhibit Hall A-C ]

Abstract
Machine learning systems are widely used in many high-stakes contexts in which experimental designs for assigning treatments are infeasible. When evaluating decisions is costly, such as investigating fraud cases, or evaluating biopsy decisions, a sample-efficient strategy is needed. However, while existing active learning methods assume humans will always label the instances selected by the machine learning model, in many critical applications, humans may decline to label instances selected by the machine learning model due to reasons such as regulation constraint, domain knowledge, or algorithmic aversion, thus not sample efficient. In this paper, we study the Active Learning with Instance Rejection (ALIR) problem, which considers the human discretion behavior for high-stakes decision making problems. We propose new active learning algorithms under deep bayesian active learning for selective labeling (SEL-BALD) to address the ALIR problem. Our algorithms consider how to acquire information for both the machine learning model and the human discretion model. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of our proposed algorithms.
Poster
Rohan Gupta · Iván Arcuschin Moreno · Thomas Kwa · Adrià Garriga-Alonso

[ East Exhibit Hall A-C ]

Abstract
Mechanistic interpretability methods aim to identify the algorithm a neural network implements, but it is difficult to validate such methods when the true algorithm is unknown. This work presents InterpBench, a collection of semi-synthetic yet realistic transformers with known circuits for evaluating these techniques. We train simple neural networks using a stricter version of Interchange Intervention Training (IIT) which we call Strict IIT (SIIT). Like the original, SIIT trains neural networks by aligning their internal computation with a desired high-level causal model, but it also prevents non-circuit nodes from affecting the model's output. We evaluate SIIT on sparse transformers produced by the Tracr tool and find that SIIT models maintain Tracr's original circuit while being more realistic. SIIT can also train transformers with larger circuits, like Indirect Object Identification (IOI). Finally, we use our benchmark to evaluate existing circuit discovery techniques.
Poster
Lijie Hu · Songning Lai · Wenshuo Chen · Hongru Xiao · Hongbin Lin · Lu Yu · Jingfeng ZHANG · Di Wang

[ East Exhibit Hall A-C ]

Abstract
The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, and issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.
Spotlight Poster
Adithya Bhaskar · Alexander Wettig · Dan Friedman · Danqi Chen

[ East Exhibit Hall A-C ]

Abstract
The path to interpreting a language model often proceeds via analysis of circuits---sparse computational subgraphs of the model that capture specific aspects of its behavior. Recent work has automated the task of discovering circuits. Yet, these methods have practical limitations, as they either rely on inefficient search algorithms or inaccurate approximations. In this paper, we frame circuit discovery as an optimization problem and propose _Edge Pruning_ as an effective and scalable solution. Edge Pruning leverages gradient-based pruning techniques, but instead of removing neurons or components, prunes the _edges_ between components. Our method finds circuits in GPT-2 that use less than half the number of edges than circuits found by previous methods while being equally faithful to the full model predictions on standard circuit-finding tasks. Edge Pruning is efficient on tasks involving up to 100,000 examples, outperforming previous methods in speed and producing substantially better circuits. It also perfectly recovers the ground-truth circuits in two models compiled with Tracr. Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the size of GPT-2.We use this setting for a case study, where we compare the mechanisms behind instruction prompting and in-context learning.We find two circuits with more than …
Poster
Harvineet Singh · Fan Xia · Adarsh Subbaswamy · Alexej Gossmann · Jean Feng

[ East Exhibit Hall A-C ]

Abstract
Machine learning (ML) algorithms can often differ in performance across domains. Understanding why their performance differs is crucial for determining what types of interventions (e.g., algorithmic or operational) are most effective at closing the performance gaps. Aggregate decompositions express the total performance gap as the gap due to a shift in the feature distribution $p(X)$ plus the gap due to a shift in the outcome's conditional distribution $p(Y|X)$. While this coarse explanation is helpful for guiding root cause analyses, it provides limited details and can only suggest coarse fixes involving all variables in an ML system. Detailed decompositions quantify the importance of each variable to each term in the aggregate decomposition, which can provide a deeper understanding and suggest more targeted interventions. Although parametric methods exist for conducting a full hierarchical decomposition of an algorithm's performance gap at the aggregate and detailed levels, current nonparametric methods only cover parts of the hierarchy; many also require knowledge of the entire causal graph. We introduce a nonparametric hierarchical framework for explaining why the performance of an ML algorithm differs across domains, without requiring causal knowledge. Furthermore, we derive debiased, computationally-efficient estimators and statistical inference procedures to construct confidence intervals for the explanations.
Poster
Fawaz Sammani · Nikos Deligiannis

[ East Exhibit Hall A-C ]

Abstract
Contrastive Language-Image Pretraining (CLIP) performs zero-shot image classification by mapping images and textual class representation into a shared embedding space, then retrieving the class closest to the image. This work provides a new approach for interpreting CLIP models for image classification from the lens of mutual knowledge between the two modalities. Specifically, we ask: what concepts do both vision and language CLIP encoders learn in common that influence the joint embedding space, causing points to be closer or further apart? We answer this question via an approach of textual concept-based explanations, showing their effectiveness, and perform an analysis encompassing a pool of 13 CLIP models varying in architecture, size and pretraining datasets. We explore those different aspects in relation to mutual knowledge, and analyze zero-shot predictions. Our approach demonstrates an effective and human-friendly way of understanding zero-shot classification decisions with CLIP.
Poster
Francesco Paissan · Luca Della Libera · Mirco Ravanelli · Cem Subakan

[ East Exhibit Hall A-C ]

Abstract
Interpreting the decisions of deep learning models, including audio classifiers, is crucial for ensuring the transparency and trustworthiness of this technology. In this paper, we introduce LMAC-ZS (Listenable Maps for Zero-Shot Audio Classifiers), which, to the best of our knowledge, is the first decoder-based post-hoc explanation method for explaining the decisions of zero-shot audio classifiers. The proposed method utilizes a novel loss function that aims to closely reproduce the original similarity patterns between text-and-audio pairs in the generated explanations. We provide an extensive evaluation using the Contrastive Language-Audio Pretraining (CLAP) model to showcase that our interpreter remains faithful to the decisions in a zero-shot classification context. Moreover, we qualitatively show that our method produces meaningful explanations that correlate well with different text prompts.
Poster
Qiheng Sun · Haocheng Xia · Jinfei Liu

[ East Exhibit Hall A-C ]

Abstract
The state-of-the-art feature attribution methods often neglect the influence of unobservable confounders, posing a risk of misinterpretation, especially when it is crucial for the interpretation to remain faithful to the data. To counteract this, we propose a new approach, data-faithful feature attribution, which trains a confounder-free model using instrumental variables. The cluttered effects of unobservable confounders in a model trained as such are decoupled from input features, thereby aligning the output of the model with the contribution of input features to the target feature in the data generation. Furthermore, feature attribution results produced by our method are more robust when focusing on attributions from the perspective of data generation. Our experiments on both synthetic and real-world datasets demonstrate the effectiveness of our approaches.
Poster
Justin Kang · Yigit Efe Erginbas · Landon Butler · Ramtin Pedarsani · Kannan Ramchandran

[ East Exhibit Hall A-C ]

Abstract
One of the key challenges in machine learning is to find interpretable representations of learned functions. The Möbius transform is essential for this purpose, as its coefficients correspond to unique *importance scores* for *sets of input variables*. This transform is closely related to widely used game-theoretic notions of importance like the *Shapley* and *Bhanzaf value*, but it also captures crucial higher-order interactions. Although computing the Möbius Transform of a function with $n$ inputs involves $2^n$ coefficients, it becomes tractable when the function is *sparse* and of *low-degree* as we show is the case for many real-world functions. Under these conditions, the complexity of the transform computation is significantly reduced. When there are $K$ non-zero coefficients, our algorithm recovers the Möbius transform in $O(Kn)$ samples and $O(Kn^2)$ time asymptotically under certain assumptions, the first non-adaptive algorithm to do so. We also uncover a surprising connection between group testing and the Möbius transform. For functions where all interactions involve at most $t$ inputs, we use group testing results to compute the Möbius transform with $O(Kt\log n)$ sample complexity and $O(K\mathrm{poly}(n))$ time. A robust version of this algorithm withstands noise and maintains this complexity. This marks the first $n$ sub-linear query complexity, noise-tolerant …
Poster
Haiyang Huang · Yingfan Wang · Cynthia Rudin

[ East Exhibit Hall A-C ]

Abstract
Parametric dimensionality reduction methods have gained prominence for their ability to generalize to unseen datasets, an advantage that traditional non-parametric approaches typically lack. Despite their growing popularity, there remains a prevalent misconception among practitioners about the equivalence in performance between parametric and non-parametric methods. Here, we show that these methods are not equivalent -- parametric methods retain global structure but lose significant local details. To explain this, we provide evidence that parameterized approaches lack the ability to repulse negative samples, and the choice of loss function also has an impact.Addressing these issues, we developed a new parametric method, ParamRepulsor, that incorporates Hard Negative Mining and a loss function that applies a strong repulsive force. This new method achieves state-of-the-art performance on local structure preservation for parametric methods without sacrificing the fidelity of global structural representation. Our code is available at https://github.com/hyhuang00/ParamRepulsor.
Poster
Zachery Boner · Harry Chen · Lesia Semenova · Ronald Parr · Cynthia Rudin

[ East Exhibit Hall A-C ]

Abstract
Noise in data significantly influences decision-making in the data science process. In fact, it has been shown that noise in data generation processes leads practitioners to find simpler models. However, an open question still remains: what is the degree of model simplification we can expect under different noise levels? In this work, we address this question by investigating the relationship between the amount of noise and model simplicity across various hypothesis spaces, focusing on decision trees and linear models. We formally show that noise acts as an implicit regularizer for several different noise models. Furthermore, we prove that Rashomon sets (sets of near-optimal models) constructed with noisy data tend to contain simpler models than corresponding Rashomon sets with non-noisy data. Additionally, we show that noise expands the set of ``good'' features and consequently enlarges the set of models that use at least one good feature. Our work offers theoretical guarantees and practical insights for practitioners and policymakers on whether simple-yet-accurate machine learning models are likely to exist, based on knowledge of noise levels in the data generation process.
Poster
Adam Karvonen · Benjamin Wright · Can Rager · Rico Angell · Jannik Brinkmann · Logan Smith · Claudio Mayrink Verdun · David Bau · Samuel Marks

[ East Exhibit Hall A-C ]

Abstract
What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features which we expect good SAEs to identify. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on Chess and Othello transcripts. These settings carry natural collections of interpretable features—for example, “there is a knight on F3”—which we leverage into metrics for SAE quality. To guide progress in interpretable dictionary learning, we introduce a new SAE training technique, $p$-annealing, which demonstrates improved performance on our metric.
Poster
Isabelle Hurley · Rohan Paleja · Ashley Suh · Jaime D Pena · Ho Chit Siu

[ East Exhibit Hall A-C ]

Abstract
As learned control policies become increasingly common in autonomous systems, there is increasing need to ensure that they are interpretable and can be checked by human stakeholders. Formal specifications have been proposed as ways to produce human-interpretable policies for autonomous systems that can still be learned from examples. Previous work showed that despite claims of interpretability, humans are unable to use formal specifications presented in a variety of ways to validate even simple robot behaviors. This work uses active learning, a standard pedagogical method, to attempt to improve humans' ability to validate policies in signal temporal logic (STL). Results show that overall validation accuracy is not high, at 65\% $\pm$ 15% (mean $\pm$ standard deviation), and that the three conditions of no active learning, active learning, and active learning with feedback do not significantly differ from each other. Our results suggest that the utility of formal specifications for human interpretability is still unsupported but point to other avenues of development which may enable improvements in system validation.
Poster
Deqing Fu · Tian-qi Chen · Robin Jia · Vatsal Sharan

[ East Exhibit Hall A-C ]

Abstract
Transformers excel at *in-context learning* (ICL)---learning from demonstrations without parameter updates---but how they do so remains a mystery. Recent work suggests that Transformers may internally run Gradient Descent (GD), a first-order optimization method, to perform ICL. In this paper, we instead demonstrate that Transformers learn to approximate second-order optimization methods for ICL. For in-context linear regression, Transformers share a similar convergence rate as *Iterative Newton's Method*, both *exponentially* faster than GD. Empirically, predictions from successive Transformer layers closely match different iterations of Newton’s Method linearly, with each middle layer roughly computing 3 iterations; thus, Transformers and Newton’s method converge at roughly the same rate. In contrast, Gradient Descent converges exponentially more slowly. We also show that Transformers can learn in-context on ill-conditioned data, a setting where Gradient Descent struggles but Iterative Newton succeeds. Finally, to corroborate our empirical findings, we prove that Transformers can implement $k$ iterations of Newton's method with $k + \mathcal O(1)$ layers.
Poster
Sonia Laguna · Ričards Marcinkevičs · Moritz Vandenhirtz · Julia Vogt

[ East Exhibit Hall A-C ]

Abstract
Recently, interpretable machine learning has re-explored concept bottleneck models (CBM). An advantage of this model class is the user's ability to intervene on predicted concept values, affecting the downstream output. In this work, we introduce a method to perform such concept-based interventions on *pretrained* neural networks, which are not interpretable by design, only given a small validation set with concept labels. Furthermore, we formalise the notion of *intervenability* as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes. Empirically, we explore the intervenability of black-box classifiers on synthetic tabular and natural image benchmarks. We focus on backbone architectures of varying complexity, from simple, fully connected neural nets to Stable Diffusion. We demonstrate that the proposed fine-tuning improves intervention effectiveness and often yields better-calibrated predictions. To showcase the practical utility of our techniques, we apply them to deep chest X-ray classifiers and show that fine-tuned black boxes are more intervenable than CBMs. Lastly, we establish that our methods are still effective under vision-language-model-based concept annotations, alleviating the need for a human-annotated validation set.
Poster
Tang Li · Mengmeng Ma · Xi Peng

[ East Exhibit Hall A-C ]

Abstract
Large pretrained foundation models demonstrate exceptional performance and, in some high-stakes applications, even surpass human experts. However, most of these models are currently evaluated primarily on prediction accuracy, overlooking the validity of the rationales behind their accurate predictions. For the safe deployment of foundation models, there is a pressing need to ensure *double-correct predictions*, *i.e.*, correct prediction backed by correct rationales. To achieve this, we propose a two-phase scheme: First, we curate a new dataset that offers structured rationales for visual recognition tasks. Second, we propose a rationale-informed optimization method to guide the model in disentangling and localizing visual evidence for each rationale, without requiring manual annotations. Extensive experiments and ablation studies demonstrate that our model outperforms state-of-the-art models by up to 10.1\% in prediction accuracy across a wide range of tasks. Furthermore, our method significantly improves the model's rationale correctness, improving localization by 7.5\% and disentanglement by 36.5\%. Our dataset, source code, and pretrained weights: https://github.com/deep-real/DCP
Poster
Roland S. Zimmermann · David Klindt · Wieland Brendel

[ East Exhibit Hall A-C ]

Abstract
In today’s era, whatever we can measure at scale, we can optimize. So far, measuring the interpretability of units in deep neural networks (DNNs) for computer vision still requires direct human evaluation and is not scalable. As a result, the inner workings of DNNs remain a mystery despite the remarkable progress we have seen in their applications. In this work, we introduce the first scalable method to measure the per-unit interpretability in vision DNNs. This method does not require any human evaluations, yet its prediction correlates well with existing human interpretability measurements. We validate its predictive power through an interventional human psychophysics study. We demonstrate the usefulness of this measure by performing previously infeasible experiments: (1) A large-scale interpretability analysis across more than 70 million units from 835 computer vision models, and (2) an extensive analysis of how units transform during training. We find an anticorrelation between a model's downstream classification performance and per-unit interpretability, which is also observable during model training. Furthermore, we see that a layer's location and width influence its interpretability.
Poster
Luke Marks · Amir Abdullah · Clement Neo · Rauno Arike · David Krueger · Philip Torr · Fazl Barez

[ East Exhibit Hall A-C ]

Abstract
Reinforcement learning from human feedback (RLHF) is widely used to train large language models (LLMs). However, it is unclear whether LLMs accurately learn the underlying preferences in human feedback data. We coin the term **Learned Feedback Pattern** (LFP) for patterns in an LLM's activations learned during RLHF that improve its performance on the fine-tuning task. We hypothesize that LLMs with LFPs accurately aligned to the fine-tuning feedback exhibit consistent activation patterns for outputs that would have received similar feedback during RLHF. To test this, we train probes to estimate the feedback signal implicit in the activations of a fine-tuned LLM. We then compare these estimates to the true feedback, measuring how accurate the LFPs are to the fine-tuning feedback. Our probes are trained on a condensed, sparse and interpretable representation of LLM activations, making it easier to correlate features of the input with our probe's predictions. We validate our probes by comparing the neural features they correlate with positive feedback inputs against the features GPT-4 describes and classifies as related to LFPs. Understanding LFPs can help minimize discrepancies between LLM behavior and training objectives, which is essential for the **safety** and **alignment** of LLMs.
Poster
Zhengxiao Du · Aohan Zeng · Yuxiao Dong · Jie Tang

[ East Exhibit Hall A-C ]

Abstract
Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models. This skepticism arises from two observations: 1) smaller models can also exhibit high performance on emergent abilities and 2) there is doubt on the discontinuous metrics used to measure these abilities. In this paper, we propose to study emergent abilities in the lens of pre-training loss, instead of model size or training compute. We demonstrate that the Transformer models with the same pre-training loss, but different model and data sizes, generate the same performance on various downstream tasks, with a fixed data corpus, tokenization, and model architecture. We also discover that a model exhibits emergent abilities on certain tasks—regardless of the continuity of metrics—when its pre-training loss falls below a specific threshold. Before reaching this threshold, its performance remains at the level of random guessing. This inspires us to redefine emergent abilities as those that manifest in models with lower pre-training losses, highlighting that these abilities cannot be predicted by merely extrapolating the performance trends of models with higher pre-training losses.
Poster
Silviu Pitis · Ziang Xiao · Nicolas Le Roux · Alessandro Sordoni

[ East Exhibit Hall A-C ]

Abstract
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. Unlike past datasets, where context-specific preference is highly correlated with general preference, our "preference reversal" datasets disentangle context-specific and general preferences to isolate context-specific capabilities. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific …
Poster
Dan Zhang · Sining Zhoubian · Ziniu Hu · Yisong Yue · Yuxiao Dong · Jie Tang

[ East Exhibit Hall A-C ]

Abstract
Recent methodologies in LLM self-training mostly rely on LLM generating responses and filtering those with correct output answers as training data. This approach often yields a low-quality fine-tuning training set (e.g., incorrect plans or intermediate reasoning). In this paper, we develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models. ReST-MCTS* circumvents the per-step manual annotation typically used to train process rewards by tree-search-based reinforcement learning: Given oracle final correct answers, ReST-MCTS* is able to infer the correct process rewards by estimating the probability this step can help lead to the correct answer. These inferred rewards serve dual purposes: they act as value targets for further refining the process reward model and also facilitate the selection of high-quality traces for policy model self-training. We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget. We then show that by using traces searched by this tree-search policy as training data, we can continuously enhance the three language models for multiple iterations, …
Poster
Yi Ren · Shangmin Guo · Linlu Qiu · Bailin Wang · Danica J. Sutherland

[ East Exhibit Hall A-C ]

Abstract
With the widespread adoption of Large Language Models (LLMs), the prevalence of iterative interactions among these models is anticipated to increase. Notably, recent advancements in multi-round on-policy self-improving methods allow LLMs to generate new examples for training subsequent models. At the same time, multi-agent LLM systems, involving automated interactions among agents, are also increasing in prominence. Thus, in both short and long terms, LLMs may actively engage in an evolutionary process. We draw parallels between the behavior of LLMs and the evolution of human culture, as the latter has been extensively studied by cognitive scientists for decades. Our approach involves leveraging Iterated Learning (IL), a Bayesian framework that elucidates how subtle biases are magnified during human cultural evolution, to explain some behaviors of LLMs. This paper outlines key characteristics of agents' behavior in the Bayesian-IL framework, including predictions that are supported by experimental verification with various LLMs. This theoretical framework could help to more effectively predict and guide the evolution of LLMs in desired directions.
Poster
Qiaoyu Tang · Jiawei Chen · Zhuoqun Li · Bowen Yu · Yaojie Lu · ChengFu · Haiyang Yu · Hongyu Lin · Fei Huang · Ben He · Xianpei Han · Le Sun · Yongbin Li

[ East Exhibit Hall A-C ]

Abstract
The rise of large language models (LLMs) has significantly transformed both the construction and application of information retrieval (IR) systems. However, current interactions between IR systems and LLMs remain limited, with LLMs merely serving as part of components within IR systems, and IR systems being constructed independently of LLMs. This separated architecture restricts knowledge sharing and deep collaboration between them.In this paper, we introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture.Self-Retrieval unifies all essential IR functions within a single LLM, leveraging the inherent capabilities of LLMs throughout the IR process.Specifically, Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking.Experimental results demonstrate that Self-Retrieval not only outperforms existing retrieval approaches by a significant margin, but also substantially enhances the performance of LLM-driven downstream applications like retrieval-augmented generation.
Poster
Zichao Li · Yanshuai Cao · Jackie CK Cheung

[ East Exhibit Hall A-C ]

Abstract
How do large language models (LLMs) encode the state of the world, including the status of entities and their relations, as described by a text? While existing work directly probes for a complete state of the world, our research explores whether and how LLMs abstract this world state in their internal representations. We propose a new framework for probing for world representations through the lens of state abstraction theory from reinforcement learning, which emphasizes different levels of abstraction, distinguishing between general abstractions that facilitate predicting future states and goal-oriented abstractions that guide the subsequent actions to accomplish tasks. To instantiate this framework, we design a text-based planning task, where an LLM acts as an agent in an environment and interacts with objects in containers to achieve a specified goal state. Our experiments reveal that fine-tuning as well as advanced pre-training strengthens LLM-built representations' tendency of maintaining goal-oriented abstractions during decoding, prioritizing task completion over recovery of the world's state and dynamics.
Poster
Dingkang Yang · Jinjie Wei · Dongling Xiao · Shunli Wang · Tong Wu · Gang Li · Mingcheng Li · Shuaibing Wang · Jiawei Chen · Yue Jiang · Qingyao Xu · Ke Li · Peng Zhai · Lihua Zhang

[ East Exhibit Hall A-C ]

Abstract
Developing intelligent pediatric consultation systems offers promising prospects for improving diagnostic efficiency, especially in China, where healthcare resources are scarce. Despite recent advances in Large Language Models (LLMs) for Chinese medicine, their performance is sub-optimal in pediatric applications due to inadequate instruction data and vulnerable training procedures.To address the above issues, this paper builds PedCorpus, a high-quality dataset of over 300,000 multi-task instructions from pediatric textbooks, guidelines, and knowledge graph resources to fulfil diverse diagnostic demands. Upon well-designed PedCorpus, we propose PediatricsGPT, the first Chinese pediatric LLM assistant built on a systematic and robust training pipeline.In the continuous pre-training phase, we introduce a hybrid instruction pre-training mechanism to mitigate the internal-injected knowledge inconsistency of LLMs for medical domain adaptation. Immediately, the full-parameter Supervised Fine-Tuning (SFT) is utilized to incorporate the general medical knowledge schema into the models. After that, we devise a direct following preference optimization to enhance the generation of pediatrician-like humanistic responses. In the parameter-efficient secondary SFT phase,a mixture of universal-specific experts strategy is presented to resolve the competency conflict between medical generalist and pediatric expertise mastery. Extensive results based on the metrics, GPT-4, and doctor evaluations on distinct downstream tasks show that PediatricsGPT consistently outperforms previous Chinese …
Poster
Ori Press · Andreas Hochlehnert · Ameya Prabhu · Vishaal Udandarao · Ofir Press · Matthias Bethge

[ East Exhibit Hall A-C ]

Abstract
Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.
Poster
Yuzhe Gu · Ziwei Ji · Wenwei Zhang · Chengqi Lyu · Dahua Lin · Kai Chen

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications. Current hallucination detection and mitigation datasets are limited in domain and size, which struggle to scale due to prohibitive labor costs and insufficient reliability of existing hallucination annotators. To facilitate the scalable oversight of LLM hallucinations, this paper introduces an iterative self-training framework that simultaneously and progressively scales up the annotation dataset and improves the accuracy of the annotator. Based on the Expectation Maximization algorithm, in each iteration, the framework first applies an automatic hallucination annotation pipeline for a scaled dataset and then trains a more accurate annotator on the dataset. This new annotator is adopted in the annotation pipeline for the next iteration. Extensive experimental results demonstrate that the finally obtained hallucination annotator with only 7B parameters surpasses GPT-4 and obtains new state-of-the-art hallucination detection results on HaluEval and HalluQA by zero-shot inference. Such an annotator can not only evaluate the hallucination levels of various LLMs on the large-scale dataset but also help to mitigate the hallucination of LLMs generations, with the Natural Language Inference metric increasing from 25% to 37% on HaluEval.
Poster
Jianyi Zhang · Da-Cheng Juan · Cyrus Rashtchian · Chun-Sung Ferng · Heinrich Jiang · Yiran Chen

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales (from 2B to 70B), including more advanced architectural configurations such as the mixture of experts (MoE). Our evaluation spans a wide variety of tasks, including multi-choice, open-generation, and adaptations to chain-of-thought reasoning tasks. The results demonstrate that SLED consistently improves factual accuracy by up to 20\% compared to existing decoding methods while maintaining natural language fluency and negligible latency overhead. Furthermore, it can be flexibly combined with other decoding methods to further enhance their performance.
Poster
Zian Su · Xiangzhe Xu · Ziyang Huang · Kaiyuan Zhang · Xiangyu Zhang

[ East Exhibit Hall A-C ]

Abstract
Human-Oriented Binary Reverse Engineering (HOBRE) lies at the intersection of binary and source code, aiming to lift binary code to human-readable content relevant to source code, thereby bridging the binary-source semantic gap. Recent advancements in uni-modal code model pre-training, particularly in generative Source Code Foundation Models (SCFMs) and binary understanding models, have laid the groundwork for transfer learning applicable to HOBRE. However, existing approaches for HOBRE rely heavily on uni-modal models like SCFMs for supervised fine-tuning or general LLMs for prompting, resulting in sub-optimal performance. Inspired by recent progress in large multi-modal models, we propose that it is possible to harness the strengths of uni-modal code models from both sides to bridge the semantic gap effectively. In this paper, we introduce a novel probe-and-recover framework that incorporates a binary-source encoder-decoder model and black-box LLMs for binary analysis. Our approach leverages the pre-trained knowledge within SCFMs to synthesize relevant, symbol-rich code fragments as context. This additional context enables black-box LLMs to enhance recovery accuracy. We demonstrate significant improvements in zero-shot binary summarization and binary function name recovery, with a 10.3% relative gain in CHRF and a 16.7% relative gain in a GPT4-based metric for summarization, as well as a 6.7% and …
Spotlight Poster
Lingbing Guo · Zhongpu Bo · Zhuo Chen · Yichi Zhang · Jiaoyan Chen · Lan Yarong · Mengshu Sun · Zhiqiang Zhang · Yangyifei Luo · Qian Li · Qiang Zhang · Wen Zhang · Huajun Chen

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have significantly advanced performance across a spectrum of natural language processing (NLP) tasks. Yet, their application to knowledge graphs (KGs), which describe facts in the form of triplets and allow minimal hallucinations, remains an underexplored frontier. In this paper, we investigate the integration of LLMs with KGs by introducing a specialized KG Language (KGL), where a sentence precisely consists of an entity noun, a relation verb, and ends with another entity noun. Despite KGL's unfamiliar vocabulary to the LLM, we facilitate its learning through a tailored dictionary and illustrative sentences, and enhance context understanding via real-time KG context retrieval and KGL token embedding augmentation. Our results reveal that LLMs can achieve fluency in KGL, drastically reducing errors compared to conventional KG embedding methods on KG completion. Furthermore, our enhanced LLM shows exceptional competence in generating accurate three-word sentences from an initial entity and interpreting new unseen terms out of KGs.
Poster
Kai Xiong · Xiao Ding · Ting Liu · Bing Qin · Dongliang Xu · Qing Yang · Hongtao Liu · Yixin Cao

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, when tasked with several simple questions supported by a generic fact, LLMs often struggle to abstract and apply the generic fact to provide consistent and precise answers, revealing a deficiency in abstract reasoning abilities. This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing. In light of this, we design a preliminary study to quantify and delve into the abstract reasoning abilities of existing LLMs. Our findings reveal a substantial discrepancy between their general reasoning and abstract reasoning performances. To relieve this problem, we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning paradigm to teach LLMs how to leverage generic facts for reasoning purposes. The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts. The code is available at https://github.com/Waste-Wood/MeanLearn.
Poster
André F. Cruz · Moritz Hardt · Celestine Mendler-Dünner

[ East Exhibit Hall A-C ]

Abstract
Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks.Conditioned on a question and answer-key, does the most likely token match the ground truth?Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty.In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks.We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products.A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks.We evaluate 17 recent LLMs across five proposed benchmark tasks.We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated.Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores.In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty.This reveals a general inability of instruction-tuned models to express data uncertainty using multiple-choice answers.A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models.These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation …
Poster
Gefen Dawidowicz · Elad Hirsch · Ayellet Tal

[ East Exhibit Hall A-C ]

Abstract
The paper proposes a novel evaluation metric for automatic medical report generation from X-ray images, VLScore. It aims to overcome the limitations of existing evaluation methods, which either focus solely on textual similarities, ignoring clinical aspects, or concentrate only on a single clinical aspect, the pathology, neglecting all other factors. The key idea of our metric is to measure the similarity between radiology reports while considering the corresponding image. We demonstrate the benefit of our metric through evaluation on a dataset where radiologists marked errors in pairs of reports, showing notable alignment with radiologists' judgments. In addition, we provide a new dataset for evaluating metrics. This dataset includes well-designed perturbations that distinguish between significant modifications (e.g., removal of a diagnosis) and insignificant ones. It highlights the weaknesses in current evaluation metrics and provides a clear framework for analysis.
Poster
Timothy Nguyen

[ East Exhibit Hall A-C ]

Abstract
Transformer based large-language models (LLMs) display extreme proficiency with language yet a precise understanding of how they work remains elusive. One way of demystifying transformer predictions would be to describe how they depend on their context in terms of simple template functions. This paper takes a first step in this direction by considering families of functions (i.e. rules) formed out of simple N-gram based statistics of the training data. By studying how well these rulesets approximate transformer predictions, we obtain a variety of novel discoveries: a simple method to detect overfitting during training without using a holdout set, a quantitative measure of how transformers progress from learning simple to more complex statistical rules over the course of training, a model-variance criterion governing when transformer predictions tend to be described by N-gram rules, and insights into how well transformers can be approximated by N-gram rulesets in the limit where these rulesets become increasingly complex. In this latter direction, we find that for 79% and 68% of LLM next-token distributions on TinyStories and Wikipedia, respectively, their top-1 predictions agree with those provided by our N-gram rulesets.
Poster
Luohe Shi · Yao Yao · Zuchao Li · Lefei Zhang · Hai Zhao

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting LLMs to downstream tasks. ICL typically constructs a few-shot learning scenario, either manually or by setting up a Retrieval-Augmented Generation (RAG) system, helping models quickly grasp domain knowledge or question-answering patterns without changing model parameters. However, this approach involves trade-offs, such as slower inference speed and increased space occupancy. PEFT assists the model in adapting to tasks through minimal parameter modifications, but the training process still demands high hardware requirements, even with a small number of parameters involved. To address these challenges, we propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning, maintaining low inference costs. RTD constructs a reference datastore from the provided training examples and optimizes the LLM's final vocabulary distribution by flexibly selecting suitable references based on the input, resulting in more trustable responses and enabling the model to adapt to downstream tasks at a low cost. Experimental evaluations on various LLMs using different benchmarks demonstrate that RTD establishes a new paradigm for augmenting models to downstream tasks. Furthermore, our method exhibits strong …
Spotlight Poster
Gongfan Fang · Hongxu Yin · Saurav Muralidharan · Greg Heinrich · Jeff Pool · Jan Kautz · Pavlo Molchanov · Xinchao Wang

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) are distinguished by their massive parameter counts, which typically result in significant redundancy. This work introduces MaskLLM, a learnable pruning method that establishes Semi-structured (or ``N:M'') Sparsity in LLMs, aimed at reducing computational overhead during inference. Instead of developing a new importance criterion, MaskLLM explicitly models N:M patterns as a learnable distribution through Gumbel Softmax sampling. This approach facilitates end-to-end training on large-scale datasets and offers two notable advantages: 1) High-quality Masks - our method effectively scales to large datasets and learns accurate masks; 2) Transferability - the probabilistic modeling of mask distribution enables the transfer learning of sparsity across domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs, including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to 15B parameters, and our empirical results show substantial improvements over state-of-the-art methods. For instance, leading approaches achieve a perplexity (PPL) of 10 or greater on Wikitext compared to the dense model's 5.12 PPL, but MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks with frozen weights. Furthermore, MaskLLM's learnable nature allows customized masks for lossless application of 2:4 sparsity to downstream tasks or domains. Code is available at https://github.com/NVlabs/MaskLLM.
Poster
Jasper Dekoninck · Mark Müller · Martin Vechev

[ East Exhibit Hall A-C ]

Abstract
Public benchmarks play an essential role in the evaluation of large language models. However, data contamination can lead to inflated performance, rendering them unreliable for model comparison. It is therefore crucial to detect contamination and estimate its impact on measured performance. Unfortunately, existing detection methods can be easily evaded and fail to quantify contamination. To overcome these limitations, we propose a novel definition of *contamination as artificially inflated and non-generalizing benchmark performance* instead of the inclusion of benchmark samples in the training data. This perspective enables us to detect *any* model with inflated performance, i.e., performance that does not generalize to rephrased samples, synthetic samples from the same distribution, or different benchmarks for the same task. Based on this insight, we develop ConStat, a statistical method that reliably detects and quantifies contamination by comparing performance between a primary and reference benchmark relative to a set of reference models. We demonstrate the effectiveness of ConStat in an extensive evaluation of diverse model architectures, benchmarks, and contamination scenarios and find high levels of contamination in multiple popular models including Mistral, Llama, Yi, and the top-3 Open LLM Leaderboard models.
Poster
Yu Meng · Mengzhou Xia · Danqi Chen

[ East Exhibit Hall A-C ]

Abstract
Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the _average_ log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further improving the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models such as Mistral, Llama 3, and Gemma 2. We evaluate on extensive chat-based evaluation benchmarks, including AlpacaEval 2, MT-Bench, and Arena-Hard. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Gemma-2-9B-it, achieves a 72.4\% length-controlled …
Spotlight Poster
Tianyi (Alex) Qiu · Yang Zhang · Xuchuan Huang · Jasmine Li · Jiaming Ji · Yaodong Yang

[ East Exhibit Hall A-C ]

Abstract
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce **progress alignment** as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce [**ProgressGym**](https://github.com/PKU-Alignment/ProgressGym), an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 [historical LLMs](https://huggingface.co/collections/PKU-Alignment/progressgym-666735fcf3e4efa276226eaa), ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present *lifelong* and *extrapolative* algorithms as baseline methods of progress alignment, and build an [open leaderboard](https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard) soliciting novel algorithms and challenges.
Poster
Nicholas Babaev · Kirill Tamogashev · Azat Saginbaev · Ivan Shchekotov · Hanbin Bae · Hosang Sung · WonJun Lee · Hoon-Young Cho · Pavel Andreev

[ East Exhibit Hall A-C ]

Abstract
In this paper, we address the challenge of speech enhancement in real-world recordings, which often contain various forms of distortion, such as background noise, reverberation, and microphone artifacts.We revisit the use of Generative Adversarial Networks (GANs) for speech enhancement and theoretically show that GANs are naturally inclined to seek the point of maximum density within the conditional clean speech distribution, which, as we argue, is essential for speech enhancement task.We study various feature extractors for perceptual loss to facilitate the stability of adversarial training, developing a methodology for probing the structure of the feature space.This leads us to integrate WavLM-based perceptual loss into MS-STFT adversarial training pipeline, creating an effective and stable training procedure for the speech enhancement model.The resulting speech enhancement model, which we refer to as FINALLY, builds upon the HiFi++ architecture, augmented with a WavLM encoder and a novel training pipeline.Empirical results on various datasets confirm our model's ability to produce clear, high-quality speech at 48 kHz, achieving state-of-the-art performance in the field of speech enhancement. Demo page: https://samsunglabs.github.io/FINALLY-page/
Poster
Leying Zhang · Yao Qian · Long Zhou · Shujie LIU · Dongmei Wang · Xiaofei Wang · Midia Yousefi · Yanmin Qian · Jinyu Li · Lei He · sheng zhao · Michael Zeng

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in zero-shot text-to-speech (TTS) modeling have led to significant strides in generating high-fidelity and diverse speech. However, dialogue generation, along with achieving human-like naturalness in speech, continues to be a challenge. In this paper, we introduce CoVoMix: Conversational Voice Mixture Generation, a novel model for zero-shot, human-like, multi-speaker, multi-round dialogue speech generation. CoVoMix first converts dialogue text into multiple streams of discrete tokens, with each token stream representing semantic information for individual talkers. These token streams are then fed into a flow-matching based acoustic model to generate mixed mel-spectrograms. Finally, the speech waveforms are produced using a HiFi-GAN model. Furthermore, we devise a comprehensive set of metrics for measuring the effectiveness of dialogue modeling and generation. Our experimental results show that CoVoMix can generate dialogues that are not only human-like in their naturalness and coherence but also involve multiple talkers engaging in multiple rounds of conversation. This is exemplified by instances generated in a single channel where one speaker's utterance is seamlessly mixed with another's interjections or laughter, indicating the latter's role as an attentive listener. Audio samples are enclosed in the supplementary.
Poster
Yen-Ju Lu · Jing Liu · Thomas Thebaud · Laureano Moro-Velazquez · Ariya Rastrow · Najim Dehak · Jesus Villalba

[ East Exhibit Hall A-C ]

Abstract
We introduce Condition-Aware Self-Supervised Learning Representation (CA-SSLR), a generalist conditioning model broadly applicable to various speech-processing tasks. Compared to standard fine-tuning methods that optimize for downstream models, CA-SSLR integrates language and speaker embeddings from earlier layers, making the SSL model aware of the current language and speaker context.This approach reduces the reliance on the input audio features while preserving the integrity of the base SSLR. CA-SSLR improves the model’s capabilities and demonstrates its generality on unseen tasks with minimal task-specific tuning. Our method employs linear modulation to dynamically adjust internal representations, enabling fine-grained adaptability without significantly altering the original model behavior. Experiments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting, and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves a 10\% relative reduction in LID errors, a 37\% improvement in ASR CER on the ML-SUPERB benchmark, and a 27\% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.
Poster
Rishabh Ranjan · Saurabh Garg · Mrigank Raman · Carlos Guestrin · Zachary Lipton

[ East Exhibit Hall A-C ]

Abstract
Trained models are often composed with post-hoc transforms such as temperature scaling (TS), ensembling and stochastic weight averaging (SWA) to improve performance, robustness, uncertainty estimation, etc. However, such transforms are typically applied only after the base models have already been finalized by standard means. In this paper, we challenge this practice with an extensive empirical study. In particular, we demonstrate a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying post-hoc transforms. This phenomenon is especially prominent in high-noise settings. For example, while base models overfit badly early in training, both ensembling and SWA favor base models trained for more epochs. Post-hoc reversal can also prevent the appearance of double descent and mitigate mismatches between test loss and test error seen in base models. Preliminary analyses suggest that these transforms induce reversal by suppressing the influence of mislabeled examples, exploiting differences in their learning dynamics from those of clean examples. Based on our findings, we propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions such as early stopping, checkpointing, and broader hyperparameter choices. Our experiments span real-world vision, language, tabular and graph datasets. On an LLM instruction tuning dataset, post-hoc selection results …
Oral Poster
Zekun Shi · Zheyuan Hu · Min Lin · Kenji Kawaguchi

[ East Exhibit Hall A-C ]

Abstract
Optimizing neural networks with loss that contain high-dimensional and high-order differential operators is expensive to evaluate with back-propagation due to $\mathcal{O}(d^{k})$ scaling of the derivative tensor size and the $\mathcal{O}(2^{k-1}L)$ scaling in the computation graph, where $d$ is the dimension of the domain, $L$ is the number of ops in the forward computation graph, and $k$ is the derivative order. In previous works, the polynomial scaling in $d$ was addressed by amortizing the computation over the optimization process via randomization. Separately, the exponential scaling in $k$ for univariate functions ($d=1$) was addressed with high-order auto-differentiation (AD). In this work, we show how to efficiently perform arbitrary contraction of the derivative tensor of arbitrary order for multivariate functions, by properly constructing the input tangents to univariate high-order AD, which can be used to efficiently randomize any differential operator. When applied to Physics-Informed Neural Networks (PINNs), our method provides >1000$\times$ speed-up and >30$\times$ memory reduction over randomization with first-order AD, and we can now solve 1-million-dimensional PDEs in 8 minutes on a single NVIDIA A100 GPU. This work opens the possibility of using high-order differential operators in large-scale problems.
Spotlight Poster
Yan Sun · Li Shen · Dacheng Tao

[ East Exhibit Hall A-C ]

Abstract
As a popular paradigm for juggling data privacy and collaborative training, federated learning (FL) is flourishing to distributively process the large scale of heterogeneous datasets on edged clients. Due to bandwidth limitations and security considerations, it ingeniously splits the original problem into multiple subproblems to be solved in parallel, which empowers primal dual solutions to great application values in FL. In this paper, we review the recent development of classical federated primal dual methods and point out a serious common defect of such methods in non-convex scenarios, which we say is a ``dual drift'' caused by dual hysteresis of those longstanding inactive clients under partial participation training. To further address this problem, we propose a novel Aligned Federated Primal Dual (A-FedPD) method, which constructs virtual dual updates to align global consensus and local dual variables for those protracted unparticipated local clients. Meanwhile, we provide a comprehensive analysis of the optimization and generalization efficiency for the A-FedPD method on smooth non-convex objectives, which confirms its high efficiency and practicality. Extensive experiments are conducted on several classical FL setups to validate the effectiveness of our proposed method.
Poster
Yibo Wang · Jun-Yi Hang · Min-Ling Zhang

[ East Exhibit Hall A-C ]

Abstract
In multi-label learning, each training instance is associated with multiple labels simultaneously. Traditional multi-label learning studies primarily focus on closed set scenario, i.e. the class label set of test data is identical to those used in training phase. Nevertheless, in numerous real-world scenarios, the environment is open and dynamic where unknown labels may emerge gradually during testing. In this paper, the problem of multi-label open set recognition (MLOSR) is investigated, which poses significant challenges in classifying and recognizing instances with unknown labels in multi-label setting. To enable open set multi-label prediction, a novel approach named SLAN is proposed by leveraging sub-labeling information enriched by structural information in the feature space. Accordingly, unknown labels are recognized by differentiating the sub-labeling information from holistic supervision. Experimental results on various datasets validate the effectiveness of the proposed approach in dealing with the MLOSR problem.
Poster
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Parikshit Ram · Dmitry Krotov

[ East Exhibit Hall A-C ]

Abstract
Dense Associative Memories are high storage capacity variants of the Hopfield networks that are capable of storing a large number of memory patterns in the weights of the network of a given size. Their common formulations typically require storing each pattern in a separate set of synaptic weights, which leads to the increase of the number of synaptic weights when new patterns are introduced. In this work we propose an alternative formulation of this class of models using random features, commonly used in kernel methods. In this formulation the number of network's parameters remains fixed. At the same time, new memories can be added to the network by modifying existing weights. We show that this novel network closely approximates the energy function and dynamics of conventional Dense Associative Memories and shares their desirable computational properties.
Poster
Cong Xu · Jun Wang · Jianyong Wang · Wei Zhang

[ East Exhibit Hall A-C ]

Abstract
Embedding plays a key role in modern recommender systems because they are virtual representations of real-world entities and the foundation for subsequent decision-making models. In this paper, we propose a novel embedding update mechanism, Structure-aware Embedding Evolution (SEvo for short), to encourage related nodes to evolve similarly at each step. Unlike GNN (Graph Neural Network) that typically serves as an intermediate module, SEvo is able to directly inject graph structural information into embedding with minimal computational overhead during training. The convergence properties of SEvo along with its potential variants are theoretically analyzed to justify the validity of the designs. Moreover, SEvo can be seamlessly integrated into existing optimizers for state-of-the-art performance. Particularly SEvo-enhanced AdamW with moment estimate correction demonstrates consistent improvements across a spectrum of models and datasets, suggesting a novel technical route to effectively utilize graph structural information beyond explicit GNN modules.
Poster
BIN HAN · Yi-Xuan Sun · Ya-Lin Zhang · Libang Zhang · Haoran Hu · Longfei Li · Jun Zhou · Guo Ye · HUIMEI HE

[ East Exhibit Hall A-C ]

Abstract
This paper considers the problem of learning from multiple sets of inaccurate labels, which can be easily obtained from low-cost annotators, such as rule-based annotators. Previous works typically concentrate on aggregating information from all the annotators, overlooking the significance of data refinement. This paper presents a collaborative refining approach for learning from inaccurate labels. To refine the data, we introduce the annotator agreement as an instrument, which refers to whether multiple annotators agree or disagree on the labels for a given sample. For samples where some annotators disagree, a comparative strategy is proposed to filter noise. Through theoretical analysis, the connections among multiple sets of labels, the respective models trained on them, and the true labels are uncovered to identify relatively reliable labels. For samples where all annotators agree, an aggregating strategy is designed to mitigate potential noise. Guided by theoretical bounds on loss values, a sample selection criterion is introduced and modified to be more robust against potentially problematic values. Through these two methods, all the samples are refined during training, and these refined samples are used to train a lightweight model simultaneously. Extensive experiments are conducted on benchmark and real-world datasets to demonstrate the superiority of our methods.
Poster
Ethan Harvey · Mikhail Petrov · Michael Hughes

[ East Exhibit Hall A-C ]

Abstract

We pursue transfer learning to improve classifier accuracy on a target task with few labeled examples available for training. Recent work suggests that using a source task to learn a prior distribution over neural net weights, not just an initialization, can boost target task performance. In this study, we carefully compare transfer learning with and without source task informed priors across 5 datasets. We find that standard transfer learning informed by an initialization only performs far better than reported in previous comparisons. The relative gains of methods using informative priors over standard transfer learning vary in magnitude across datasets. For the scenario of 5-300 examples per class, we find negative or negligible gains on 2 datasets, modest gains (between 1.5-3 points of accuracy) on 2 other datasets, and substantial gains (>8 points) on one dataset. Among methods using informative priors, we find that an isotropic covariance appears competitive with learned low-rank covariance matrix while being substantially simpler to understand and tune. Further analysis suggests that the mechanistic justification for informed priors -- hypothesized improved alignment between train and test loss landscapes -- is not consistently supported due to high variability in empirical landscapes. We release code to allow independent reproduction …

Poster
Samuel Lippl · Jack Lindsey

[ East Exhibit Hall A-C ]

Abstract
Neural networks are often trained on multiple tasks, either simultaneously (multi-task learning, MTL) or sequentially (pretraining and subsequent finetuning, PT+FT). In particular, it is common practice to pretrain neural networks on a large auxiliary task before finetuning on a downstream task with fewer samples. Despite the prevalence of this approach, the inductive biases that arise from learning multiple tasks are poorly characterized. In this work, we address this gap. We describe novel implicit regularization penalties associated with MTL and PT+FT in diagonal linear networks and single-hidden-layer ReLU networks. These penalties indicate that MTL and PT+FT induce the network to reuse features in different ways. 1) Both MTL and PT+FT exhibit biases towards feature reuse between tasks, and towards sparsity in the set of learned features. We show a "conservation law" that implies a direct tradeoff between these two biases. 2) PT+FT exhibits a novel "nested feature selection" regime, not described by either the "lazy" or "rich" regimes identified in prior work, which biases it to *rely on a sparse subset* of the features learned during pretraining. This regime is much narrower for MTL. 3) PT+FT (but not MTL) in ReLU networks benefits from features that are correlated between the auxiliary …
Poster
Yunfeng FAN · Wenchao Xu · Haozhao Wang · Song Guo

[ East Exhibit Hall A-C ]

Abstract
Multi-modal domain generalization (MMDG) requires that models trained on multi-modal source domains can generalize to unseen target distributions with the same modality set. Sharpness-aware minimization (SAM) is an effective technique for traditional uni-modal domain generalization (DG), however, with limited improvement in MMDG. In this paper, we identify that modality competition and discrepant uni-modal flatness are two main factors that restrict multi-modal generalization. To overcome these challenges, we propose to construct consistent flat loss regions and enhance knowledge exploitation for each modality via cross-modal knowledge transfer. Firstly, we turn to the optimization on representation-space loss landscapes instead of traditional parameter space, which allows us to build connections between modalities directly. Then, we introduce a novel method to flatten the high-loss region between minima from different modalities by interpolating mixed multi-modal representations. We implement this method by distilling and optimizing generalizable interpolated representations and assigning distinct weights for each modality considering their divergent generalization capabilities. Extensive experiments are performed on two benchmark datasets, EPIC-Kitchens and Human-Animal-Cartoon (HAC), with various modality combinations, demonstrating the effectiveness of our method under multi-source and single-source settings. Our code is open-sourced.
Poster
Hugo Malard · Michel Olvera · Stéphane Lathuilière · Slim Essid

[ East Exhibit Hall A-C ]

Abstract
Multimodal large language models have fueled progress in image captioning. These models, fine-tuned on vast image datasets, exhibit a deep understanding of semantic concepts.In this work, we show that this ability can be re-purposed for audio captioning, where the joint image-language decoder can be leveraged to describe auditory content associated with image sequences within videos featuring audiovisual content. This can be achieved via multimodal alignment.Yet, this multimodal alignment task is non-trivial due to the inherent disparity between audible and visible elements in real-world videos. Moreover, multimodal representation learning often relies on contrastive learning, facing the challenge of the so-called modality gap which hinders smooth integration between modalities. In this work, we introduce a novel methodology for bridging the audiovisual modality gap by matching the distributions of tokens produced by an audio backbone and those of an image captioner. Our approach aligns the audio token distribution with that of the image tokens, enabling the model to perform zero-shot audio captioning in an unsupervised fashion. This alignment allows for the use of either audio or audiovisual input by combining or substituting the image encoder with the aligned audio encoder. Our method achieves significantly improved performances in zero-shot audio captioning, compared to existing …
Poster
Liyi Chen · Ying Sun · Shengzhe Zhang · Yuyang Ye · Wei Wu · Hui Xiong

[ East Exhibit Hall A-C ]

Abstract
Recently, multi-modal entity alignment has emerged as a pivotal endeavor for the integration of Multi-Modal Knowledge Graphs (MMKGs) originating from diverse data sources. Existing works primarily focus on fully depicting entity features by designing various modality encoders or fusion approaches. However, uncertain correspondences between inter-modal or intra-modal cues, such as weak inter-modal associations, description diversity, and modality absence, still severely hinder the effective exploration of aligned entity similarities. To this end, in this paper, we propose a novel Tackling uncertain correspondences method for Multi-modal Entity Alignment (TMEA). Specifically, to handle diverse attribute knowledge descriptions, we design alignment-augmented abstract representation that incorporates the large language model and in-context learning into attribute alignment and filtering for generating and embedding the attribute abstract. In order to mitigate the influence of the modality absence, we propose to unify all modality features into a shared latent subspace and generate pseudo features via variational autoencoders according to existing modal features. Then, we develop an inter-modal commonality enhancement mechanism based on cross-attention with orthogonal constraints, to address weak semantic associations between modalities. Extensive experiments on two real-world datasets validate the effectiveness of TMEA with a clear improvement over competitive baselines.
Poster
Andrew Szot · Bogdan Mazoure · Harsh Agrawal · R Devon Hjelm · Zsolt Kira · Alexander Toshev

[ East Exhibit Hall A-C ]

Abstract
Multimodal Large Language Models (MLLMs) have demonstrated a wide range of capabilities across many domains including Embodied AI. In this work, we study how to best ground a MLLM into different embodiments and their associated action spaces, including both continuous and discrete actions. For continuous actions, a set of learned tokenizations that capture an action at various resolutions allows for sufficient modeling precision, yielding the best performance on downstream tasks. For discrete actions, semantically aligning these actions with the native output token space of the MLLM leads to the strongest performance. We arrive at these lessons via a thorough study of seven action grounding approaches on five different environments, encompassing over 114 embodied tasks.
Poster
Irene Huang · Wei Lin · Muhammad Jehanzeb Mirza · Jacob Hansen · Sivan Doveh · Victor Butoi · Roei Herzig · Assaf Arbelle · Hilde Kuehne · Trevor Darrell · Chuang Gan · Aude Oliva · Rogerio Feris · Leonid Karlinsky

[ East Exhibit Hall A-C ]

Abstract
Compositional Reasoning (CR) entails grasping the significance of attributes, relations, and word order. Recent Vision-Language Models (VLMs), comprising a visual encoder and a Large Language Model (LLM) decoder, have demonstrated remarkable proficiency in such reasoning tasks. This prompts a crucial question: have VLMs effectively tackled the CR challenge? We conjecture that existing CR benchmarks may not adequately push the boundaries of modern VLMs due to the reliance on an LLM only negative text generation pipeline. Consequently, the negatives produced either appear as outliers from the natural language distribution learned by VLMs' LLM decoders or as improbable within the corresponding image context. To address these limitations, we introduce ConMe\footnote{ConMe is an abbreviation for Confuse Me.} -- a compositional reasoning benchmark and a novel data generation pipeline leveraging VLMs to produce `hard CR Q&A'. Through a new concept of VLMs conversing with each other to collaboratively expose their weaknesses, our pipeline autonomously generates, evaluates, and selects challenging compositional reasoning questions, establishing a robust CR benchmark, also subsequently validated manually. Our benchmark provokes a noteworthy, up to 33%, decrease in CR performance compared to preceding benchmarks, reinstating the CR challenge even for state-of-the-art VLMs.
Poster
Josselin Roberts · Tony Lee · Chi Heem Wong · Michihiro Yasunaga · Yifan Mai · Percy Liang

[ East Exhibit Hall A-C ]

Abstract
We introduce Image2Struct, a benchmark to evaluate vision-language models (VLMs) on extracting structure from images.Our benchmark 1) captures real-world use cases, 2) is fully automatic and does not require human judgment, and 3) is based on a renewable stream of fresh data.In Image2Struct, VLMs are prompted to generate the underlying structure (e.g., LaTeX code or HTML) from an input image (e.g., webpage screenshot).The structure is then rendered to produce an output image (e.g., rendered webpage), which is compared against the input image to produce a similarity score.This round-trip evaluation allows us to quantitatively evaluate VLMs on tasks with multiple valid structures.We create a pipeline that downloads fresh data from active online communities upon execution and evaluates the VLMs without human intervention.We introduce three domains (Webpages, LaTeX, and Musical Scores) and use five image metrics (pixel similarity, cosine similarity between the Inception vectors, learned perceptual image patch similarity, structural similarity index measure, and earth mover similarity) that allow efficient and automatic comparison between pairs of images. We evaluate Image2Struct on 14 prominent VLMs and find that scores vary widely, indicating that Image2Struct can differentiate between the performances of different VLMs.Additionally, the best score varies considerably across domains (e.g., 0.402 on sheet …
Poster
Chester Holtz · Pengwen Chen · Zhengchao Wan · Chung-Kuan Cheng · Gal Mishne

[ East Exhibit Hall A-C ]

Abstract
Laplace learning algorithms for graph-based semi-supervised learning have been shown to produce degenerate predictions at low label rates and in imbalanced class regimes, particularly near class boundaries. We propose CutSSL: a framework for graph-based semi-supervised learning based on continuous nonconvex quadratic programming, which provably obtains \emph{integer} solutions. Our framework is naturally motivated by an \emph{exact} quadratic relaxation of a cardinality-constrained minimum-cut graph partitioning problem. Furthermore, we show our formulation is related to an optimization problem whose approximate solution is the mean-shifted Laplace learning heuristic, thus providing new insight into the performance of this heuristic. We demonstrate that CutSSL significantly surpasses the current state-of-the-art on k-nearest neighbor graphs and large real-world graph benchmarks across a variety of label rates, class imbalance, and label imbalance regimes. Our implementation is available on Colab\footnote{\url{https://colab.research.google.com/drive/1tGU5rxE1N5d0KGcNzlvZ0BgRc7_vob7b?usp=sharing}}.
Poster
Marzi Heidari · Hanping Zhang · Yuhong Guo

[ East Exhibit Hall A-C ]

Abstract
In recent years, semi-supervised learning (SSL) has gained significant attention due to its ability to leverage both labeled and unlabeled data to improve model performance, especially when labeled data is scarce. However, most current SSL methods rely on heuristics or predefined rules for generating pseudo-labels and leveraging unlabeled data. They are limited to exploiting loss functions and regularization methods within the standard norm. In this paper, we propose a novel Reinforcement Learning (RL) Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem and deploys an innovative RL loss based on weighted reward to adaptively guide the learning process of the prediction model. RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance. A semi-supervised teacher-student framework is further deployed to increase the learning stability. We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
Oral Poster
Peter Tong · Ellis Brown · Penghao Wu · Sanghyun Woo · Adithya Jairam Vedagiri IYER · Sai Charitha Akula · Shusheng Yang · Jihan Yang · Manoj Middepogu · Ziteng Wang · Xichen Pan · Rob Fergus · Yann LeCun · Saining Xie

[ East Exhibit Hall A-C ]

Abstract
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures—self-supervised, strongly supervised, or combinations thereof—based on experiments with over 15 vision models. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks. To further improve visual grounding, we propose spatial vision aggregator (SVA), a dynamic and spatially-aware connector that integrates vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of distribution balancing. Collectively, Cambrian-1 not only achieves state-of-the-art performances but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.
Spotlight Poster
Yicheng Xiao · Lin Song · shaoli huang · Jiangshan Wang · Siyu Song · Yixiao Ge · Xiu Li · Ying Shan

[ East Exhibit Hall A-C ]

Abstract
The state space models, employing recursively propagated features, demonstrate strong representation capabilities comparable to Transformer models and superior efficiency.However, constrained by the inherent geometric constraints of sequences, it still falls short in modeling long-range dependencies.To address this issue, we propose the MambaTree network, which first dynamically generates a tree topology based on spatial relationships and input features.Then, feature propagation is performed based on this graph, thereby breaking the original sequence constraints to achieve stronger representation capabilities.Additionally, we introduce a linear complexity dynamic programming algorithm to enhance long-range interactions without increasing computational cost.MambaTree is a versatile multimodal framework that can be applied to both visual and textual tasks.Extensive experiments demonstrate that our method significantly outperforms existing structured state space models on image classification, object detection and segmentation.Besides, by fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.
Poster
Thomas Sutter · Yang Meng · Andrea Agostini · Daphné Chopard · Norbert Fortin · Julia Vogt · Babak Shahbaba · Stephan Mandt

[ East Exhibit Hall A-C ]

Abstract
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation.Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior.This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.
Poster
Jiachen Liang · RuiBing Hou · Minyang Hu · Hong Chang · Shiguang Shan · Xilin Chen

[ East Exhibit Hall A-C ]

Abstract
Pre-trained vision-language models (e.g., CLIP) have shown powerful zero-shot transfer capabilities. But they still struggle with domain shifts and typically require labeled data to adapt to downstream tasks, which could be costly. In this work, we aim to leverage unlabeled data that naturally spans multiple domains to enhance the transferability of vision-language models. Under this unsupervised multi-domain setting, we have identified inherent model bias within CLIP, notably in its visual and text encoders. Specifically, we observe that CLIP’s visual encoder tends to prioritize encoding domain over discriminative category information, meanwhile its text encoder exhibits a preference for domain-relevant classes. To mitigate this model bias, we propose a training-free and label-free feature calibration method, Unsupervised Multi-domain Feature Calibration (UMFC). UMFC estimates image-level biases from domain-specific features and text-level biases from the direction of domain transition. These biases are subsequently subtracted from original image and text features separately, to render them domain-invariant. We evaluate our method on multiple settings including transductive learning and test-time adaptation. Extensive experiments show that our method outperforms CLIP and performs on par with the state-of-the-arts that need additional annotations or optimization.Our code is available at https://github.com/GIT-LJc/UMFC.
Poster
Matteo Farina · Gianni Franchi · Giovanni Iacca · Massimiliano Mancini · Elisa Ricci

[ East Exhibit Hall A-C ]

Abstract
Vision-Language Models seamlessly discriminate among arbitrary semantic categories, yet they still suffer from poor generalization when presented with challenging examples. For this reason, Episodic Test-Time Adaptation (TTA) strategies have recently emerged as powerful techniques to adapt VLMs in the presence of a single unlabeled image. The recent literature on TTA is dominated by the paradigm of prompt tuning by Marginal Entropy Minimization, which, relying on online backpropagation, inevitably slows down inference while increasing memory. In this work, we theoretically investigate the properties of this approach and unveil that a surprisingly strong TTA method lies dormant and hidden within it. We term this approach ZERO (TTA with “zero” temperature), whose design is both incredibly effective and frustratingly simple: augment N times, predict, retain the most confident predictions, and marginalize after setting the Softmax temperature to zero. Remarkably, ZERO requires a single batched forward pass through the vision encoder only and no backward passes. We thoroughly evaluate our approach following the experimental protocol established in the literature and show that ZERO largely surpasses or compares favorably w.r.t. the state-of-the-art while being almost 10× faster and 13× more memory friendly than standard Test-Time Prompt Tuning. Thanks to its simplicity and comparatively negligible computation, …
Spotlight Poster
Hanwei Zhu · Haoning Wu · Yixuan Li · Zicheng Zhang · Baoliang Chen · Lingyu Zhu · Yuming Fang · Guangtao Zhai · Weisi Lin · Shiqi Wang

[ East Exhibit Hall A-C ]

Abstract
While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce an all-around LMM-based NR-IQA model, which is capable of producing qualitatively comparative responses and effectively translating these discrete comparison outcomes into a continuous quality score. Specifically, during training, we present to generate scaled-up comparative instructions by comparing images from the same IQA dataset, allowing for more flexible integration of diverse IQA datasets. Utilizing the established large-scale training corpus, we develop a human-like visual quality comparator. During inference, moving beyond binary choices, we propose a soft comparison method that calculates the likelihood of the test image being preferred over multiple predefined anchor images. The quality score is further optimized by maximum a posteriori estimation with the resulting probability matrix. Extensive experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training with converted single image quality scores for inference, surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we verify that the probability-matrix-based inference conversion not only improves the rating accuracy of …
Poster
Saurav Jha · Dong Gong · Lina Yao

[ East Exhibit Hall A-C ]

Abstract
Continual learning (CL) aims to help deep neural networks to learn new knowledge while retaining what has been learned. Owing to their powerful generalizability, pre-trained vision-language models such as Contrastive Language-Image Pre-training (CLIP) have lately gained traction as practical CL candidates. However, the domain mismatch between the pre-training and the downstream CL tasks calls for finetuning of the CLIP on the latter. The deterministic nature of the existing finetuning methods makes them overlook the many possible interactions across the modalities and deems them unsafe for high-risk tasks requiring reliable uncertainty estimation. To address these, our work proposes **C**ontinual **L**e**A**rning with **P**robabilistic finetuning (CLAP) - a probabilistic modeling framework over visual-guided text features per task, thus providing more calibrated CL finetuning. Unlike recent data-hungry anti-forgetting CL techniques, CLAP alleviates forgetting by exploiting the rich pre-trained knowledge of CLIP for weight initialization and distribution regularization of task-specific parameters. Cooperating with the diverse range of existing prompting methods, CLAP can surpass the predominant deterministic finetuning approaches for CL with CLIP. We conclude with out-of-the-box applications of superior uncertainty estimation abilities of CLAP including novel data detection and exemplar selection within the existing CL setups. Our code is available at https://github.com/srvCodes/clap4clip.
Poster
Jie Ma · Min Hu · Pinghui Wang · Wangchun Sun · Lingyun Song · Hongbin Pei · Jun Liu · Youtian Du

[ East Exhibit Hall A-C ]

Abstract
Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs. Nevertheless, prevalent AVQA approaches are prone to overlearning dataset biases, resulting in poor robustness. Furthermore, current datasets may not provide a precise diagnostic for these methods. To tackle these challenges, firstly, we propose a novel dataset, *MUSIC-AVQA-R*, crafted in two steps: rephrasing questions within the test split of a public dataset (*MUSIC-AVQA*) and subsequently introducing distribution shifts to split questions. The former leads to a large, diverse test space, while the latter results in a comprehensive robustness evaluation on rare, frequent, and overall questions. Secondly, we propose a robust architecture that utilizes a multifaceted cycle collaborative debiasing strategy to overcome bias learning. Experimental results show that this architecture achieves state-of-the-art performance on MUSIC-AVQA-R, notably obtaining a significant improvement of 9.32\%. Extensive ablation experiments are conducted on the two datasets mentioned to analyze the component effectiveness within the debiasing strategy. Additionally, we highlight the limited robustness of existing multi-modal QA methods through the evaluation on our dataset. We also conduct experiments combining various baselines with our proposed strategy on two datasets to verify its plug-and-play capability. …
Poster
Jiawei Yao · Qi Qian · Juhua Hu

[ East Exhibit Hall A-C ]

Abstract
Multiple clustering aims to discover various latent structures of data from different aspects. Deep multiple clustering methods have achieved remarkable performance by exploiting complex patterns and relationships in data. However, existing works struggle to flexibly adapt to diverse user-specific needs in data grouping, which may require manual understanding of each clustering. To address these limitations, we introduce Multi-Sub, a novel end-to-end multiple clustering approach that incorporates a multi-modal subspace proxy learning framework in this work. Utilizing the synergistic capabilities of CLIP and GPT-4, Multi-Sub aligns textual prompts expressing user preferences with their corresponding visual representations. This is achieved by automatically generating proxy words from large language models that act as subspace bases, thus allowing for the customized representation of data in terms specific to the user’s interests. Our method consistently outperforms existing baselines across a broad set of datasets in visual multiple clustering tasks. Our code is available at https://github.com/Alexander-Yao/Multi-Sub.
Poster
Haoyu Chen · Wenbo Li · JINJIN GU · Jingjing Ren · Sixiang Chen · Tian Ye · Renjing Pei · Kaiwen Zhou · Fenglong Song · Lei Zhu

[ East Exhibit Hall A-C ]

Abstract
Natural images captured by mobile devices often suffer from multiple types of degradation, such as noise, blur, and low light. Traditional image restoration methods require manual selection of specific tasks, algorithms, and execution sequences, which is time-consuming and may yield suboptimal results. All-in-one models, though capable of handling multiple tasks, typically support only a limited range and often produce overly smooth, low-fidelity outcomes due to their broad data distribution fitting. To address these challenges, we first define a new pipeline for restoring images with multiple degradations, and then introduce RestoreAgent, an intelligent image restoration system leveraging multimodal large language models. RestoreAgent autonomously assesses the type and extent of degradation in input images and performs restoration through (1) determining the appropriate restoration tasks, (2) optimizing the task sequence, (3) selecting the most suitable models, and (4) executing the restoration. Experimental results demonstrate the superior performance of RestoreAgent in handling complex degradation, surpassing human experts. Furthermore, the system’s modular design facilitates the fast integration of new tasks and models.
Poster
Spandan Madan · Will Xiao · Mingran Cao · Hanspeter Pfister · Margaret Livingstone · Gabriel Kreiman

[ East Exhibit Hall A-C ]

Abstract
We characterized the generalization capabilities of deep neural network encoding models when predicting neuronal responses from the visual cortex to flashed images. We collected MacaqueITBench, a large-scale dataset of neuronal population responses from the macaque inferior temporal (IT) cortex to over $300,000$ images, comprising $8,233$ unique natural images presented to seven monkeys over $109$ sessions. Using MacaqueITBench, we investigated the impact of distribution shifts on models predicting neuronal activity by dividing the images into Out-Of-Distribution (OOD) train and test splits. The OOD splits included variations in image contrast, hue, intensity, temperature, and saturation. Compared to the performance on in-distribution test images---the conventional way in which these models have been evaluated---models performed worse at predicting neuronal responses to out-of-distribution images, retaining as little as $20\\%$ of the performance on in-distribution test images. Additionally, the relative ranking of different models in terms of their ability to predict neuronal responses changed drastically across OOD shifts. The generalization performance under OOD shifts can be well accounted by a simple image similarity metric---the cosine distance between image representations extracted from a pre-trained object recognition model is a strong predictor of neuronal predictivity under different distribution shifts. The dataset of images, neuronal firing rate recordings, and …
Poster
Eleonora Gualdoni · Mycal Tucker · Roger Levy · Noga Zaslavsky

[ East Exhibit Hall A-C ]

Abstract
Human languages support both semantic categorization and local pragmatic interactions that require context-sensitive reasoning about meaning. While semantics and pragmatics are two fundamental aspects of language, they are typically studied independently and their co-evolution is largely under-explored. Here, we aim to bridge this gap by studying how a shared lexicon may emerge from local pragmatic interactions. To this end, we extend a recent information-theoretic framework for emergent communication in artificial agents, which integrates utility maximization, associated with pragmatics, with general communicative constraints that are believed to shape human semantic systems. Specifically, we show how to adapt this framework to train agents via unsupervised pragmatic interactions, and then evaluate their emergent lexical semantics. We test this approach in a rich visual domain of naturalistic images, and find that key human-like properties of the lexicon emerge when agents are guided by both context-specific utility and general communicative pressures, suggesting that both aspects are crucial for understanding how language may evolve in humans and in artificial agents.
Poster
Liwei Huang · Zhengyu Ma · Liutao Yu · Huihui Zhou · Yonghong Tian

[ East Exhibit Hall A-C ]

Abstract
Deep neural networks (DNNs) are widely used models for investigating biological visual representations. However, existing DNNs are mostly designed to analyze neural responses to static images, relying on feedforward structures and lacking physiological neuronal mechanisms. There is limited insight into how the visual cortex represents natural movie stimuli that contain context-rich information. To address these problems, this work proposes the long-range feedback spiking network (LoRaFB-SNet), which mimics top-down connections between cortical regions and incorporates spike information processing mechanisms inherent to biological neurons. Taking into account the temporal dependence of representations under movie stimuli, we present Time-Series Representational Similarity Analysis (TSRSA) to measure the similarity between model representations and visual cortical representations of mice. LoRaFB-SNet exhibits the highest level of representational similarity, outperforming other well-known and leading alternatives across various experimental paradigms, especially when representing long movie stimuli. We further conduct experiments to quantify how temporal structures (dynamic information) and static textures (static information) of the movie stimuli influence representational similarity, suggesting that our model benefits from long-range feedback to encode context-dependent representations just like the brain. Altogether, LoRaFB-SNet is highly competent in capturing both dynamic and static representations of the mouse visual cortex and contributes to the understanding of movie …
Poster
Shuangpeng Han · Ziyu Wang · Mengmi Zhang

[ East Exhibit Hall A-C ]

Abstract
Biological motion perception (BMP) refers to humans' ability to perceive and recognize the actions of living beings solely from their motion patterns, sometimes as minimal as those depicted on point-light displays. While humans excel at these tasks \textit{without any prior training}, current AI models struggle with poor generalization performance. To close this research gap, we propose the Motion Perceiver (MP). MP solely relies on patch-level optical flows from video clips as inputs. During training, it learns prototypical flow snapshots through a competitive binding mechanism and integrates invariant motion representations to predict action labels for the given video. During inference, we evaluate the generalization ability of all AI models and humans on 62,656 video stimuli spanning 24 BMP conditions using point-light displays in neuroscience. Remarkably, MP outperforms all existing AI models with a maximum improvement of 29\% in top-1 action recognition accuracy on these conditions. Moreover, we benchmark all AI models in point-light displays of two standard video datasets in computer vision. MP also demonstrates superior performance in these cases. More interestingly, via psychophysics experiments, we found that MP recognizes biological movements in a way that aligns with human behaviors. Our data and code are available at https://github.com/ZhangLab-DeepNeuroCogLab/MotionPerceiver.
Poster
Laurent Bonnasse-Gahot · Christophe Pallier

[ East Exhibit Hall A-C ]

Abstract
Over the past decade, studies of naturalistic language processing where participants are scanned while listening to continuous text have flourished. Using word embeddings at first, then large language models, researchers have created encoding models to analyze the brain signals. Presenting these models with the same text as the participants allows to identify brain areas where there is a significant correlation between the functional magnetic resonance imaging (fMRI) time series and the ones predicted by the models' artificial neurons. One intriguing finding from these studies is that they have revealed highly symmetric bilateral activation patterns, somewhat at odds with the well-known left lateralization of language processing. Here, we report analyses of an fMRI dataset where we manipulate the complexity of large language models, testing 28 pretrained models from 8 different families, ranging from 124M to 14.2B parameters. First, we observe that the performance of models in predicting brain responses follows a scaling law, where the fit with brain activity increases linearly with the logarithm of the number of parameters of the model (and its performance on natural language processing tasks). Second, although this effect is present in both hemispheres, it is stronger in the left than in the right hemisphere. Specifically, …
Poster
Dongyang Li · Chen Wei · Shiying Li · Jiachen Zou · Quanying Liu

[ East Exhibit Hall A-C ]

Abstract
How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of visual decoding and reconstruction based on functional Magnetic Resonance Imaging (fMRI). However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for visual decoding based on electroencephalography (EEG). In this study, we present an end-to-end EEG-based visual reconstruction zero-shot framework, consisting of a tailored brain encoder, called the Adaptive Thinking Mapper (ATM), which projects neural signals from different sources into the shared subspace as the clip embedding, and a two-stage multi-pipe EEG-to-image generation strategy. In stage one, EEG is embedded to align the high-level clip embedding, and then the prior diffusion model refines EEG embedding into image priors. A blurry image also decoded from EEG for maintaining the low-level feature. In stage two, we input both the high-level clip embedding, the blurry image and caption from EEG latent to a pre-trained diffusion model. Furthermore, we analyzed the impacts of different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data …
Poster
Matthias Tangemann · Matthias Kümmerer · Matthias Bethge

[ East Exhibit Hall A-C ]

Abstract
Humans excel at detecting and segmenting moving objects according to the {\it Gestalt} principle of “common fate”. Remarkably, previous works have shown that human perception generalizes this principle in a zero-shot fashion to unseen textures or random dots. In this work, we seek to better understand the computational basis for this capability by evaluating a broad range of optical flow models and a neuroscience inspired motion energy model for zero-shot figure-ground segmentation of random dot stimuli. Specifically, we use the extensively validated motion energy model proposed by Simoncelli and Heeger in 1998 which is fitted to neural recordings in cortex area MT. We find that a cross section of 40 deep optical flow models trained on different datasets struggle to estimate motion patterns in random dot videos, resulting in poor figure-ground segmentation performance. Conversely, the neuroscience-inspired model significantly outperforms all optical flow models on this task. For a direct comparison to human perception, we conduct a psychophysical study using a shape identification task as a proxy to measure human segmentation performance. All state-of-the-art optical flow models fall short of human performance, but only the motion energy model matches human capability. This neuroscience-inspired model successfully addresses the lack of human-like zero-shot …
Poster
Georgios Mentzelopoulos · Evangelos Chatzipantazis · Ashwin Ramayya · Michelle Hedlund · Vivek Buch · Kostas Daniilidis · Konrad Kording · Flavia Vitale

[ East Exhibit Hall A-C ]

Abstract
Deep learning based neural decoding from stereotactic electroencephalography (sEEG) would likely benefit from scaling up both dataset and model size. To achieve this, combining data across multiple subjects is crucial. However, in sEEG cohorts, each subject has a variable number of electrodes placed at distinct locations in their brain, solely based on clinical needs. Such heterogeneity in electrode number/placement poses a significant challenge for data integration, since there is no clear correspondence of the neural activity recorded at distinct sites between individuals. Here we introduce seegnificant: a training framework and architecture that can be used to decode behavior across subjects using sEEG data. We tokenize the neural activity within electrodes using convolutions and extract long-term temporal dependencies between tokens using self-attention in the time dimension. The 3D location of each electrode is then mixed with the tokens, followed by another self-attention in the electrode dimension to extract effective spatiotemporal neural representations. Subject-specific heads are then used for downstream decoding tasks. Using this approach, we construct a multi-subject model trained on the combined data from 21 subjects performing a behavioral task. We demonstrate that our model is able to decode the trial-wise response time of the subjects during the behavioral task …
Poster
Haixin Zhong · Mingyi Huang · Wei Dai · Haoyu Wang · Anna Roe · Yuguo Yu

[ East Exhibit Hall A-C ]

Abstract
During natural evolution, the primary visual cortex (V1) of lower mammals typically forms salt-and-pepper organizations, while higher mammals and primates develop pinwheel structures with distinct topological properties. Despite the general belief that V1 neurons primarily serve as edge detectors, the functional advantages of pinwheel structures over salt-and-peppers are not well recognized. To this end, we propose a two-dimensional self-evolving spiking neural network that integrates Hebbian-like plasticity and empirical morphological data. Through extensive exposure to image data, our network evolves from salt-and-peppers to pinwheel structures, with neurons becoming localized bandpass filters responsive to various orientations. This transformation is accompanied by an increase in visual field overlap. Our findings indicate that neurons in pinwheel centers (PCs) respond more effectively to complex spatial textures in natural images, exhibiting quicker responses than those in salt-and-pepper organizations. PCs act as first-order stage processors with heightened sensitivity and reduced latency to intricate contours, while adjacent iso-orientation domains serve as second-order stage processors that refine edge representations for clearer perception. This study presents the first theoretical evidence that pinwheel structures function as crucial detectors of spatial contour saliency in the visual cortex.
Poster
William Qian · Jacob Zavatone-Veth · Ben Ruben · Cengiz Pehlevan

[ East Exhibit Hall A-C ]

Abstract
One of the central goals of neuroscience is to gain a mechanistic understanding of how the dynamics of neural circuits give rise to their observed function. A popular approach towards this end is to train recurrent neural networks (RNNs) to reproduce experimental recordings of neural activity. These trained RNNs are then treated as surrogate models of biological neural circuits, whose properties can be dissected via dynamical systems analysis. How reliable are the mechanistic insights derived from this procedure? While recent advances in population-level recording technologies have allowed simultaneous recording of up to tens of thousands of neurons, this represents only a tiny fraction of most cortical circuits. Here we show that observing only a subset of neurons in a circuit can create mechanistic mismatches between a simulated teacher network and a data-constrained student, even when the two networks have matching single-unit dynamics. In particular, we show that partial observation of models of low-dimensional cortical dynamics based on functionally feedforward or low-rank connectivity can lead to surrogate models with spurious attractor structure. In total, our results illustrate the challenges inherent in accurately uncovering neural mechanisms from single-trial data, and suggest the need for new methods of validating data-constrained models for neural …
Poster
Lucine L Oganesian · Omid G. Sani · Maryam Shanechi

[ East Exhibit Hall A-C ]

Abstract
Generalized-linear dynamical models (GLDMs) remain a widely-used framework within neuroscience for modeling time-series data, such as neural spiking activity or categorical decision outcomes. Whereas the standard usage of GLDMs is to model a single data source, certain applications require jointly modeling two generalized-linear time-series sources while also dissociating their shared and private dynamics. Most existing GLDM variants and their associated learning algorithms do not support this capability. Here we address this challenge by developing a multi-step analytical subspace identification algorithm for learning a GLDM that explicitly models shared vs. private dynamics within two generalized-linear time-series. In simulations, we demonstrate our algorithm's ability to dissociate and model the dynamics within two time-series sources while being agnostic to their respective observation distributions. In neural data, we consider two specific applications of our algorithm for modeling discrete population spiking activity with respect to a secondary time-series. In both synthetic and real data, GLDMs learned with our algorithm more accurately decoded one time-series from the other using lower-dimensional latent states, as compared to models identified using existing GLDM learning algorithms.
Poster
Junyi Cao · Shanyan Guan · Yanhao Ge · Wei Li · Xiaokang Yang · Chao Ma

[ East Exhibit Hall A-C ]

Abstract
While humans effortlessly discern intrinsic dynamics and adapt to new scenarios, modern AI systems often struggle. Current methods for visual grounding of dynamics either use pure neural-network-based simulators (black box), which may violate physical laws, or traditional physical simulators (white box), which rely on expert-defined equations that may not fully capture actual dynamics. We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections, facilitating accurate learning of actual dynamics while maintaining the generalizability and interpretability of physical priors. Additionally, we propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images, allowing back-propagate image gradients to optimize the simulator. Comprehensive experiments on various dynamics in terms of grounded particle accuracy, dynamic rendering quality, and generalization ability demonstrate that NeuMA can accurately capture intrinsic dynamics. Project Page: https://xjay18.github.io/projects/neuma.html.
Poster
Hangchi Shen · Qian Zheng · Huamin Wang · Gang Pan

[ East Exhibit Hall A-C ]

Abstract
Despite spiking neural networks (SNNs) have demonstrated notable energy efficiency across various fields, the limited firing patterns of spiking neurons within fixed time steps restrict the expression of information, which impedes further improvement of SNN performance. In addition, current implementations of SNNs typically consider the firing rate or average membrane potential of the last layer as the output, lacking exploration of other possibilities. In this paper, we identify that the limited spike patterns of spiking neurons stem from the initial membrane potential (IMP), which is set to 0. By adjusting the IMP, the spiking neurons can generate additional firing patterns and pattern mappings. Furthermore, we find that in static tasks, the accuracy of SNNs at each time step increases as the membrane potential evolves from zero. This observation inspires us to propose a learnable IMP, which can accelerate the evolution of membrane potential and enables higher performance within a limited number of time steps. Additionally, we introduce the last time step (LTS) approach to accelerate convergence in static tasks, and we propose a label smooth temporal efficient training (TET) loss to mitigate the conflicts between optimization objective and regularization term in the vanilla TET. Our methods improve the accuracy by …
Poster
Shivang Rawat · David Heeger · Stefano Martiniani

[ East Exhibit Hall A-C ]

Abstract
Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability. In this work, we address these challenges by linking dynamic divisive normalization (DN) to the stability of "oscillatory recurrent gated neural integrator circuits'' (ORGaNICs), a biologically plausible recurrent cortical circuit model that dynamically achieves DN and that has been shown to simulate a wide range of neurophysiological phenomena. By using the indirect method of Lyapunov, we prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit when the recurrent weight matrix is the identity. We thus connect ORGaNICs to a system of coupled damped harmonic oscillators, which enables us to derive the circuit's energy function, providing a normative principle of what the circuit, and individual neurons, aim to accomplish. Further, for a generic recurrent weight matrix, we prove the stability of the 2D model and demonstrate empirically that …
Poster
Sangwoo Hwang · Seunghyun Lee · Dahoon Park · Donghun Lee · Jaeha Kung

[ East Exhibit Hall A-C ]

Abstract
Event-driven spiking neural networks(SNNs) are promising neural networks that reduce the energy consumption of continuously growing AI models. Recently, keeping pace with the development of transformers, transformer-based SNNs were presented. Due to the incompatibility of self-attention with spikes, however, existing transformer-based SNNs limit themselves by either restructuring self-attention architecture or conforming to non-spike computations. In this work, we propose a novel transformer-to-SNN conversion method that outputs an end-to-end spike-based transformer, named SpikedAttention. Our method directly converts the well-trained transformer without modifying its attention architecture. For the vision task, the proposed method converts Swin Transformer into an SNN without post-training or conversion-aware training, achieving state-of-the-art SNN accuracy on ImageNet dataset, i.e., 80.0\% with 28.7M parameters. Considering weight accumulation, neuron potential update, and on-chip data movement, SpikedAttention reduces energy consumption by 42\% compared to the baseline ANN, i.e., Swin-T. Furthermore, for the first time, we demonstrate that SpikedAttention successfully converts a BERT model to an SNN with only 0.3\% accuracy loss on average consuming 58\% less energy on GLUE benchmark. Our code is available at Github ( https://github.com/sangwoohwang/SpikedAttention ).
Poster
Hui Zheng · Haiteng Wang · Weibang Jiang · Zhongtao Chen · Li He · Peiyang Lin · Penghu Wei · Guoguang Zhao · Yunzhe Liu

[ East Exhibit Hall A-C ]

Abstract
Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown promise for high-performance speech decoding in medical applications, but less damaging methods like intracranial stereo-electroencephalography (sEEG) remain underexplored. With rapid advances in representation learning, leveraging abundant recordings to enhance speech decoding is increasingly attractive. However, popular methods often pre-train temporal models based on brain-level tokens, overlooking that brain activities in different regions are highly desynchronized during tasks. Alternatively, they pre-train spatial-temporal models based on channel-level tokens but fail to evaluate them on challenging tasks like speech decoding, which requires intricate processing in specific language-related areas. To address this issue, we collected a well-annotated Chinese word-reading sEEG dataset targeting language-related brain networks from 12 subjects. Using this benchmark, we developed the Du-IN model, which extracts contextual embeddings based on region-level tokens through discrete codex-guided mask modeling. Our model achieves state-of-the-art performance on the 61-word classification task, surpassing all baselines. Model comparisons and ablation studies reveal that our design choices, including (\romannumeral1) temporal modeling based on region-level tokens by utilizing 1D depthwise convolution to fuse channels in the ventral sensorimotor cortex (vSMC) and superior temporal gyrus (STG) and (\romannumeral2) self-supervision through discrete codex-guided mask modeling, significantly contribute to this performance. Overall, our approach -- …
Poster
Klara Kaleb · Barbara Feulner · Juan Gallego · Claudia Clopath

[ East Exhibit Hall A-C ]

Abstract
How do brain circuits learn to generate behaviour? While significant strides have been made in understanding learning in artificial neural networks, applying this knowledge to biological networks remains challenging. For instance, while backpropagation is known to perform accurate credit assignment of error in artificial neural networks, how a similarly powerful process can be realized within the constraints of biological circuits remains largely unclear. One of the major challenges is that the brain's extensive recurrent connectivity requires the propagation of error through both space and time, a problem that is notoriously difficult to solve in vanilla recurrent neural networks. Moreover, the extensive feedback connections in the brain are known to influence forward network activity, but the interaction between feedback-driven activity changes and local, synaptic plasticity-based learning is not fully understood. Building on our previous work modelling motor learning, this work investigates the mechanistic properties of pre-trained networks with feedback control on a standard motor task. We show that feedback control of the ongoing recurrent network dynamics approximates the optimal first-order gradient with respect to the network activities, allowing for rapid, ongoing movement correction. Moreover, we show that trial-by-trial adaptation to a persistent perturbation using a local, biologically plausible learning rule that …
Poster
Max Hamilton · Christian Lange · Elijah Cole · Alexander Shepard · Samuel Heinrich · Oisin Mac Aodha · Grant Van Horn · Subhransu Maji

[ East Exhibit Hall A-C ]

Abstract
Species range maps (SRMs) are essential tools for research and policy-making in ecology, conservation, and environmental management. However, traditional SRMs rely on the availability of environmental covariates and high-quality observational data, both of which can be challenging to obtain due to geographic inaccessibility and resource constraints. We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia, covering habitat preferences and range descriptions for tens of thousands of species. Our framework maps location, species, and text descriptions into a common space, facilitating the learning of rich spatial covariates at a global scale and enabling zero-shot range estimation from textual descriptions. Evaluated on held-out species, our zero-shot SRMs significantly outperform baselines and match the performance of SRMs obtained using tens of observations. Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data. We present extensive quantitative and qualitative analyses of the learned representations in the context of range estimation and other spatial tasks, demonstrating the effectiveness of our approach.
Poster
Sebastian Zeng · Florian Graf · Martin Uray · Stefan Huber · Roland Kwitt

[ East Exhibit Hall A-C ]

Abstract
We consider the problem of learning the dynamics in the topology of time-evolving point clouds, the prevalent spatiotemporal model for systems exhibiting collective behavior, such as swarms of insects and birds or particles in physics. In such systems, patterns emerge from (local) interactions among self-propelled entities. While several well-understood governing equations for motion and interaction exist, they are notoriously difficult to fit to data, as most prior work requires knowledge about individual motion trajectories, i.e., a requirement that is challenging to satisfy with an increasing number of entities. To evade such confounding factors, we investigate collective behavior from a _topological perspective_, but instead of summarizing entire observation sequences (as done previously), we propose learning a latent dynamical model from topological features _per time point_. The latter is then used to formulate a downstream regression task to predict the parametrization of some a priori specified governing equation. We implement this idea based on a latent ODE learned from vectorized (static) persistence diagrams and show that a combination of recent stability results for persistent homology justifies this modeling choice. Various (ablation) experiments not only demonstrate the relevance of each model component but provide compelling empirical evidence that our proposed model -- _Neural …
Poster
Kun Chen · Peng Ye · Hao Chen · kang chen · Tao Han · Wanli Ouyang · Tao Chen · LEI BAI

[ East Exhibit Hall A-C ]

Abstract
Data assimilation is a vital component in modern global medium-range weather forecasting systems to obtain the best estimation of the atmospheric state by combining the short-term forecast and observations. Recently, AI-based data assimilation approaches have attracted increasing attention for their significant advantages over traditional techniques in terms of computational consumption. However, existing AI-based data assimilation methods can only handle observations with a specific resolution, lacking the compatibility and generalization ability to assimilate observations with other resolutions. Considering that complex real-world observations often have different resolutions, we propose the Fourier Neural Processes (FNP) for arbitrary-resolution data assimilation in this paper. Leveraging the efficiency of the designed modules and flexible structure of neural processes, FNP achieves state-of-the-art results in assimilating observations with varying resolutions, and also exhibits increasing advantages over the counterparts as the resolution and the amount of observations increase. Moreover, our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning, demonstrating its excellent generalization ability across data resolutions as well as across tasks. Code is available at https://github.com/OpenEarthLab/FNP.
Poster
Mohamed Elrefaie · Florin Morar · Angela Dai · Faez Ahmed

[ East Exhibit Hall A-C ]

Abstract
We present DrivAerNet++, the largest and most comprehensive multimodal dataset for aerodynamic car design. DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations. The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles. Each entry in the dataset features detailed 3D meshes, parametric models, aerodynamic coefficients, and extensive flow and surface field data, along with segmented parts for car classification and point cloud data. This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification. With more than 39 TB of publicly available engineering data, DrivAerNet++ fills a significant gap in available resources, providing high-quality, diverse data to enhance model training, promote generalization, and accelerate automotive design processes. Along with rigorous dataset validation, we also provide ML benchmarking results on the task of aerodynamic drag prediction, showcasing the breadth of applications supported by our dataset. This dataset is set to significantly impact automotive design and broader engineering disciplines by fostering innovation and improving the fidelity of aerodynamic evaluations. Dataset and code available at: https://github.com/Mohamedelrefaie/DrivAerNet
Poster
Yanpeng Ye · Jie Ren · Shaozhou Wang · Yuwei Wan · Imran Razzak · Bram Hoex · Haofen Wang · Tong Xie · Wenjie Zhang

[ East Exhibit Hall A-C ]

Abstract
Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges for efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques, integrated with large language models to extract and systematically organize a decade's worth of high-quality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated materials knowledge graphs.
Poster
Armand Kassaï Koupaï · Jorge Mifsut Benet · Yuan Yin · Jean-Noël Vittaut · Patrick Gallinari

[ East Exhibit Hall A-C ]

Abstract
Solving parametric partial differential equations (PDEs) presents significant challenges for data-driven methods due to the sensitivity of spatio-temporal dynamics to variations in PDE parameters. Machine learning approaches often struggle to capture this variability. To address this, data-driven approaches learn parametric PDEs by sampling a very large variety of trajectories with varying PDE parameters. We first show that incorporating conditioning mechanisms for learning parametric PDEs is essential and that among them, \textit{adaptive conditioning}, allows stronger generalization. As existing adaptive conditioning methods do not scale well with respect to the number of parameters to adapt in the neural solver, we propose GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via a first-order optimization and low-rank rapid adaptation of a small set of context parameters. We demonstrate the versatility of our approach for both fully data-driven and for physics-aware neural solvers. Validation performed on a whole range of spatio-temporal forecasting problems demonstrates excellent performance for generalizing to unseen conditions including initial conditions, PDE coefficients, forcing terms and solution domain. *Project page*: https://geps-project.github.io
Poster
Eric Qu · Aditi Krishnapriyan

[ East Exhibit Hall A-C ]

Abstract
Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning.It involves how a model’s performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as surrogate models for ab initio quantum mechanical calculations, predicting the energy and forces between atoms in molecules and materials based on atomic configurations. The dominant paradigm in this field is to incorporate numerous physical domain constraints into the model, such as symmetry constraints like rotational equivariance. We contend that these increasingly complex domain constraints inhibit the scaling ability of NNIPs, and such strategies are likely to cause model performance to plateau in the long run. In this work, we take an alternative approach and start by systematically studying NNIP scaling properties and strategies. Our findings indicate that scaling the model through attention mechanisms is both efficient and improves model expressivity. These insights motivate us to develop an NNIP architecture designed for scalability: the Efficiently Scaled Attention Interatomic Potential (EScAIP). EScAIP …
Poster
Navami Kairanda · Marc Habermann · Christian Theobalt · Vladislav Golyanik

[ East Exhibit Hall A-C ]

Abstract
Despite existing 3D cloth simulators producing realistic results, they predominantly operate on discrete surface representations (e.g. points and meshes) with a fixed spatial resolution, which often leads to large memory consumption and resolution-dependent simulations. Moreover, back-propagating gradients through the existing solvers is difficult and they hence cannot be easily integrated into modern neural architectures. In response, this paper re-thinks physically plausible cloth simulation: We propose NeuralClothSim, i.e., a new quasistatic cloth simulator using thin shells, in which surface deformation is encoded in neural network weights in form of a neural field. Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields (NDFs); it supervises NDF equilibria with the laws of the non-linear Kirchhoff-Love shell theory with a non-linear anisotropic material model. NDFs are adaptive: They 1) allocate their capacity to the deformation details and 2) allow surface state queries at arbitrary spatial resolutions without re-training. We show how to train NeuralClothSim while imposing hard boundary conditions and demonstrate multiple applications, such as material interpolation and simulation editing. The experimental results highlight the effectiveness of our continuous neural formulation.
Poster
Sebastian Ament · Elizabeth Santorella · David Eriksson · Ben Letham · Maximilian Balandat · Eytan Bakshy

[ East Exhibit Hall A-C ]

Abstract
Gaussian processes (GPs) are non-parametric probabilistic regression models that are popular due to their flexibility, data efficiency, and well-calibrated uncertainty estimates. However, standard GP models assume homoskedastic Gaussian noise, while many real-world applications are subject to non-Gaussian corruptions. Variants of GPs that are more robust to alternative noise models have been proposed, and entail significant trade-offs between accuracy and robustness, and between computational requirements and theoretical guarantees. In this work, we propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels with a sequential selection procedure maximizing the log marginal likelihood that we refer to as relevance pursuit. We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances, a property rarely found in either robust regression objectives or GP marginal likelihoods. This in turn implies the weak submodularity of the corresponding subset selection problem, and thereby proves approximation guarantees for the proposed algorithm. We compare the model’s performance relative to other approaches on diverse regression and Bayesian optimization tasks, including the challenging but common setting of sparse corruptions of the labels within or close to the function range.
Poster
Daolang Huang · Yujia Guo · Luigi Acerbi · Samuel Kaski

[ East Exhibit Hall A-C ]

Abstract
Many critical decisions, such as personalized medical diagnoses and product pricing, are made based on insights gained from designing, observing, and analyzing a series of experiments. This highlights the crucial role of experimental design, which goes beyond merely collecting information on system parameters as in traditional Bayesian experimental design (BED), but also plays a key part in facilitating downstream decision-making. Most recent BED methods use an amortized policy network to rapidly design experiments. However, the information gathered through these methods is suboptimal for down-the-line decision-making, as the experiments are not inherently designed with downstream objectives in mind. In this paper, we present an amortized decision-aware BED framework that prioritizes maximizing downstream decision utility. We introduce a novel architecture, the Transformer Neural Decision Process (TNDP), capable of instantly proposing the next experimental design, whilst inferring the downstream decision, thus effectively amortizing both tasks within a unified workflow. We demonstrate the performance of our method across several tasks, showing that it can deliver informative designs and facilitate accurate decision-making.
Poster
Chu Xin Cheng · Raul Astudillo · Thomas A Desautels · Yisong Yue

[ East Exhibit Hall A-C ]

Abstract
We consider Bayesian algorithm execution (BAX), a framework for efficiently selecting evaluation points of an expensive function to infer a property of interest encoded as the output of a base algorithm. Since the base algorithm typically requires more evaluations than are feasible, it cannot be directly applied. Instead, BAX methods sequentially select evaluation points using a probabilistic numerical approach. Current BAX methods use expected information gain to guide this selection. However, this approach is computationally intensive. Observing that, in many tasks, the property of interest corresponds to a target set of points defined by the function, we introduce PS-BAX, a simple, effective, and scalable BAX method based on posterior sampling. PS-BAX is applicable to a wide range of problems, including many optimization variants and level set estimation. Experiments across diverse tasks demonstrate that PS-BAX performs competitively with existing baselines while being significantly faster, simpler to implement, and easily parallelizable, setting a strong baseline for future research. Additionally, we establish conditions under which PS-BAX is asymptotically convergent, offering new insights into posterior sampling as an algorithm design paradigm.
Spotlight Poster
Dustin Wright · Christian Igel · Raghavendra Selvan

[ East Exhibit Hall A-C ]

Abstract
Modern neural networks are often massively overparameterized leading to high compute costs during training and at inference. One effective method to improve both the compute and energy efficiency of neural networks while maintaining good performance is structured pruning, where full network structures (e.g. neurons or convolutional filters) that have limited impact on the model output are removed. In this work, we propose Bayesian Model Reduction for Structured pruning (BMRS), a fully end-to-end Bayesian method of structured pruning. BMRS is based on two recent methods: Bayesian structured pruning with multiplicative noise, and Bayesian model reduction (BMR), a method which allows efficient comparison of Bayesian models under a change in prior. We present two realizations of BMRS derived from different priors which yield different structured pruning characteristics: 1) BMRS_N with the truncated log-normal prior, which offers reliable compression rates and accuracy without the need for tuning any thresholds and 2) BMRS_U with the truncated log-uniform prior that can achieve more aggressive compression based on the boundaries of truncation. Overall, we find that BMRS offers a theoretically grounded approach to structured pruning of neural networks yielding both high compression rates and accuracy. Experiments on multiple datasets and neural networks of varying complexity showed …
Poster
Luckeciano Carvalho Melo · Panagiotis Tigas · Alessandro Abate · Yarin Gal

[ East Exhibit Hall A-C ]

Abstract
Leveraging human preferences for steering the behavior of Large Language Models (LLMs) has demonstrated notable success in recent years. Nonetheless, data selection and labeling are still a bottleneck for these systems, particularly at large scale. Hence, selecting the most informative points for acquiring human feedback may considerably reduce the cost of preference labeling and unleash the further development of LLMs. Bayesian Active Learning provides a principled framework for addressing this challenge and has demonstrated remarkable success in diverse settings. However, previous attempts to employ it for Preference Modeling did not meet such expectations. In this work, we identify that naive epistemic uncertainty estimation leads to the acquisition of redundant samples. We address this by proposing the Bayesian Active Learner for Preference Modeling (BAL-PM), a novel stochastic acquisition policy that not only targets points of high epistemic uncertainty according to the preference model but also seeks to maximize the entropy of the acquired prompt distribution in the feature space spanned by the employed LLM. Notably, our experiments demonstrate that BAL-PM requires 33\% to 68\% fewer preference labels in two popular human preference datasets and exceeds previous stochastic Bayesian acquisition policies.
Poster
Antoine Picard · Roman Moscoviz · Benjamin Guedj

[ East Exhibit Hall A-C ]

Abstract
PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising a generalisation bound. However, optimising generalisation bounds might not always be viable for tractable or computational reasons, or both. For example, iteratively querying the empirical risk might prove computationally expensive.In response, we introduce a novel principled strategy for building an iterative learning algorithm via the optimisation of a sequence of surrogate training objectives, inherited from PAC-Bayes generalisation bounds. The key argument is to replace the empirical risk (seen as a function of hypotheses) in the generalisation bound by its projection onto a constructible low dimensional functional space: these projections can be queried much more efficiently than the initial risk. On top of providing that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute theoretical results establishing that iteratively optimising our surrogates implies the optimisation of the original generalisation bounds, (ii) instantiate this strategy to the framework of meta-learning, introducing a meta-objective offering a closed form expression for meta-gradient, (iii) illustrate our approach with numerical experiments inspired by an industrial biochemical problem.
Poster
Julius Vetter · Guy Moss · Cornelius Schröder · Richard Gao · Jakob H Macke

[ East Exhibit Hall A-C ]

Abstract
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations - an inference task also known as source distribution estimation. This problem can be ill-posed, however, since many different source distributions might produce the same distribution of data-consistent simulations. To make a principled choice among many equally valid sources, we propose an approach which targets the maximum entropy distribution, i.e., prioritizes retaining as much uncertainty as possible. Our method is purely sample-based - leveraging the Sliced-Wasserstein distance to measure the discrepancy between the dataset and simulations - and thus suitable for simulators with intractable likelihoods. We benchmark our method on several tasks, and show that it can recover source distributions with substantially higher entropy than recent source estimation methods, without sacrificing the fidelity of the simulations. Finally, to demonstrate the utility of our approach, we infer source distributions for parameters of the Hodgkin-Huxley model from experimental datasets with hundreds of single-neuron measurements. In summary, we propose a principled method for inferring source distributions of scientific simulator parameters while retaining as much uncertainty as possible.
Poster
Vladimir Kostic · Grégoire Pacreau · Giacomo Turri · Pietro Novelli · Karim Lounici · Massimiliano Pontil

[ East Exhibit Hall A-C ]

Abstract
We introduce Neural Conditional Probability (NCP), an operator-theoretic approach to learning conditional distributions with a focus on statistical inference tasks. NCP can be used to build conditional confidence regions and extract key statistics such as conditional quantiles, mean, and covariance. It offers streamlined learning via a single unconditional training phase, allowing efficient inference without the need for retraining even when conditioning changes. By leveraging the approximation capabilities of neural networks, NCP efficiently handles a wide variety of complex probability distributions. We provide theoretical guarantees that ensure both optimization consistency and statistical accuracy. In experiments, we show that NCP with a 2-hidden-layer network matches or outperforms leading methods. This demonstrates that a a minimalistic architecture with a theoretically grounded loss can achieve competitive results, even in the face of more complex architectures.
Poster
Wen-Bo Du · Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou

[ East Exhibit Hall A-C ]

Abstract
Machine learning (ML) has achieved remarkable success in prediction tasks. In many real-world scenarios, rather than solely predicting an outcome using an ML model, the crucial concern is how to make decisions to prevent the occurrence of undesired outcomes, known as the *avoiding undesired future (AUF)* problem. To this end, a new framework called *rehearsal learning* has been proposed recently, which works effectively in stationary environments by leveraging the influence relations among variables. In real tasks, however, the environments are usually non-stationary, where the influence relations may be *dynamic*, leading to the failure of AUF by the existing method. In this paper, we introduce a novel sequential methodology that effectively updates the estimates of dynamic influence relations, which are crucial for rehearsal learning to prevent undesired outcomes in non-stationary environments. Meanwhile, we take the cost of decision actions into account and provide the formulation of AUF problem with minimal action cost under non-stationarity. We prove that in linear Gaussian cases, the problem can be transformed into the well-studied convex quadratically constrained quadratic program (QCQP). In this way, we establish the first polynomial-time rehearsal-based approach for addressing the AUF problem. Theoretical and experimental results validate the effectiveness and efficiency of our …
Poster
Marcel Kollovieh · Bertrand Charpentier · Daniel Zügner · Stephan Günnemann

[ East Exhibit Hall A-C ]

Abstract
Hierarchical clustering has usually been addressed by discrete optimization using heuristics or continuous optimization of relaxed scores for hierarchies. In this work, we propose to optimize expected scores under a probabilistic model over hierarchies. (1) We show theoretically that the global optimal values of the expected Dasgupta cost and Tree-Sampling divergence (TSD), two unsupervised metrics for hierarchical clustering, are equal to the optimal values of their discrete counterparts contrary to some relaxed scores. (2) We propose Expected Probabilistic Hierarchies (EPH), a probabilistic model to learn hierarchies in data by optimizing expected scores. EPH uses differentiable hierarchy sampling enabling end-to-end gradient descent based optimization, and an unbiased subgraph sampling approach to scale to large datasets. (3) We evaluate EPH on synthetic and real-world datasets including vector and graph datasets. EPH outperforms all other approaches quantitatively and provides meaningful hierarchies in qualitative evaluations.
Poster
Tiago Silva · Daniel Augusto de Souza · Diego Mesquita

[ East Exhibit Hall A-C ]

Abstract
Bayes' rule naturally allows for inference refinement in a streaming fashion, without the need to recompute posteriors from scratch whenever new data arrives. In principle, Bayesian streaming is straightforward: we update our prior with the available data and use the resulting posterior as a prior when processing the next data chunk. In practice, however, this recipe entails i) approximating an intractable posterior at each time step; and ii) encapsulating results appropriately to allow for posterior propagation. For continuous state spaces, variational inference (VI) is particularly convenient due to its scalability and the tractability of variational posteriors, For discrete state spaces, however, state-of-the-art VI results in analytically intractable approximations that are ill-suited for streaming settings. To enable streaming Bayesian inference over discrete parameter spaces, we propose streaming Bayes GFlowNets (abbreviated as SB-GFlowNets) by leveraging the recently proposed GFlowNets --- a powerful class of amortized samplers for discrete compositional objects. Notably, SB-GFlowNet approximates the initial posterior using a standard GFlowNet and subsequently updates it using a tailored procedure that requires only the newly observed data. Our case studies in linear preference learning and phylogenetic inference showcase the effectiveness of SB-GFlowNets in sampling from an unnormalized posterior in a streaming setting. As expected, …
Poster
Jules Berman · Tobias Blickhan · Benjamin Peherstorfer

[ East Exhibit Hall A-C ]

Abstract
The aim of this work is to learn models of population dynamics of physical systems that feature stochastic and mean-field effects and that depend on physics parameters. The learned models can act as surrogates of classical numerical models to efficiently predict the system behavior over the physics parameters. Building on the Benamou-Brenier formula from optimal transport and action matching, we use a variational problem to infer parameter- and time-dependent gradient fields that represent approximations of the population dynamics. The inferred gradient fields can then be used to rapidly generate sample trajectories that mimic the dynamics of the physical system on a population level over varying physics parameters. We show that combining Monte Carlo sampling with higher-order quadrature rules is critical for accurately estimating the training objective from sample data and for stabilizing the training process. We demonstrate on Vlasov-Poisson instabilities as well as on high-dimensional particle and chaotic systems that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling that simply condition on time and physics parameters.
Poster
Syrine Belakaria · Ben Letham · Jana Doppa · Barbara Engelhardt · Stefano Ermon · Eytan Bakshy

[ East Exhibit Hall A-C ]

Abstract
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions. Our aim is to efficiently learn the importance of different input variables, e.g., in vehicle safety experimentation, we study the impact of the thickness of various components on safety objectives. Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value. We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures (DGSMs) under Gaussian process surrogate models.We showcase the first application of active learning directly to DGSMs, and develop tractable uncertainty reduction and information gain acquisition functions for these measures. Through comprehensive evaluation on synthetic and real-world problems, our study demonstrates how these active learning acquisition strategies substantially enhance the sample efficiency of DGSM estimation, particularly with limited evaluation budgets. Our work paves the way for more efficient and accurate sensitivity analysis in various scientific and engineering applications.
Poster
Patrick Pynadath · Riddhiman Bhattacharya · ARUN HARIHARAN · Ruqi Zhang

[ East Exhibit Hall A-C ]

Abstract
Discrete distributions, particularly in high-dimensional deep models, are often highly multimodal due to inherent discontinuities. While gradient-based discrete sampling has proven effective, it is susceptible to becoming trapped in local modes due to the gradient information. To tackle this challenge, we propose an automatic cyclical scheduling, designed for efficient and accurate sampling in multimodal discrete distributions. Our method contains three key components: (1) a cyclical step size schedule where large steps discover new modes and small steps exploit each mode; (2) a cyclical balancing schedule, ensuring "balanced" proposals for given step sizes and high efficiency of the Markov chain; and (3) an automatic tuning scheme for adjusting the hyperparameters in the cyclical schedules, allowing adaptability across diverse datasets with minimal tuning. We prove the non-asymptotic convergence and inference guarantee for our method in general discrete distributions. Extensive experiments demonstrate the superiority of our method in sampling complex multimodal discrete distributions.
Poster
Alberto Cabezas · Louis Sharrock · Christopher Nemeth

[ East Exhibit Hall A-C ]

Abstract
Continuous normalizing flows (CNFs) learn the probability path between a reference distribution and a target distribution by modeling the vector field generating said path using neural networks. Recently, Lipman et al. (2022) introduced a simple and inexpensive method for training CNFs in generative modeling, termed flow matching (FM). In this paper, we repurpose this method for probabilistic inference by incorporating Markovian sampling methods in evaluating the FM objective, and using the learned CNF to improve Monte Carlo sampling. Specifically, we propose an adaptive Markov chain Monte Carlo (MCMC) algorithm, which combines a local Markov transition kernel with a non-local, flow-informed transition kernel, defined using a CNF. This CNF is adapted on-the-fly using samples from the Markov chain, which are used to specify the probability path for the FM objective. Our method also includes an adaptive tempering mechanism that allows the discovery of multiple modes in the target distribution. Under mild assumptions, we establish convergence of our method to a local optimum of the FM objective. We then benchmark our approach on several synthetic and real-world examples, achieving similar performance to other state-of-the-art methods but often at a significantly lower computational cost.
Poster
Declan McNamara · Jackson Loper · Jeffrey Regier

[ East Exhibit Hall A-C ]

Abstract
In variational inference (VI), an approximation of the posterior distribution is selected from a family of distributions through numerical optimization. With the most common variational objective function, known as the evidence lower bound (ELBO), only convergence to a *local* optimum can be guaranteed. In this work, we instead establish the *global* convergence of a particular VI method. This VI method, which may be considered an instance of neural posterior estimation (NPE), minimizes an expectation of the inclusive (forward) KL divergence to fit a variational distribution that is parameterized by a neural network. Our convergence result relies on the neural tangent kernel (NTK) to characterize the gradient dynamics that arise from considering the variational objective in function space. In the asymptotic regime of a fixed, positive-definite neural tangent kernel, we establish conditions under which the variational objective admits a unique solution in a reproducing kernel Hilbert space (RKHS). Then, we show that the gradient descent dynamics in function space converge to this unique function. In ablation studies and practical problems, we demonstrate that our results explain the behavior of NPE in non-asymptotic finite-neuron settings, and show that NPE outperforms ELBO-based optimization, which often converges to shallow local optima.
Poster
François Bertholom · randal douc · François Roueff

[ East Exhibit Hall A-C ]

Abstract
Recent works in Variational Inference have examined alternative criteria to the commonly used exclusive Kullback-Leibler divergence. Encouraging empirical results have been obtained with the family of alpha-divergences, but few works have focused on the asymptotic properties of the proposed algorithms, especially as the number of iterations goes to infinity. In this paper, we study a procedure that ensures a monotonic decrease in the alpha-divergence. We provide sufficient conditions to guarantee its convergence to a local minimizer of the alpha-divergence at a geometric rate when the variational family belongs to the class of exponential models. The sample-based version of this ideal procedure involves biased gradient estimators, thus hindering any theoretical study. We propose an alternative unbiased algorithm, we prove its almost sure convergence to a local minimizer of the alpha-divergence, and a law of the iterated logarithm. Our results are exemplified with toy and real-data experiments.
Spotlight Poster
Jen Ning Lim · Adam Johansen

[ East Exhibit Hall A-C ]

Abstract
Semi-implicit variational inference (SIVI) enriches the expressiveness of variationalfamilies by utilizing a kernel and a mixing distribution to hierarchically define thevariational distribution. Existing SIVI methods parameterize the mixing distributionusing implicit distributions, leading to intractable variational densities. As a result,directly maximizing the evidence lower bound (ELBO) is not possible, so theyresort to one of the following: optimizing bounds on the ELBO, employing costlyinner-loop Markov chain Monte Carlo runs, or solving minimax objectives. In thispaper, we propose a novel method for SIVI called Particle Variational Inference(PVI) which employs empirical measures to approximate the optimal mixingdistributions characterized as the minimizer of a free energy functional. PVI arisesnaturally as a particle approximation of a Euclidean–Wasserstein gradient flow and,unlike prior works, it directly optimizes the ELBO whilst making no parametricassumption about the mixing distribution. Our empirical results demonstrate thatPVI performs favourably compared to other SIVI methods across various tasks.Moreover, we provide a theoretical analysis of the behaviour of the gradient flowof a related free energy functional: establishing the existence and uniqueness ofsolutions as well as propagation of chaos results.
Poster
Sanjay Haresh · Daniel Dijkman · Apratim Bhattacharyya · Roland Memisevic

[ East Exhibit Hall A-C ]

Abstract
Robotics tasks are highly compositional by nature. For example, to perform a high-level task like cleaning the table a robot must employ low-level capabilities of moving the effectors to the objects on the table, pick them up and then move them off the table one-by-one, while re-evaluating the consequently dynamic scenario in the process. Given that large vision language models (VLMs) have shown progress on many tasks that require high level, human-like reasoning, we ask the question: if the models are taught the requisite low-level capabilities, can they compose them in novel ways to achieve interesting high-level tasks like cleaning the table without having to be explicitly taught so? To this end, we present ClevrSkills - a benchmark suite for compositional reasoning in robotics. ClevrSkills is an environment suite developed on top of the ManiSkill2 simulator and an accompanying dataset. The dataset contains trajectories generated on a range of robotics tasks with language and visual annotations as well as multi-modal prompts as task specification. The suite includes a curriculum of tasks with three levels of compositional understanding, starting with simple tasks requiring basic motor skills. We benchmark multiple different VLM baselines on ClevrSkills and show that even after being pre-trained …
Poster
Zhengyi Luo · Jinkun Cao · Sammy Christen · Alexander Winkler · Kris Kitani · Weipeng Xu

[ East Exhibit Hall A-C ]

Abstract
We present a method for controlling a simulated humanoid to grasp an object and move it to follow an object's trajectory. Due to the challenges in controlling a humanoid with dexterous hands, prior methods often use a disembodied hand and only consider vertical lifts or short trajectories. This limited scope hampers their applicability for object manipulation required for animation and simulation. To close this gap, we learn a controller that can pick up a large number (>1200) of objects and carry them to follow randomly generated trajectories. Our key insight is to leverage a humanoid motion representation that provides human-like motor skills and significantly speeds up training. Using only simplistic reward, state, and object representations, our method shows favorable scalability on diverse objects and trajectories. For training, we do not need a dataset of paired full-body motion and object trajectories. At test time, we only require the object mesh and desired trajectories for grasping and transporting. To demonstrate the capabilities of our method, we show state-of-the-art success rates in following object trajectories and generalizing to unseen objects. Code and models will be released.
Poster
Zaijing Li · Yuquan Xie · Rui Shao · Gongwei Chen · Dongmei Jiang · Liqiang Nie

[ East Exhibit Hall A-C ]

Abstract
Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid …
Poster
Haoran Lu · Ruihai Wu · Yitong Li · Sijie Li · Ziyu Zhu · Chuanruo Ning · Yan Zhao · Longzan Luo · Yuanpei Chen · Hao Dong

[ East Exhibit Hall A-C ]

Abstract
Manipulating garments and fabrics has long been a critical endeavor in the development of home-assistant robots. However, due to complex dynamics and topological structures, garment manipulations pose significant challenges. Recent successes in reinforcement learning and vision-based methods offer promising avenues for learning garment manipulation. Nevertheless, these approaches are severely constrained by current benchmarks, which exhibit offer limited diversity of tasks and unrealistic simulation behavior. Therefore, we present GarmentLab, a content-rich benchmark and realistic simulation designed for deformable object and garment manipulation. Our benchmark encompasses a diverse range of garment types, robotic systems and manipulators. The abundant tasks in the benchmark further explores of the interactions between garments, deformable objects, rigid bodies, fluids, and human body. Moreover, by incorporating multiple simulation methods such as FEM and PBD, along with our proposed sim-to-real algorithms and real-world benchmark, we aim to significantly narrow the sim-to-real gap. We evaluate state-of-the-art vision methods, reinforcement learning, and imitation learning approaches on these tasks, highlighting the challenges faced by current algorithms, notably their limited generalization capabilities. Our proposed open-source environments and comprehensive analysis show promising boost to future research in garment manipulation by unlocking the full potential of these methods. We guarantee that we will open-source our …
Poster
Zichen Cui · Hengkai Pan · Aadhithya Iyer · Siddhant Haldar · Lerrel Pinto

[ East Exhibit Hall A-C ]

Abstract
Imitation learning has proven to be a powerful tool for training complex visuo-motor policies. However, current methods often require hundreds to thousands of expert demonstrations to handle high-dimensional visual observations. A key reason for this poor data efficiency is that visual representations are predominantly either pretrained on out-of-domain data or trained directly through a behavior cloning objective. In this work, we present DynaMo, a new in-domain, self-supervised method for learning visual representations. Given a set of expert demonstrations, we jointly learn a latent inverse dynamics model and a forward dynamics model over a sequence of image embeddings, predicting the next frame in latent space, without augmentations, contrastive sampling, or access to ground truth actions. Importantly, DynaMo does not require any out-of-domain data such as Internet datasets or cross-embodied datasets. On a suite of six simulated and real environments, we show that representations learned with DynaMo significantly improve downstream imitation learning performance over prior self-supervised learning objectives, and pretrained representations. Gains from using DynaMo hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP, and nearest neighbors. Finally, we ablate over key components of DynaMo and measure its impact on downstream policy performance. Robot videos are best viewed at https://dynamo-ssl.github.io.
Poster
Xinlei Wang · Maike Feng · Jing Qiu · JINJIN GU · Junhua Zhao

[ East Exhibit Hall A-C ]

Abstract
This paper introduces a novel approach that leverages Large Language Models (LLMs) and Generative Agents to enhance time series forecasting by reasoning across both text and time series data. With language as a medium, our method adaptively integrates social events into forecasting models, aligning news content with time series fluctuations to provide richer insights. Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning to evaluate predictions. This enables the model to analyze complex events, such as unexpected incidents and shifts in social behavior, and continuously refine the selection logic of news and the robustness of the agent's output. By integrating selected news events with time series data, we fine-tune a pre-trained LLM to predict sequences of digits in time series. The results demonstrate significant improvements in forecasting accuracy, suggesting a potential paradigm shift in time series forecasting through the effective utilization of unstructured news data.
Poster
Manuel Brenner · Christoph Jürgen Hemmer · Zahra Monfared · Daniel Durstewitz

[ East Exhibit Hall A-C ]

Abstract
Dynamical systems theory (DST) is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS combined by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and Rössler systems, AL-RNNs derive, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic …
Poster
Jingwei Liu · Ling Yang · Hongyan Li · Shenda Hong

[ East Exhibit Hall A-C ]

Abstract
While time series diffusion models have received considerable focus from many recent works, the performance of existing models remains highly unstable. Factors limiting time series diffusion models include insufficient time series datasets and the absence of guidance. To address these limitations, we propose a Retrieval-Augmented Time series Diffusion model (RATD). The framework of RATD consists of two parts: an embedding-based retrieval process and a reference-guided diffusion model. In the first part, RATD retrieves the time series that are most relevant to historical time series from the database as references. The references are utilized to guide the denoising process in the second part. Our approach allows leveraging meaningful samples within the database to aid in sampling, thus maximizing the utilization of datasets. Meanwhile, this reference-guided mechanism also compensates for the deficiencies of existing time series diffusion models in terms of guidance. Experiments and visualizations on multiple datasets demonstrate the effectiveness of our approach, particularly in complicated prediction tasks. Our code is available at https://github.com/stanliu96/RATD
Poster
Vincent Zhihao Zheng · Lijun Sun

[ East Exhibit Hall A-C ]

Abstract
Accurately modeling the correlation structure of errors is critical for reliable uncertainty quantification in probabilistic time series forecasting. While recent deep learning models for multivariate time series have developed efficient parameterizations for time-varying contemporaneous covariance, but they often assume temporal independence of errors for simplicity. However, real-world data often exhibit significant error autocorrelation and cross-lag correlation due to factors such as missing covariates. In this paper, we introduce a plug-and-play method that learns the covariance structure of errors over multiple steps for autoregressive models with Gaussian-distributed errors. To ensure scalable inference and computational efficiency, we model the contemporaneous covariance using a low-rank-plus-diagonal parameterization and capture cross-covariance through a group of independent latent temporal processes. The learned covariance matrix is then used to calibrate predictions based on observed residuals. We evaluate our method on probabilistic models built on RNNs and Transformer architectures, and the results confirm the effectiveness of our approach in improving predictive accuracy and uncertainty quantification without significantly increasing the parameter size.
Poster
Qingxiang Liu · Xu Liu · Chenghao Liu · Qingsong Wen · Yuxuan Liang

[ East Exhibit Hall A-C ]

Abstract
Unlike natural language processing and computer vision, the development of Foundation Models (FMs) for time series forecasting is blocked due to data scarcity. While recent efforts are focused on building such FMs by unlocking the potential of language models (LMs) for time series analysis, dedicated parameters for various downstream forecasting tasks need training, which hinders the common knowledge sharing across domains.Moreover, data owners may hesitate to share the access to local data due to privacy concerns and copyright protection, which makes it impossible to simply construct a FM on cross-domain training instances.To address these issues, we propose Time-FFM, a Federated Foundation Model for Time series forecasting by leveraging pretrained LMs.Specifically, we begin by transforming time series into the modality of text tokens.To bootstrap LMs for time series reasoning, we propose a prompt adaption module to determine domain-customized prompts dynamically instead of artificially.Given the data heterogeneity across domains, we design a personalized federated training strategy by learning global encoders and local prediction heads. Our comprehensive experiments indicate that Time-FFM outperforms state-of-the-arts and promises effective few-shot and zero-shot forecaster.The code is available at https://github.com/CityMind-Lab/NeurIPS24-Time-FFM/tree/main.
Poster
Chengsen Wang · Qi Qi · Jingyu Wang · Haifeng Sun · Zirui Zhuang · Jinming Wu · Jianxin Liao

[ East Exhibit Hall A-C ]

Abstract
Time series forecasting has played a pivotal role across various industries, including finance, transportation, energy, healthcare, and climate. Due to the abundant seasonal information they contain, timestamps possess the potential to offer robust global guidance for forecasting techniques. However, existing works primarily focus on local observations, with timestamps being treated merely as an optional supplement that remains underutilized. When data gathered from the real world is polluted, the absence of global information will damage the robust prediction capability of these algorithms. To address these problems, we propose a novel framework named GLAFF. Within this framework, the timestamps are modeled individually to capture the global dependencies. Working as a plugin, GLAFF adaptively adjusts the combined weights for global and local information, enabling seamless collaboration with any time series forecasting backbone. Extensive experiments conducted on nine real-world datasets demonstrate that GLAFF significantly enhances the average performance of widely used mainstream forecasting models by 12.5\%, surpassing the previous state-of-the-art method by 5.5\%.
Spotlight Poster
Qiang Wu · Gechang Yao · Zhixi Feng · Yang Shuyuan

[ East Exhibit Hall A-C ]

Abstract
Time series analysis finds wide applications in fields such as weather forecasting, anomaly detection, and behavior recognition. Previous methods attempted to model temporal variations directly using 1D time series. However, this has been quite challenging due to the discrete nature of data points in time series and the complexity of periodic variation. In terms of periodicity, taking weather and traffic data as an example, there are multi-periodic variations such as yearly, monthly, weekly, and daily, etc. In order to break through the limitations of the previous methods, we decouple the implied complex periodic variations into inclusion and overlap relationships among different level periodic components based on the observation of the multi-periodicity therein and its inclusion relationships. This explicitly represents the naturally occurring pyramid-like properties in time series, where the top level is the original time series and lower levels consist of periodic components with gradually shorter periods, which we call the periodic pyramid. To further extract complex temporal variations, we introduce self-attention mechanism into the periodic pyramid, capturing complex periodic relationships by computing attention between periodic components based on their inclusion, overlap, and adjacency relationships. Our proposed Peri-midFormer demonstrates outstanding performance in five mainstream time series analysis tasks, including short- …
Poster
Fan Yao · Yiming Liao · Jingzhou Liu · Shaoliang Nie · Qifan Wang · Haifeng Xu · Hongning Wang

[ East Exhibit Hall A-C ]

Abstract
On User-Generated Content (UGC) platforms, recommendation algorithms significantly impact creators' motivation to produce content as they compete for algorithmically allocated user traffic. This phenomenon subtly shapes the volume and diversity of the content pool, which is crucial for the platform's sustainability. In this work, we demonstrate, both theoretically and empirically, that a purely relevance-driven policy with low exploration strength boosts short-term user satisfaction but undermines the long-term richness of the content pool. In contrast, a more aggressive exploration policy may slightly compromise user satisfaction but promote higher content creation volume. Our findings reveal a fundamental trade-off between immediate user satisfaction and overall content production on UGC platforms. Building on this finding, we propose an efficient optimization method to identify the optimal exploration strength, balancing user and creator engagement. Our model can serve as a pre-deployment audit tool for recommendation algorithms on UGC platforms, helping to align their immediate objectives with sustainable, long-term goals.
Poster
Hadi Hosseini · Debmalya Mandal · Amrit Puhan

[ East Exhibit Hall A-C ]

Abstract
We consider the problem of recovering the ground truth ordering (ranking, top-$k$, or others) over a large number of alternatives. The wisdom of crowd is a heuristic approach based on Condorcet's Jury theorem to address this problem through collective opinions.This approach fails to recover the ground truth when the majority of the crowd is misinformed. The \emph{surprisingly popular} (SP) algorithm~\citep{prelec2017solution} is an alternative approach that is able to recover the ground truth even when experts are in minority. The SP algorithm requires the voters to predict other voters' report in the form of a full probability distribution over all rankings of alternatives. However, when the number of alternatives, $m$, is large, eliciting the prediction report or even the vote over $m$ alternatives might be too costly. In this paper, we design a scalable alternative of the SP algorithm which only requires eliciting partial preferences from the voters, and propose new variants of the SP algorithm. In particular, we propose two versions---\emph{Aggregated-SP} and \emph{Partial-SP}---that ask voters to report vote and prediction on a subset of size $k$ ($\ll m$) in terms of top alternative, partial rank, or an approval set. Through a large-scale crowdsourcing experiment on MTurk, we show that both …
Poster
Rafid Mahmood

[ East Exhibit Hall A-C ]

Abstract
Compared to classical machine learning (ML) models, generative models offer a new usage paradigm where (i) a single model can be used for many different tasks out-of-the-box; (ii) users interact with this model over a series of natural language prompts; and (iii) the model is ideally evaluated on binary user satisfaction with respect to model outputs. Given these characteristics, we explore the problem of how developers of new generative AI software can release and price their technology. We first develop a comparison of two different models for a specific task with respect to user cost-effectiveness. We then model the pricing problem of generative AI software as a game between two different companies who sequentially release their models before users choose their preferred model for each task. Here, the price optimization problem becomes piecewise continuous where the companies must choose a subset of the tasks on which to be cost-effective and forgo revenue for the remaining tasks. In particular, we reveal the value of market information by showing that a company who deploys later after knowing their competitor’s price can always secure cost-effectiveness on at least one task, whereas the company who is the first-to-market must price their model in a …
Poster
Jianbiao Mei · Yukai Ma · Xuemeng Yang · Licheng Wen · Xinyu Cai · Xin Li · Daocheng Fu · Bo Zhang · Pinlong Cai · Min Dou · Botian Shi · Liang He · Yong Liu · Yu Qiao

[ East Exhibit Hall A-C ]

Abstract
Autonomous driving has advanced significantly due to sensors, machine learning, and artificial intelligence improvements. However, prevailing methods struggle with intricate scenarios and causal relationships, hindering adaptability and interpretability in varied environments. To address the above problems, we introduce LeapAD, a novel paradigm for autonomous driving inspired by the human cognitive process. Specifically, LeapAD emulates human attention by selecting critical objects relevant to driving decisions, simplifying environmental interpretation, and mitigating decision-making complexities. Additionally, LeapAD incorporates an innovative dual-process decision-making module, which consists of an Analytic Process (System-II) for thorough analysis and reasoning, along with a Heuristic Process (System-I) for swift and empirical processing. The Analytic Process leverages its logical reasoning to accumulate linguistic driving experience, which is then transferred to the Heuristic Process by supervised fine-tuning. Through reflection mechanisms and a growing memory bank, LeapAD continuously improves itself from past mistakes in a closed-loop environment. Closed-loop testing in CARLA shows that LeapAD outperforms all methods relying solely on camera input, requiring 1-2 orders of magnitude less labeled data. Experiments also demonstrate that as the memory bank expands, the Heuristic Process with only 1.8B parameters can inherit the knowledge from a GPT-4 powered Analytic Process and achieve continuous performance improvement. Project page: …
Oral Poster
Zhongchao Yi · Zhengyang Zhou · Qihe Huang · Yanjiang Chen · Liheng Yu · Xu Wang · Yang Wang

[ East Exhibit Hall A-C ]

Abstract
Spatiotemporal learning has become a pivotal technique to enable urban intelligence. Traditional spatiotemporal models mostly focus on a specific task by assuming a same distribution between training and testing sets. However, given that urban systems are usually dynamic, multi-sourced with imbalanced data distributions, current specific task-specific models fail to generalize to new urban conditions and adapt to new domains without explicitly modeling interdependencies across various dimensions and types of urban data. To this end, we argue that there is an essential to propose a Continuous Multi-task Spatio-Temporal learning framework (CMuST) to empower collective urban intelligence, which reforms the urban spatiotemporal learning from single-domain to cooperatively multi-dimensional and multi-task learning. Specifically, CMuST proposes a new multi-dimensional spatiotemporal interaction network (MSTI) to allow cross-interactions between context and main observations as well as self-interactions within spatial and temporal aspects to be exposed, which is also the core for capturing task-level commonality and personalization. To ensure continuous task learning, a novel Rolling Adaptation training scheme (RoAda) is devised, which not only preserves task uniqueness by constructing data summarization-driven task prompts, but also harnesses correlated patterns among tasks by iterative model behavior modeling. We further establish a benchmark of three cities for multi-task spatiotemporal learning, …
Spotlight Poster
Jinliang Deng · Feiyang Ye · Du Yin · Xuan Song · Ivor Tsang · Hui Xiong

[ East Exhibit Hall A-C ]

Abstract
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis, characterized by extensive input sequences, as opposed to the shorter spans typical of traditional approaches. While longer sequences inherently offer richer information for enhanced predictive precision, prevailing studies often respond by escalating model complexity. These intricate models can inflate into millions of parameters, resulting in prohibitive parameter scales. Our study demonstrates, through both theoretical and empirical evidence, that decomposition is key to containing excessive model inflation while achieving uniformly superior and robust results across various datasets. Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks, using over 99\% fewer parameters than the majority of competing methods. Through this work, we aim to unleash the power of a restricted set of parameters by capitalizing on domain characteristics—a timely reminder that in the realm of LTSF, bigger is not invariably better. The code is available at \url{https://anonymous.4open.science/r/SSCNN-321D/}.
Poster
Yichi Zhang · Yao Huang · Yitong Sun · Chang Liu · Zhe Zhao · Zhengwei Fang · Yifan Wang · Huanran Chen · Xiao Yang · Xingxing Wei · Hang Su · Yinpeng Dong · Jun Zhu

[ East Exhibit Hall A-C ]

Abstract
Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish **MultiTrust**, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: *truthfulness*, *safety*, *robustness*, *fairness*, and *privacy*. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and …
Spotlight Poster
Derui Zhu · Dingfan Chen · Xiongfei Wu · Jiahui Geng · Zhuo Li · Jens Grossklags · Lei Ma

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) are recognized for their potential to be an important building block toward achieving artificial general intelligence due to their unprecedented capability for solving diverse tasks. Despite these achievements, LLMs often underperform in domain-specific tasks without training on relevant domain data. This phenomenon, which is often attributed to distribution shifts, makes adapting pre-trained LLMs with domain-specific data crucial. However, this adaptation raises significant privacy concerns, especially when the data involved come from sensitive domains. In this work, we extensively investigate the privacy vulnerabilities of adapted (fine-tuned) LLMs and benchmark privacy leakage across a wide range of data modalities, state-of-the-art privacy attack methods, adaptation techniques, and model architectures. We systematically evaluate and pinpoint critical factors related to privacy leakage. With our organized codebase and actionable insights, we aim to provide a standardized auditing tool for practitioners seeking to deploy customized LLM applications with faithful privacy assessments.
Poster
Patrick Chao · Edoardo Debenedetti · Alexander Robey · Maksym Andriushchenko · Francesco Croce · Vikash Sehwag · Edgar Dobriban · Nicolas Flammarion · George J. Pappas · Florian Tramer · Hamed Hassani · Eric Wong

[ East Exhibit Hall A-C ]

Abstract
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as *jailbreak artifacts*; (2) a jailbreaking dataset comprising 100 behaviors---both original and sourced from prior work---which align with OpenAI's usage policies; (3) a standardized evaluation framework at https://github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at https://jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.
Poster
Louis Chen · Roberto Szechtman · Matan Seri

[ East Exhibit Hall A-C ]

Abstract
The Benjamini-Hochberg (BH) procedure is widely used to control the false detection rate (FDR) in multiple testing. Applications of this control abound in drug discovery, forensics, anomaly detection, and, in particular, machine learning, ranging from nonparametric outlier detection to out-of-distribution detection and one-class classification methods. Considering this control could be relied upon in critical safety/security contexts, we investigate its adversarial robustness. More precisely, we study under what conditions BH does and does not exhibit adversarial robustness, we present a class of simple and easily implementable adversarial test-perturbation algorithms, and we perform computational experiments. With our algorithms, we demonstrate that there are conditions under which BH's control can be significantly broken with relatively few (even just one) test score perturbation(s), and provide non-asymptotic guarantees on the expected adversarial-adjustment to FDR. Our technical analysis involves a combinatorial reframing of the BH procedure as a ``balls into bins'' process, and drawing a connection to generalized ballot problems to facilitate an information-theoretic approach for deriving non-asymptotic lower bounds.
Spotlight Poster
Hao Dong · Yue Zhao · Eleni Chatzi · Olga Fink

[ East Exhibit Hall A-C ]

Abstract
Detecting out-of-distribution (OOD) samples is important for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. Existing research has mainly focused on unimodal scenarios on image data. However, real-world applications are inherently multimodal, which makes it essential to leverage information from multiple modalities to enhance the efficacy of OOD detection. To establish a foundation for more realistic Multimodal OOD Detection, we introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations. We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements. This underscores the importance of utilizing multiple modalities for OOD detection. Based on the observation of Modality Prediction Discrepancy between in-distribution (ID) and OOD data, and its strong correlation with OOD performance, we propose the Agree-to-Disagree (A2D) algorithm to encourage such discrepancy during training. Moreover, we introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes and complements A2D to strengthen OOD detection performance. Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin. To support accessibility and reproducibility, …
Poster
Gao Chujie · Siyuan Wu · Yue Huang · Dongping Chen · Qihui Zhang · Zhengyan Fu · Yao Wan · Lichao Sun · Xiangliang Zhang

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have achieved remarkable success across various industries and applications, owing to their exceptional generative capabilities. Nevertheless, honesty and helpfulness, which ensure safe and useful real-world deployments, have been considered as the longstanding cornerstones in practice. In this paper, we first established comprehensive principles for honesty LLM and further created the HoneSet with 930 queries across six categories, which is designed to evaluate LLMs’ ability to maintain honesty. Then, we improved the honesty and helpfulness of LLMs in both training-free and fine-tuning settings. Specifically, we propose a training-free method named Curiosity-Driven Prompting, which enables LLMs to express their internal confusion and uncertainty about the given query and then optimize their responses. Moreover, we also propose a two-stage fine-tuning approach, inspired by curriculum learning, to enhance the honesty and helpfulness of LLMs. The method first teaches LLMs to distinguish between honest and dishonest, and then LLMs are trained to learn to respond more helpfully. Experimental results demonstrated that both of the two proposed methods improve the helpfulness of LLMs while making them maintain honesty. Our research has paved the way for more reliable and trustworthy LLMs in real-world applications.
Poster
Mingyuan Fan · Xiaodan Li · Cen Chen · Wenmeng Zhou · Yaliang Li

[ East Exhibit Hall A-C ]

Abstract
A prevailing belief in attack and defense community is that the higher flatness of adversarial examples enables their better cross-model transferability, leading to a growing interest in employing sharpness-aware minimization and its variants. However, the theoretical relationship between the transferability of adversarial examples and their flatness has not been well established, making the belief questionable. To bridge this gap, we embark on a theoretical investigation and, for the first time, derive a theoretical bound for the transferability of adversarial examples with few practical assumptions. Our analysis challenges this belief by demonstrating that the increased flatness of adversarial examples does not necessarily guarantee improved transferability. Moreover, building upon the theoretical analysis, we propose TPA, a Theoretically Provable Attack that optimizes a surrogate of the derived bound to craft adversarial examples. Extensive experiments across widely used benchmark datasets and various real-world applications show that TPA can craft more transferable adversarial examples compared to state-of-the-art baselines. We hope that these results can recalibrate preconceived impressions within the community and facilitate the development of stronger adversarial attack and defense mechanisms.
Poster
Changdae Oh · Hyesu Lim · Mijoo Kim · Dongyoon Han · Sangdoo Yun · Jaegul Choo · Alexander Hauptmann · Zhi-Qi Cheng · Kyungwoo Song

[ East Exhibit Hall A-C ]

Abstract
Improving out-of-distribution (OOD) generalization during in-distribution (ID) adaptation is a primary goal of robust fine-tuning of zero-shot models beyond naive fine-tuning. However, despite decent OOD generalization performance from recent robust fine-tuning methods, confidence calibration for reliable model output has not been fully addressed. This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models. Firstly, we show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data: 1) ID calibration error and 2) the smallest singular value of the ID input covariance matrix. Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value, which is further guided by the self-distillation of a moving-averaged model to achieve calibrated prediction as well. Starting from empirical evidence supporting our theoretical statements, we provide extensive experimental results on ImageNet distribution shift benchmarks that demonstrate the effectiveness of our theorem and its practical implementation.
Poster
Chia-Yi Hsu · Yu-Lin Tsai · Chih-Hsun Lin · Pin-Yu Chen · Chia-Mu Yu · Chun-Ying Huang

[ East Exhibit Hall A-C ]

Abstract
While large language models (LLMs) such as Llama-2 or GPT-4 have shown impressive zero-shot performance, fine-tuning is still necessary to enhance their performance for customized datasets, domain-specific tasks, or other private needs. However, fine-tuning all parameters of LLMs requires significant hardware resources, which can be impractical for typical users. Therefore, parameter-efficient fine-tuning such as LoRA have emerged, allowing users to fine-tune LLMs without the need for considerable computing resources, with little performance degradation compared to fine-tuning all parameters. Unfortunately, recent studies indicate that fine-tuning can increase the risk to the safety of LLMs, even when data does not contain malicious content. To address this challenge, we propose $\textsf{Safe LoRA}$, a simple one-liner patch to the original LoRA implementation by introducing the projection of LoRA weights from selected layers to the safety-aligned subspace, effectively reducing the safety risks in LLM fine-tuning while maintaining utility. It is worth noting that $\textsf{Safe LoRA}$ is a training-free and data-free approach, as it only requires the knowledge of the weights from the base and aligned LLMs. Our extensive experiments demonstrate that when fine-tuning on purely malicious data, $\textsf{Safe LoRA}$ retains similar safety performance as the original aligned model. Moreover, when the fine-tuning dataset contains a …
Poster
Ethan Rathbun · Christopher Amato · Alina Oprea

[ East Exhibit Hall A-C ]

Abstract
Reinforcement learning (RL) is an actively growing field that is seeing increased usage in real-world, safety-critical applications -- making it paramount to ensure the robustness of RL algorithms against adversarial attacks. In this work we explore a particularly stealthy form of training-time attacks against RL -- backdoor poisoning. Here the adversary intercepts the training of an RL agent with the goal of reliably inducing a particular action when the agent observes a pre-determined trigger at inference time. We uncover theoretical limitations of prior work by proving their inability to generalize across domains and MDPs. Motivated by this, we formulate a novel poisoning attack framework which interlinks the adversary's objectives with those of finding an optimal policy -- guaranteeing attack success in the limit. Using insights from our theoretical analysis we develop "SleeperNets" as a universal backdoor attack which exploits a newly proposed threat model and leverages dynamic reward poisoning techniques. We evaluate our attack in 6 environments spanning multiple domains and demonstrate significant improvements in attack success over existing methods, while preserving benign episodic return.
Poster
Yang Yang · Wendi Ren · Shuang Li

[ East Exhibit Hall A-C ]

Abstract
Exploring the integration of if-then logic rules within neural network architectures presents an intriguing area. This integration seamlessly transforms the rule learning task into neural network training using backpropagation and stochastic gradient descent. From a well-trained sparse and shallow neural network, one can interpret each layer and neuron through the language of logic rules, and a global explanatory rule set can be directly extracted. However, ensuring interpretability may impose constraints on the flexibility, depth, and width of neural networks. In this paper, we propose HyperLogic: a novel framework leveraging hypernetworks to generate weights of the main network. HyperLogic can unveil multiple diverse rule sets, each capable of capturing heterogeneous patterns in data. This provides a simple yet effective method to increase model flexibility and preserve interpretability. We theoretically analyzed the benefits of the HyperLogic by examining the approximation error and generalization capabilities under two types of regularization terms: sparsity and diversity regularizations. Experiments on real data demonstrate that our method can learn more diverse, accurate, and concise rules.
Poster
Wenke Huang · Mang Ye · Zekun Shi · Guancheng Wan · He Li · Bo Du

[ East Exhibit Hall A-C ]

Abstract
Backdoor attacks pose a serious threat to federated systems, where malicious clients optimize on the triggered distribution to mislead the global model towards a predefined target. Existing backdoor defense methods typically require either homogeneous assumption, validation datasets, or client optimization conflicts. In our work, we observe that benign heterogeneous distributions and malicious triggered distributions exhibit distinct parameter importance degrees. We introduce the Fisher Discrepancy Cluster and Rescale (FDCR) method, which utilizes Fisher Information to calculate the degree of parameter importance for local distributions. This allows us to reweight client parameter updates and identify those with large discrepancies as backdoor attackers. Furthermore, we prioritize rescaling important parameters to expedite adaptation to the target distribution, encouraging significant elements to contribute more while diminishing the influence of trivial ones. This approach enables FDCR to handle backdoor attacks in heterogeneous federated learning environments. Empirical results on various heterogeneous federated scenarios under backdoor attacks demonstrate the effectiveness of our method.
Poster
Andis Draguns · Andrew Gritsevskiy · Sumeet Motwani · Christian Schroeder de Witt

[ East Exhibit Hall A-C ]

Abstract
The rapid proliferation of open-source language models significantly increases the risks of downstream backdoor attacks. These backdoors can introduce dangerous behaviours during model deployment and can evade detection by conventional cybersecurity monitoring systems. In this paper, we introduce a novel class of backdoors in transformer models, that, in contrast to prior art, are unelicitable in nature. Unelicitability prevents the defender from triggering the backdoor, making it impossible to properly evaluate ahead of deployment even if given full white-box access and using automated techniques, such as red-teaming or certain formal verification methods. We show that our novel construction is not only unelicitable thanks to using cryptographic techniques, but also has favourable robustness properties.We confirm these properties in empirical investigations, and provide evidence that our backdoors can withstand state-of-the-art mitigation strategies. Additionally, we expand on previous work by showing that our universal backdoors, while not completely undetectable in white-box settings, can be harder to detect than some existing designs. By demonstrating the feasibility of seamlessly integrating backdoors into transformer models, this paper fundamentally questions the efficacy of pre-deployment detection strategies. This offers new insights into the offence-defence balance in AI safety and security.
Spotlight Poster
Thibault Simonetto · Salah GHAMIZI · Maxime Cordy

[ East Exhibit Hall A-C ]

Abstract
State-of-the-art deep learning models for tabular data have recently achieved acceptable performance to be deployed in industrial settings. However, the robustness of these models remains scarcely explored. Contrary to computer vision, there are no effective attacks to properly evaluate the adversarial robustness of deep tabular models due to intrinsic properties of tabular data, such as categorical features, immutability, and feature relationship constraints. To fill this gap, we first propose CAPGD, a gradient attack that overcomes the failures of existing gradient attacks with adaptive mechanisms. This new attack does not require parameter tuning and further degrades the accuracy, up to 81\% points compared to the previous gradient attacks. Second, we design CAA, an efficient evasion attack that combines our CAPGD attack and MOEVA, the best search-based attack. We demonstrate the effectiveness of our attacks on five architectures and four critical use cases. Our empirical study demonstrates that CAA outperforms all existing attacks in 17 over the 20 settings, and leads to a drop in the accuracy by up to 96.1\% points and 21.9\% points compared to CAPGD and MOEVA respectively while being up to five times faster than MOEVA. Given the effectiveness and efficiency of our new attacks, we argue that …
Poster
Rohan Paleja · Michael Munje · Kimberlee Chang · Reed Jensen · Matthew Gombolay

[ East Exhibit Hall A-C ]

Abstract
Collaborative robots and machine learning-based virtual agents are increasingly entering the human workspace with the aim of increasing productivity and enhancing safety. Despite this, we show in a ubiquitous experimental domain, Overcooked-AI, that state-of-the-art techniques for human-machine teaming (HMT), which rely on imitation or reinforcement learning, are brittle and result in a machine agent that aims to decouple the machine and human’s actions to act independently rather than in a synergistic fashion. To remedy this deficiency, we develop HMT approaches that enable iterative, mixed-initiative team development allowing end-users to interactively reprogram interpretable AI teammates. Our 50-subject study provides several findings that we summarize into guidelines. While all approaches underperform a simple collaborative heuristic (a critical, negative result for learning-based methods), we find that white-box approaches supported by interactive modification can lead to significant team development, outperforming white-box approaches alone, and that black-box approaches are easier to train and result in better HMT performance highlighting a tradeoff between explainability and interactivity versus ease-of-training. Together, these findings present three important future research directions: 1) Improving the ability to generate collaborative agents with white-box models, 2) Better learning methods to facilitate collaboration rather than individualized coordination, and 3) Mixed-initiative interfaces that enable users, …
Poster
Lorenzo Cascioli · Laurens Devos · Ondrej Kuzelka · Jesse Davis

[ East Exhibit Hall A-C ]

Abstract
Tree ensembles are one of the most widely used model classes. However, these models are susceptible to adversarial examples, i.e., slightly perturbed examples that elicit a misprediction. There has been significant research on designing approaches to construct such examples for tree ensembles. But this is a computationally challenging problem that often must be solved a large number of times (e.g., for all examples in a training set). This is compounded by the fact that current approaches attempt to find such examples from scratch. In contrast, we exploit the fact that multiple similar problems are being solved. Specifically, our approach exploits the insight that adversarial examples for tree ensembles tend to perturb a consistent but relatively small set of features. We show that we can quickly identify this set of features and use this knowledge to speedup constructing adversarial examples.
Poster
Stefan Pranger · Hana Chockler · Martin Tappler · Bettina Könighofer

[ East Exhibit Hall A-C ]

Abstract
In many Deep Reinforcement Learning (RL) problems, decisions in a trained policy vary in significance for the expected safety and performance of the policy. Since RL policies are very complex, testing efforts should concentrate on states in which the agent's decisions have the highest impact on the expected outcome. In this paper, we propose a novel model-based method to rigorously compute a ranking of state importance across the entire state space. We then focus our testing efforts on the highest-ranked states. In this paper, we focus on testing for safety. However, the proposed methods can be easily adapted to test for performance. In each iteration, our testing framework computes optimistic and pessimistic safety estimates. These estimates provide lower and upper bounds on the expected outcomes of the policy execution across all modeled states in the state space. Our approach divides the state space into safe and unsafe regions upon convergence, providing clear insights into the policy's weaknesses. Two important properties characterize our approach. (1) Optimal Test-Case Selection: At any time in the testing process, our approach evaluates the policy in the states that are most critical for safety. (2) Guaranteed Safety: Our approach can provide formal verification guarantees over the …
Poster
Fengyu Gao · Ruiquan Huang · Jing Yang

[ East Exhibit Hall A-C ]

Abstract
We study the problems of differentially private federated online prediction from experts against both *stochastic adversaries* and *oblivious adversaries*. We aim to minimize the average regret on $m$ clients working in parallel over time horizon $T$ with explicit differential privacy (DP) guarantees. With stochastic adversaries, we propose a **Fed-DP-OPE-Stoch** algorithm that achieves $\sqrt{m}$-fold speed-up of the per-client regret compared to the single-player counterparts under both pure DP and approximate DP constraints, while maintaining logarithmic communication costs. With oblivious adversaries, we establish non-trivial lower bounds indicating that *collaboration among clients does not lead to regret speed-up with general oblivious adversaries*. We then consider a special case of the oblivious adversaries setting, where there exists a low-loss expert. We design a new algorithm **Fed-SVT** and show that it achieves an $m$-fold regret speed-up under both pure DP and approximate DP constraints over the single-player counterparts. Our lower bound indicates that Fed-SVT is nearly optimal up to logarithmic factors. Experiments demonstrate the effectiveness of our proposed algorithms. To the best of our knowledge, this is the first work examining the differentially private online prediction from experts in the federated setting.
Poster
YANRUI DU · Sendong Zhao · Danyang Zhao · Ming Ma · Yuhan Chen · Liangyu Huo · Qing Yang · Dongliang Xu · Bing Qin

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) are increasingly deployed in various applications. As their usage grows, concerns regarding their safety are rising, especially in maintaining harmless responses when faced with malicious instructions. Many defense strategies have been developed to enhance the safety of LLMs. However, our research finds that existing defense strategies lead LLMs to predominantly adopt a rejection-oriented stance, thereby diminishing the usability of their responses to benign instructions. To solve this problem, we introduce the MoGU framework, designed to enhance LLMs' safety while preserving their usability. Our MoGU framework transforms the base LLM into two variants: the usable LLM and the safe LLM, and further employs dynamic routing to balance their contribution. When encountering malicious instructions, the router will assign a higher weight to the safe LLM to ensure that responses are harmless. Conversely, for benign instructions, the router prioritizes the usable LLM, facilitating usable and helpful responses. On various open-sourced LLMs, we compare multiple defense strategies to verify the superiority of our MoGU framework. Besides, our analysis provides key insights into the effectiveness of MoGU and verifies that our designed routing mechanism can effectively balance the contribution of each variant by assigning weights. Our work released the safer Llama2, …
Poster
Weilin Lin · Li Liu · Shaokui Wei · Jianze Li · Hui Xiong

[ East Exhibit Hall A-C ]

Abstract
The security threat of backdoor attacks is a central concern for deep neural networks (DNNs). Recently, without poisoned data, unlearning models with clean data and then learning a pruning mask have contributed to backdoor defense. Additionally, vanilla fine-tuning with those clean data can help recover the lost clean accuracy. However, the behavior of clean unlearning is still under-explored, and vanilla fine-tuning unintentionally induces back the backdoor effect. In this work, we first investigate model unlearning from the perspective of weight changes and gradient norms, and find two interesting observations in the backdoored model: 1) the weight changes between poison and clean unlearning are positively correlated, making it possible for us to identify the backdoored-related neurons without using poisoned data; 2) the neurons of the backdoored model are more active (*i.e.*, larger gradient norm) than those in the clean model, suggesting the need to suppress the gradient norm during fine-tuning. Then, we propose an effective two-stage defense method. In the first stage, an efficient *Neuron Weight Change (NWC)-based Backdoor Reinitialization* is proposed based on observation 1). In the second stage, based on observation 2), we design an *Activeness-Aware Fine-Tuning* to replace the vanilla fine-tuning. Extensive experiments, involving eight backdoor attacks on …
Poster
jingnan zheng · Han Wang · An Zhang · Nguyen Duy Tai · Jun Sun · Tat-Seng Chua

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) can elicit unintended and even harmful content when misaligned with human values, posing severe risks to users and society. To mitigate these risks, current evaluation benchmarks predominantly employ expert-designed contextual scenarios to assess how well LLMs align with human values. However, the labor-intensive nature of these benchmarks limits their test scope, hindering their ability to generalize to the extensive variety of open-world use cases and identify rare but crucial long-tail risks. Additionally, these static tests fail to adapt to the rapid evolution of LLMs, making it hard to evaluate timely alignment issues. To address these challenges, we propose ALI-Agent, an evaluation framework that leverages the autonomous abilities of LLM-powered agents to conduct in-depth and adaptive alignment assessments. ALI-Agent operates through two principal stages: Emulation and Refinement. During the Emulation stage, ALI-Agent automates the generation of realistic test scenarios. In the Refinement stage, it iteratively refines the scenarios to probe long-tail risks. Specifically, ALI-Agent incorporates a memory module to guide test scenario generation, a tool-using module to reduce human labor in tasks such as evaluating feedback from target LLMs, and an action module to refine tests. Extensive experiments across three aspects of human values--stereotypes, morality, and legality--demonstrate …
Poster
Zhe Tao · Aditya V Thakur

[ East Exhibit Hall A-C ]

Abstract
Ensuring that a DNN satisfies a desired property is critical when deploying DNNs in safety-critical applications. There are efficient methods that can verify whether a DNN satisfies a property, as seen in the annual DNN verification competition (VNN-COMP). However, the problem of provably editing a DNN to satisfy a property remains challenging. We present PREPARED, the first efficient technique for provable editing of DNNs. Given a DNN $\mathcal{N}$ with parameters $\theta$, input polytope $P$, and output polytope $Q$, PREPARED finds new parameters $\theta'$ such that $\forall \mathrm{x} \in P . \mathcal{N}(\mathrm{x}; \theta') \in Q$ while minimizing the changes $\lVert{\theta' - \theta}\rVert$. Given a DNN and a property it violates from the VNN-COMP benchmarks, PREPARED is able to provably edit the DNN to satisfy this property within 45 seconds. PREPARED is efficient because it relaxes the NP-hard provable editing problem to solving a linear program. The key contribution is the novel notion of Parametric Linear Relaxation, which enables PREPARED to construct tight output bounds of the DNN that are parameterized by the new parameters $\theta'$. We demonstrate that PREPARED is more efficient and effective compared to prior DNN editing approaches i) using the VNN-COMP benchmarks, ii) by editing CIFAR10 and TinyImageNet …
Poster
Alexander Nikitin · Jannik Kossen · Yarin Gal · Pekka Marttinen

[ East Exhibit Hall A-C ]

Abstract
Uncertainty quantification in Large Language Models (LLMs) is crucial for applications where safety and reliability are important. In particular, uncertainty can be used to improve the trustworthiness of LLMs by detecting factually incorrect model responses, commonly called hallucinations. Critically, one should seek to capture the model's semantic uncertainty, i.e., the uncertainty over the meanings of LLM outputs, rather than uncertainty over lexical or syntactic variations that do not affect answer correctness.To address this problem, we propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs. KLE defines positive semidefinite unit trace kernels to encode the semantic similarities of LLM outputs and quantifies uncertainty using the von Neumann entropy. It considers pairwise semantic dependencies between answers (or semantic clusters), providing more fine-grained uncertainty estimates than previous methods based on hard clustering of answers. We theoretically prove that KLE generalizes the previous state-of-the-art method called semantic entropy and empirically demonstrate that it improves uncertainty quantification performance across multiple natural language generation datasets and LLM architectures.
Poster
Jonathan Hayase · Ema Borevković · Nicholas Carlini · Florian Tramer · Milad Nasr

[ East Exhibit Hall A-C ]

Abstract
Recent work has shown it is possible to construct adversarial examples that cause aligned language models to emit harmful strings or perform harmful behavior.Existing attacks work either in the white-box setting (with full access to the model weights), or through _transferability_: the phenomenon that adversarial examples crafted on one model often remain effective on other models.We improve on prior work with a _query-based_ attack that leverages API access to a remote language model to construct adversarial examples that cause the model to emit harmful strings with (much) higher probability than with transfer-only attacks.We validate our attack on GPT-3.5 and OpenAI's safety classifier; we can cause GPT-3.5 to emit harmful strings that current transfer attacks fail at, and we can evade the OpenAI and Llama Guard safety classifiers with nearly 100% probability.
Poster
Felipe Maia Polo · Ronald Xu · Lucas Weber · Mírian Silva · Onkar Bhardwaj · Leshem Choshen · Allysson de Oliveira · Yuekai Sun · Mikhail Yurochkin

[ East Exhibit Hall A-C ]

Abstract
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs’ abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry; for example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Moreover, we show how PromptEval can be useful in LLM-as-a-judge and best prompt identification applications.
Poster
Xun Xian · Ganghua Wang · Xuan Bi · Jayanth Srinivasa · Ashish Kundu · Mingyi Hong · Jie Ding

[ East Exhibit Hall A-C ]

Abstract
Safeguarding intellectual property and preventing potential misuse of AI-generated images are of paramount importance. This paper introduces a robust and agile plug-and-play watermark detection framework, referred to as RAW.As a departure from existing encoder-decoder methods, which incorporate fixed binary codes as watermarks within latent representations, our approach introduces learnable watermarks directly into the original image data. Subsequently, we employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.The proposed framework is compatible with various generative architectures and supports on-the-fly watermark injection after training. By incorporating state-of-the-art smoothing techniques, we show that the framework also provides provable guarantees regarding the false positive rate for misclassifying a watermarked image, even in the presence of adversarial attacks targeting watermark removal. Experiments on a diverse range of images generated by state-of-the-art diffusion models demonstrate substantially improved watermark encoding speed and watermark detection performance, under adversarial attacks, while maintaining image quality. Our code is publicly available [here](https://github.com/jeremyxianx/RAWatermark).
Poster
Haitao Li · You Chen · Qingyao Ai · Yueyue WU · Ruizhe Zhang · Yiqun LIU

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice.To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval.This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application.We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available …
Poster
Deyu Zou · Shikun Liu · Siqi Miao · Victor Fung · Shiyu Chang · Pan Li

[ East Exhibit Hall A-C ]

Abstract
Geometric deep learning (GDL) has gained significant attention in scientific fields, for its proficiency in modeling data with intricate geometric structures. Yet, very few works have delved into its capability of tackling the distribution shift problem, a prevalent challenge in many applications.To bridge this gap, we propose GeSS, a comprehensive benchmark designed for evaluating the performance of GDL models in scientific scenarios with distribution shifts.Our evaluation datasets cover diverse scientific domains from particle physics, materials science to biochemistry, and encapsulate a broad spectrum of distribution shifts including conditional, covariate, and concept shifts. Furthermore, we study three levels of information access from the out-of-distribution (OOD) test data, including no OOD information, only unlabeled OOD data, and OOD data with a few labels. Overall, our benchmark results in 30 different experiment settings, and evaluates 3 GDL backbones and 11 learning algorithms in each setting. A thorough analysis of the evaluation results is provided, poised to illuminate insights for GDL researchers and domain practitioners who are to use GDL in their applications.
Poster
Wei Chen · Xixuan Hao · Yuankai Wu · Yuxuan Liang

[ East Exhibit Hall A-C ]

Abstract
Since the inception of our planet, the meteorological environment, as reflected through spatio-temporal data, has always been a fundamental factor influencing human life, socio-economic progress, and ecological conservation. A comprehensive exploration of this data is thus imperative to gain a deeper understanding and more accurate forecasting of these environmental shifts. Despite the success of deep learning techniques within the realm of spatio-temporal data and earth science, existing public datasets are beset with limitations in terms of spatial scale, temporal coverage, and reliance on limited time series data. These constraints hinder their optimal utilization in practical applications. To address these issues, we introduce **Terra**, a multimodal spatio-temporal dataset spanning the earth. This dataset encompasses hourly time series data from 6,480,000 grid areas worldwide over the past 45 years, while also incorporating multimodal spatial supplementary information including geo-images and explanatory text. Through a detailed data analysis and evaluation of existing deep learning models within earth sciences, utilizing our constructed dataset. we aim to provide valuable opportunities for enhancing future research in spatio-temporal data mining, thereby advancing towards more spatio-temporal general intelligence. Our source code and data can be accessed at https://github.com/CityMind-Lab/NeurIPS24-Terra.
Spotlight Poster
Jacob Silberg · Kyle Swanson · Elana Simon · Angela Zhang · Zaniar Ghazizadeh · Scott Ogden · Hisham Hamadeh · James Zou

[ East Exhibit Hall A-C ]

Abstract
Drug-induced toxicity is one of the leading reasons new drugs fail clinical trials. Machine learning models that predict drug toxicity from molecular structure could help researchers prioritize less toxic drug candidates. However, current toxicity datasets are typically small and limited to a single organ system (e.g., cardio, renal, or liver). Creating these datasets often involved time-intensive expert curation by parsing drug labelling documents that can exceed 100 pages per drug. Here, we introduce UniTox, a unified dataset of 2,418 FDA-approved drugs with drug-induced toxicity summaries and ratings created by using GPT-4o to process FDA drug labels. UniTox spans eight types of toxicity: cardiotoxicity, liver toxicity, renal toxicity, pulmonary toxicity, hematological toxicity, dermatological toxicity, ototoxicity, and infertility. This is, to the best of our knowledge, the largest such systematic human in vivo database by number of drugs and toxicities, and the first covering nearly all non-combination FDA-approved medications for several of these toxicities. We recruited clinicians to validate a random sample of our GPT-4o annotated toxicities, and UniTox's toxicity ratings concord with clinician labelers 85-96\% of the time. Finally, we benchmark several machine learning models trained on UniTox to demonstrate the utility of this dataset for building molecular toxicity prediction models.
Poster
Xianzhi Zeng · Wenchao Jiang · Shuhao Zhang

[ East Exhibit Hall A-C ]

Abstract
Matrix multiplication (MM) is pivotal in fields from deep learning to scientific computing, driving the quest for improved computational efficiency. Accelerating MM encompasses strategies like complexity reduction, parallel and distributed computing, hardware acceleration, and approximate computing techniques, namely AMM algorithms. Amidst growing concerns over the resource demands of large language models (LLMs), AMM has garnered renewed focus. However, understanding the nuances that govern AMM’s effectiveness remains incomplete. This study delves into AMM by examining algorithmic strategies, operational specifics, dataset characteristics, and their application in real-world tasks. Through comprehensive testing across diverse datasets and scenarios, we analyze how these factors affect AMM’s performance, uncovering that the selection of AMM approaches significantly influences the balance between efficiency and accuracy, with factors like memory access playing a pivotal role. Additionally, dataset attributes are shown to be vital for the success of AMM in applications. Our results advocate for tailored algorithmic approaches and careful strategy selection to enhance AMM’s effectiveness. To aid in the practical application and ongoing research of AMM, we introduce LibAMM —a toolkit offering a wide range of AMM algorithms, benchmarks, and tools for experiment management. LibAMM aims to facilitate research and application in AMM, guiding future developments towards more adaptive …
Poster
Pin Chen · Luoxuan Peng · Rui Jiao · Qing Mo · Zhen Wang · Wenbing Huang · Yang Liu · Yutong Lu

[ East Exhibit Hall A-C ]

Abstract
Superconductivity is a fascinating phenomenon observed in certain materials under certain conditions. However, some critical aspects of it, such as the relationship between superconductivity and materials' chemical/structural features, still need to be understood. Recent successes of data-driven approaches in material science strongly inspire researchers to study this relationship with them, but a corresponding dataset is still lacking. Hence, we present a new dataset for data-driven approaches, namely SuperCon3D, containing both 3D crystal structures and experimental superconducting transition temperature (Tc) for the first time. Based on SuperCon3D, we propose two deep learning methods for designing high Tc superconductors. The first is SODNet, a novel equivariant graph attention model for screening known structures, which differs from existing models in incorporating both ordered and disordered geometric content. The second is a diffusion generative model DiffCSP-SC for creating new structures, which enables high Tc-targeted generation. Extensive experiments demonstrate that both our proposed dataset and models are advantageous for designing new high Tc superconducting candidates.
Poster
Edward Vendrow · Omiros Pantazis · Alexander Shepard · Gabriel Brostow · Kate Jones · Oisin Mac Aodha · Sara Beery · Grant Van Horn

[ East Exhibit Hall A-C ]

Abstract
We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research.
Poster
Wenliang Zhao · Minglei Shi · Xumin Yu · Jie Zhou · Jiwen Lu

[ East Exhibit Hall A-C ]

Abstract
Building on the success of diffusion models in visual generation, flow-based models reemerge as another prominent family of generative models that have achieved competitive or better performance in terms of both visual quality and inference speed. By learning the velocity field through flow-matching, flow-based models tend to produce a straighter sampling trajectory, which is advantageous during the sampling process. However, unlike diffusion models for which fast samplers are well-developed, efficient sampling of flow-based generative models has been rarely explored. In this paper, we propose a framework called FlowTurbo to accelerate the sampling of flow-based models while still enhancing the sampling quality. Our primary observation is that the velocity predictor's outputs in the flow-based models will become stable during the sampling, enabling the estimation of velocity via a lightweight velocity refiner. Additionally, we introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time. Since FlowTurbo does not change the multi-step sampling paradigm, it can be effectively applied for various tasks such as image editing, inpainting, etc. By integrating FlowTurbo into different flow-based models, we obtain an acceleration ratio of 53.1\%$\sim$58.3\% on class-conditional generation and 29.8\%$\sim$38.5\% on text-to-image generation. Notably, FlowTurbo reaches an FID of 2.12 on …
Poster
Huayu Chen · Guande He · Lifan Yuan · Ganqu Cui · Hang Su · Jun Zhu

[ East Exhibit Hall A-C ]

Abstract
User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By comparing NCA and InfoNCA, we demonstrate that the well-observed decreasing-likelihood trend of DPO/InfoNCA is caused by their focus on adjusting relative likelihood across different responses.In contrast, NCA optimizes the absolute likelihood for each response, thereby effectively preventing the chosen likelihood from decreasing. We evaluate our methods in both reward and preference settings with Mistral-8$\times$7B and 7B models. Experiments suggest that InfoNCA/NCA surpasses various preference baselines when reward datasets are available. We also find NCA significantly outperforms …
Poster
Dong HUANG · Jianbo Dai · Han Weng · Puzhen Wu · Yuhao QING · Heming Cui · Zhijiang Guo · Jie Zhang

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have shown remarkable progress in code generation, but their generated code often suffers from inefficiency, resulting in longer execution times and higher memory consumption. To address this issue, we propose EffiLearner, a self-optimization framework that utilizes execution overhead profiles to improve the efficiency of LLM-generated code. EffiLearner first generates code using an LLM, then executes it locally to capture execution time and memory usage profiles. These profiles are fed back to the LLM, which then revises the code to reduce overhead. To evaluate the effectiveness of EffiLearner, we conduct extensive experiments on EffiBench and two commonly used code generation benchmarks with 16 open-source and 6 closed-source models. Our evaluation results demonstrate that through iterative self-optimization, EffiLearner significantly enhances the efficiency of LLM-generated code. For example, the execution time (ET) of StarCoder2-15B for the EffiBench decreases from 0.93 (s) to 0.12 (s) which reduces 87.1\% execution time requirement compared with the initial code. The total memory usage (TMU) of StarCoder2-15B also decreases from 22.02 (Mb*s) to 2.03 (Mb*s), which decreases 90.8\% total memory consumption during the execution process.
Poster
Yian Wang · Xiaowen Qiu · Jiageng Liu · Zhehuan Chen · Jiting Cai · Yufei Wang · Tsun-Hsuan Johnson Wang · Zhou Xian · Chuang Gan

[ East Exhibit Hall A-C ]

Abstract
Creating large-scale interactive 3D environments is essential for the development of Robotics and Embodied AI research. However, generating diverse embodied environments with realistic detail and considerable complexity remains a significant challenge. Current methods, including manual design, procedural generation, diffusion-based scene generation, and large language model (LLM) guided scene design, are hindered by limitations such as excessive human effort, reliance on predefined rules or training datasets, and limited 3D spatial reasoning ability. Since pre-trained 2D image generative models better capture scene and object configuration than LLMs, we address these challenges by introducing $\textit{Architect}$, a generative framework that creates complex and realistic 3D embodied environments leveraging diffusion-based 2D image inpainting. In detail, we utilize foundation visual perception models to obtain each generated object from the image and leverage pre-trained depth estimation models to lift the generated 2D image to 3D space. While there are still challenges that the camera parameters and scale of depth are still absent in the generated image, we address those problems by ''controlling'' the diffusion model by $\textit{hierarchical inpainting}$. Specifically, having access to ground-truth depth and camera parameters in simulation, we first render a photo-realistic image of only the background. Then, we inpaint the foreground in this image, …
Spotlight Poster
Yuanqing Wang · Kyunghyun Cho

[ East Exhibit Hall A-C ]

Abstract
Rethink convolution-based graph neural networks (GNN)---they characteristically suffer from limited expressiveness, over-smoothing, and over-squashing, and require specialized sparse kernels for efficient computation.Here, we design a simple graph learning module entirely free of convolution operators, coined _random walk with unifying memory_ (RUM) neural network, where an RNN merges the topological and semantic graph features along the random walks terminating at each node.Relating the rich literature on RNN behavior and graph topology, we theoretically show and experimentally verify that RUM attenuates the aforementioned symptoms and is more expressive than the Weisfeiler-Lehman (WL) isomorphism test.On a variety of node- and graph-level classification and regression tasks, RUM not only achieves competitive performance, but is also robust, memory-efficient, scalable, and faster than the simplest convolutional GNNs.
Poster
Ruslan Svirschevski · Avner May · Zhuoming Chen · Beidi Chen · Zhihao Jia · Max Ryabinin

[ East Exhibit Hall A-C ]

Abstract
As large language models gain widespread adoption, running them efficiently becomes a crucial task. Recent works on LLM inference use speculative decoding to achieve extreme speedups. However, most of these works implicitly design their algorithms for high-end datacenter hardware. In this work, we ask the opposite question: how fast can we run LLMs on consumer machines? Consumer GPUs can no longer fit the largest available models and must offload them to RAM or SSD. With parameter offloading, hundreds or thousands of tokens can be processed in batches within the same time as just one token, making it a natural fit for speculative decoding. We propose SpecExec (Speculative Execution), a simple parallel decoding method that can generate up to 20 tokens per target model iteration for popular LLM families. SpecExec takes the most probable continuations from the draft model to build a "cache" tree for the target model, which then gets validated in a single pass. Using SpecExec, we demonstrate inference of 50B+ parameter LLMs on consumer GPUs with RAM offloading at 4--6 tokens per second with 4-bit quantization or 2--3 tokens per second with 16-bit weights. Our code is available at https://github.com/yandex-research/specexec .
Poster
Junke Wang · Yi Jiang · Zehuan Yuan · BINGYUE PENG · Zuxuan Wu · Yu-Gang Jiang

[ East Exhibit Hall A-C ]

Abstract
Tokenizer, serving as a translator to map the intricate visual data into a compact latent space, lies at the core of visual generative models. Based on the finding that existing tokenizers are tailored to either image or video inputs, this paper presents OmniTokenizer, a transformer-based tokenizer for joint image and video tokenization. OmniTokenizer is designed with a spatial-temporal decoupled architecture, which integrates window attention and causal attention for spatial and temporal modeling, respectively. To exploit the complementary nature of image and video data, we further propose a progressive training strategy, where OmniTokenizer is first trained on image data on a fixed resolution to develop the spatial encoding capacity and then jointly trained on image and video data on multiple resolutions to learn the temporal dynamics. OmniTokenizer, for the first time, handles both image and video inputs within a unified framework and proves the possibility of realizing their synergy. Extensive experiments demonstrate that OmniTokenizer achieves state-of-the-art (SOTA) reconstruction performance on various image and video datasets, e.g., 1.11 reconstruction FID on ImageNet and 42 reconstruction FVD on UCF-101, beating the previous SOTA methods by 13% and 26%, respectively. Additionally, we also show that when integrated with OmniTokenizer, both language model-based approaches and …
Poster
Julia Kostin · Nicola Gnecco · Fanny Yang

[ East Exhibit Hall A-C ]

Abstract
In safety-critical applications, machine learning models should generalize well under worst-case distribution shifts, that is, have a small robust risk. Invariance-based algorithms can provably take advantage of structural assumptions on the shifts when the training distributions are heterogeneous enough to identify the robust risk. However, in practice, such identifiability conditions are rarely satisfied – a scenario so far underexplored in the theoretical literature. In this paper, we aim to fill the gap and propose to study the more general setting of partially identifiable robustness. In particular, we define a new risk measure, the identifiable robust risk, and its corresponding (population) minimax quantity that is an algorithm-independent measure for the best achievable robustness under partial identifiability. We introduce these concepts broadly, and then study them within the framework of linear structural causal models for concreteness of the presentation. We use the introduced minimax quantity to show how previous approaches provably achieve suboptimal robustness in the partially identifiable case. We confirm our findings through empirical simulations and real-world experiments and demonstrate how the test error of existing robustness methods grows increasingly suboptimal as the proportion of previously unseen test directions increases.
Poster
Yihe Deng · Pan Lu · Fan Yin · Ziniu Hu · Sheng Shen · Quanquan Gu · James Zou · Kai-Wei Chang · Wei Wang

[ East Exhibit Hall A-C ]

Abstract
Large vision language models (LVLMs) integrate large language models (LLMs) with pre-trained vision encoders, thereby activating the perception capability of the model to understand image inputs for different queries and conduct subsequent reasoning. Improving this capability requires high-quality vision-language data, which is costly and labor-intensive to acquire. Self-training approaches have been effective in single-modal settings to alleviate the need for labeled data by leveraging model's own generation. However, effective self-training remains a challenge regarding the unique visual perception and reasoning capability of LVLMs. To address this, we introduce **S**elf-**T**raining on **I**mage **C**omprehension (**STIC**), which emphasizes a self-training approach specifically for image comprehension. First, the model self-constructs a preference dataset for image descriptions using unlabeled images. Preferred responses are generated through a step-by-step prompt, while dis-preferred responses are generated from either corrupted images or misleading prompts. To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data and append its self-generated image descriptions to the prompts. We validate the effectiveness of STIC across seven different benchmarks, demonstrating substantial performance gains of 4.0% on average while using 70% less supervised fine-tuning data than the current method. Further studies dive into various components …
Poster
Simon Markus Geisler · Arthur Kosmala · Daniel Herbst · Stephan Günnemann

[ East Exhibit Hall A-C ]

Abstract
Spatial Message Passing Graph Neural Networks (MPGNNs) are widely used for learning on graph-structured data. However, key limitations of *ℓ*-step MPGNNs are that their "receptive field" is typically limited to the *ℓ*-hop neighborhood of a node and that information exchange between distant nodes is limited by over-squashing. Motivated by these limitations, we propose *Spatio-Spectral Graph Neural Networks (S²GNNs)* – a new modeling paradigm for Graph Neural Networks (GNNs) that synergistically combines spatially and spectrally parametrized graph filters. Parameterizing filters partially in the frequency domain enables global yet efficient information propagation. We show that S²GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs. Further, rethinking graph convolutions at a fundamental level unlocks new design spaces. For example, S²GNNs allow for free positional encodings that make them strictly more expressive than the 1-Weisfeiler-Leman (WL) test. Moreover, to obtain general-purpose S²GNNs, we propose spectrally parametrized filters for directed graphs. S²GNNs outperform spatial MPGNNs, graph transformers, and graph rewirings, e.g., on the peptide long-range benchmark tasks, and are competitive with state-of-the-art sequence modeling. On a 40 GB GPU, S²GNNs scale to millions of nodes.
Oral Poster
Haonan Lin · Wenbin An · Jiahao Wang · Yan Chen · Feng Tian · Mengmeng Wang · QianYing Wang · Guang Dai · Jingdong Wang

[ East Exhibit Hall A-C ]

Abstract
Recent advancements have shown promise in applying traditional Semi-Supervised Learning strategies to the task of Generalized Category Discovery (GCD). Typically, this involves a teacher-student framework in which the teacher imparts knowledge to the student to classify categories, even in the absence of explicit labels. Nevertheless, GCD presents unique challenges, particularly the absence of priors for new classes, which can lead to the teacher's misguidance and unsynchronized learning with the student, culminating in suboptimal outcomes. In our work, we delve into why traditional teacher-student designs falter in generalized category discovery as compared to their success in closed-world semi-supervised learning. We identify inconsistent pattern learning as the crux of this issue and introduce FlipClass—a method that dynamically updates the teacher to align with the student's attention, instead of maintaining a static teacher reference. Our teacher-attention-update strategy refines the teacher's focus based on student feedback, promoting consistent pattern recognition and synchronized learning across old and new classes. Extensive experiments on a spectrum of benchmarks affirm that FlipClass significantly surpasses contemporary GCD methods, establishing new standards for the field.
Poster
Xuandong Zhao · Kexun Zhang · Zihao Su · Saastha Vasan · Ilya Grishchenko · Christopher Kruegel · Giovanni Vigna · Yu-Xiang Wang · Lei Li

[ East Exhibit Hall A-C ]

Abstract
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners. They also prevent people from misusing images, especially those generated by AI models.We propose a family of regeneration attacks to remove these invisible watermarks. The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image. This approach is flexible and can be instantiated with many existing image-denoising algorithms and pre-trained generative models such as diffusion models. Through formal proofs and extensive empirical evaluations, we demonstrate that pixel-level invisible watermarks are vulnerable to this regeneration attack.Our results reveal that, across four different pixel-level watermarking schemes, the proposed method consistently achieves superior performance compared to existing attack techniques, with lower detection rates and higher image quality.However, watermarks that keep the image semantically similar can be an alternative defense against our attacks.Our finding underscores the need for a shift in research/industry emphasis from invisible watermarks to semantic-preserving watermarks. Code is available at https://github.com/XuandongZhao/WatermarkAttacker
Poster
Fei Shen · Jinhui Tang

[ East Exhibit Hall A-C ]

Abstract
Diffusion models represent a promising avenue for image generation, having demonstrated competitive performance in pose-guided person image generation. However, existing methods are limited to generating target images from a source image and a target pose, overlooking two critical user scenarios: generating multiple target images with different poses simultaneously and generating target images from multi-view source images.To overcome these limitations, we propose IMAGPose, a unified conditional framework for pose-guided image generation, which incorporates three pivotal modules: a feature-level conditioning (FLC) module, an image-level conditioning (ILC) module, and a cross-view attention (CVA) module. Firstly, the FLC module combines the low-level texture feature from the VAE encoder with the high-level semantic feature from the image encoder, addressing the issue of missing detail information due to the absence of a dedicated person image feature extractor. Then, the ILC module achieves an alignment of images and poses to adapt to flexible and diverse user scenarios by injecting a variable number of source image conditions and introducing a masking strategy.Finally, the CVA module introduces decomposing global and local cross-attention, ensuring local fidelity and global consistency of the person image when multiple source image prompts. The three modules of IMAGPose work together to unify the task of …
Poster
Puqian Wang · Nikos Zarifis · Ilias Diakonikolas · Jelena Diakonikolas

[ East Exhibit Hall A-C ]

Abstract
A single-index model (SIM) is a function of the form $\sigma(\mathbf{w}^{\ast} \cdot \mathbf{x})$, where$\sigma: \mathbb{R} \to \mathbb{R}$ is a known link function and $\mathbf{w}^{\ast}$ is a hidden unit vector. We study the task of learning SIMs in the agnostic (a.k.a. adversarial label noise) model with respect to the $L^2_2$-loss under the Gaussian distribution. Our main result is a sample and computationally efficient agnostic proper learner that attains $L^2_2$-error of $O(\mathrm{OPT})+\epsilon$, where $\mathrm{OPT}$ is the optimal loss. The sample complexity of our algorithm is $\tilde{O}(d^{\lceil k^{\ast}/2\rceil}+d/\epsilon)$, where $k^{\ast}$ is the information-exponent of $\sigma$ corresponding to the degree of its first non-zero Hermite coefficient. This sample bound nearly matches known CSQ lower bounds, even in the realizable setting. Prior algorithmic work in this setting had focused on learning in the realizable case or in the presence of semi-random noise. Prior computationally efficient robust learners required significantly stronger assumptions on the link function.
Spotlight Poster
Yangjun Ruan · Chris Maddison · Tatsunori Hashimoto

[ East Exhibit Hall A-C ]

Abstract
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~100 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
Poster
Kaichen Huang · Shenghua Wan · Minghao Shao · Hai-Hang Sun · Le Gan · Shuai Feng · De-Chuan Zhan

[ East Exhibit Hall A-C ]

Abstract
Model-based unsupervised reinforcement learning (URL) has gained prominence for reducing environment interactions and learning general skills using intrinsic rewards. However, distractors in observations can severely affect intrinsic reward estimation, leading to a biased exploration process, especially in environments with visual inputs like images or videos. To address this challenge, we propose a bi-level optimization framework named Separation-assisted eXplorer (SeeX). In the inner optimization, SeeX trains a separated world model to extract exogenous and endogenous information, minimizing uncertainty to ensure task relevance. In the outer optimization, it learns a policy on imaginary trajectories generated within the endogenous state space to maximize task-relevant uncertainty. Evaluations on multiple locomotion and manipulation tasks demonstrate SeeX's effectiveness.
Poster
Shirley Wu · Kaidi Cao · Bruno Ribeiro · James Zou · Jure Leskovec

[ East Exhibit Hall A-C ]

Abstract
Graph data are inherently complex and heterogeneous, leading to a high natural diversity of distributional shifts. However, it remains unclear how to build machine learning architectures that generalize to the complex distributional shifts naturally occurring in the real world. Here, we develop GraphMETRO, a Graph Neural Network architecture that models natural diversity and captures complex distributional shifts. GraphMETRO employs a Mixture-of-Experts (MoE) architecture with a gating model and multiple expert models, where each expert model targets a specific distributional shift to produce a referential representation w.r.t. a reference model, and the gating model identifies shift components. Additionally, we design a novel objective that aligns the representations from different expert models to ensure reliable optimization. GraphMETRO achieves state-of-the-art results on four datasets from the GOOD benchmark, which is comprised of complex and natural real-world distribution shifts, improving by 67% and 4.2% on the WebKB and Twitch datasets. Code and data are available at https://github.com/Wuyxin/GraphMETRO.
Poster
Yuchuan Tian · Zhijun Tu · Hanting Chen · Jie Hu · Chao Xu · Yunhe Wang

[ East Exhibit Hall A-C ]

Abstract
Diffusion Transformers (DiTs) introduce the transformer architecture to diffusion tasks for latent-space image generation. With an isotropic architecture that chains a series of transformer blocks, DiTs demonstrate competitive performance and good scalability; but meanwhile, the abandonment of U-Net by DiTs and their following improvements is worth rethinking. To this end, we conduct a simple toy experiment by comparing a U-Net architectured DiT with an isotropic one. It turns out that the U-Net architecture only gain a slight advantage amid the U-Net inductive bias, indicating potential redundancies within the U-Net-style DiT. Inspired by the discovery that U-Net backbone features are low-frequency-dominated, we perform token downsampling on the query-key-value tuple for self-attention and bring further improvements despite a considerable amount of reduction in computation. Based on self-attention with downsampled tokens, we propose a series of U-shaped DiTs (U-DiTs) in the paper and conduct extensive experiments to demonstrate the extraordinary performance of U-DiT models. The proposed U-DiT could outperform DiT-XL with only 1/6 of its computation cost. Codes are available at https://github.com/YuchuanTian/U-DiT.
Poster
Chenlu Ye · Wei Xiong · Yuheng Zhang · Hanze Dong · Nan Jiang · Tong Zhang

[ East Exhibit Hall A-C ]

Abstract
We investigate Reinforcement Learning from Human Feedback (RLHF) in the context of a general preference oracle. In particular, we do not assume the existence of a reward function and an oracle preference signal drawn from the Bradley-Terry model as most of the prior works do. We consider a standard mathematical formulation, the reverse-KL regularized minimax game between two LLMs for RLHF under general preference oracle. The learning objective of this formulation is to find a policy so that it is consistently preferred by the KL-regularized preference oracle over any competing LLMs. We show that this framework is strictly more general than the reward-based one, and propose sample-efficient algorithms for both the offline learning from a pre-collected preference dataset and online learning where we can query the preference oracle along the way of training. Empirical studies verify the effectiveness of the proposed framework.
Poster
Allan Zhou · Chelsea Finn · James Harrison

[ East Exhibit Hall A-C ]

Abstract
A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize.
Poster
Zhangyang Gao · Jue Wang · Cheng Tan · Lirong Wu · Yufei Huang · Siyuan Li · Zhirui Ye · Stan Z. Li

[ East Exhibit Hall A-C ]

Abstract
Molecule inverse folding has been a long-standing challenge in chemistry and biology, with the potential to revolutionize drug discovery and material science. Despite specified models have been proposed for different small- or macro-molecules, few have attempted to unify the learning process, resulting in redundant efforts. Complementary to recent advancements in molecular structure prediction, such as RoseTTAFold All-Atom and AlphaFold3, we propose the unified model UniIF for the inverse folding of all molecules. We do such unification in two levels: 1) Data-Level: We propose a unified block graph data form for all molecules, including the local frame building and geometric feature initialization. 2) Model-Level: We introduce a geometric block attention network, comprising a geometric interaction, interactive attention and virtual long-term dependency modules, to capture the 3D interactions of all molecules. Through comprehensive evaluations across various tasks such as protein design, RNA design, and material design, we demonstrate that our proposed method surpasses state-of-the-art methods on all tasks. UniIF offers a versatile and effective solution for general molecule inverse folding.
Poster
Levi Lingsch · Dana Grund · Siddhartha Mishra · Georgios Kissas

[ East Exhibit Hall A-C ]

Abstract
The joint prediction of continuous fields and statistical estimation of the underlying discrete parameters is a common problem for many physical systems, governed by PDEs. Hitherto, it has been separately addressed by employing operator learning surrogates for field prediction while using simulation-based inference (and its variants) for statistical parameter determination. Here, we argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness. To this end, we propose a novel and flexible formulation of the operator learning problem that jointly predicts continuous quantities and infers distributions of discrete parameters, thereby amortizing the cost of both the inverse and the surrogate models to a joint pre-training step. We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations under different levels of missing information. We also consider a test case for atmospheric large-eddy simulation of a two-dimensional dry cold bubble, where we infer both continuous time-series and information about the system's conditions. We present comparisons against different baselines to showcase significantly increased accuracy in both the inverse and the surrogate tasks.
Poster
Kai Jiang · Jiaxing Huang · Weiying Xie · Jie Lei · Yunsong Li · Ling Shao · Shijian Lu

[ East Exhibit Hall A-C ]

Abstract
Large-vocabulary object detectors (LVDs) aim to detect objects of many categories, which learn super objectness features and can locate objects accurately while applied to various downstream data. However, LVDs often struggle in recognizing the located objects due to domain discrepancy in data distribution and object vocabulary. At the other end, recent vision-language foundation models such as CLIP demonstrate superior open-vocabulary recognition capability. This paper presents KGD, a Knowledge Graph Distillation technique that exploits the implicit knowledge graphs (KG) in CLIP for effectively adapting LVDs to various downstream domains.KGD consists of two consecutive stages: 1) KG extraction that employs CLIP to encode downstream domain data as nodes and their feature distances as edges, constructing KG that inherits the rich semantic relations in CLIP explicitly; and 2) KG encapsulation that transfers the extracted KG into LVDs to enable accurate cross-domain object classification. In addition, KGD can extract both visual and textual KG independently, providing complementary vision and language knowledge for object localization and object classification in detection tasks over various downstream domains. Experiments over multiple widely adopted detection benchmarks show that KGD outperforms the state-of-the-art consistently by large margins. Codes will be released.
Poster
Tycho van der Ouderaa · Mark van der Wilk · Pim de Haan

[ East Exhibit Hall A-C ]

Abstract
Symmetries have proven useful in machine learning models, improving generalisation and overall performance. At the same time, recent advancements in learning dynamical systems rely on modelling the underlying Hamiltonian to guarantee the conservation of energy.These approaches can be connected via a seminal result in mathematical physics: Noether's theorem, which states that symmetries in a dynamical system correspond to conserved quantities.This work uses Noether's theorem to parameterise symmetries as learnable conserved quantities. We then allow conserved quantities and associated symmetries to be learned directly from train data through approximate Bayesian model selection, jointly with the regular training procedure. As training objective, we derive a variational lower bound to the marginal likelihood. The objective automatically embodies an Occam's Razor effect that avoids collapse of conversation laws to the trivial constant, without the need to manually add and tune additional regularisers. We demonstrate a proof-of-principle on n-harmonic oscillators and n-body systems. We find that our method correctly identifies the correct conserved quantities and U(n) and SE(n) symmetry groups, improving overall performance and predictive accuracy on test data.
Spotlight Poster
Yi-Fan Zhang · Min-Ling Zhang

[ East Exhibit Hall A-C ]

Abstract
Label-specific representation learning (LSRL), i.e., constructing the representation with specific discriminative properties for each class label, is an effective strategy to improve the performance of multi-label learning. However, the generalization analysis of LSRL is still in its infancy. The existing theory bounds for multi-label learning, which preserve the coupling among different components, are invalid for LSRL. In an attempt to overcome this challenge and make up for the gap in the generalization theory of LSRL, we develop a novel vector-contraction inequality and derive the generalization bound for general function class of LSRL with a weaker dependency on the number of labels than the state of the art. In addition, we derive generalization bounds for typical LSRL methods, and these theoretical results reveal the impact of different label-specific representations on generalization analysis. The mild bounds without strong assumptions explain the good generalization ability of LSRL.
Poster
Robi Bhattacharjee · Ulrike Luxburg

[ East Exhibit Hall A-C ]

Abstract
In sensitive contexts, providers of machine learning algorithms are increasingly required to give explanations for their algorithms' decisions. However, explanation receivers might not trust the provider, who potentially could output misleading or manipulated explanations. In this work, we investigate an auditing framework in which a third-party auditor or a collective of users attempts to sanity-check explanations: they can query model decisions and the corresponding local explanations, pool all the information received, and then check for basic consistency properties. We prove upper and lower bounds on the amount of queries that are needed for an auditor to succeed within this framework. Our results show that successful auditing requires a potentially exorbitant number of queries -- particularly in high dimensional cases. Our analysis also reveals that a key property is the ``locality'' of the provided explanations --- a quantity that so far has not been paid much attention to in the explainability literature. Looking forward, our results suggest that for complex high-dimensional settings, merely providing a pointwise prediction and explanation could be insufficient, as there is no way for the users to verify that the provided explanations are not completely made-up.
Poster
Chuyang Zhao · YuXin Song · Junru Chen · KANG RONG · Haocheng Feng · Gang Zhang · Shufan Ji · Jingdong Wang · Errui Ding · Yifan Sun

[ East Exhibit Hall A-C ]

Abstract
A mainstream of Multi-modal Large Language Models (MLLMs) have two essential functions, i.e., visual recognition (e.g., grounding) and understanding (e.g., visual question answering). Presently, all these MLLMs integrate visual recognition and understanding in a same sequential manner in the LLM head, i.e., generating the response token-by-token for both recognition and understanding. We think unifying them in the same sequential manner is not optimal for two reasons: 1) parallel recognition is more efficient than sequential recognition and is actually prevailing in deep visual recognition, and 2) the recognition results can be integrated to help high-level cognition (while the current manner does not). Such motivated, this paper proposes a novel “parallel recognition → sequential understanding” framework for MLLMs. The bottom LLM layers are utilized for parallel recognition and the recognition results are relayed into the top LLM layers for sequential understanding. Specifically, parallel recognition in the bottom LLM layers is implemented via object queries, a popular mechanism in DEtection TRansformer, which we find to harmonize well with the LLM layers. Empirical studies show our MLLM named Octopus improves accuracy on popular MLLM tasks and is up to 5× faster on visual grounding tasks.
Poster
Blake Bordelon · Hamza Chaudhry · Cengiz Pehlevan

[ East Exhibit Hall A-C ]

Abstract
In this work we analyze various scaling limits of the training dynamics of transformer models in the feature learning regime. We identify the set of parameterizations which admit well defined infinite width and depth limits that allow the attention layers to update throughout training, a relevant notion of feature learning in these models. We then use tools from dynamical mean field theory (DMFT) to analyze various infinite limits (infinite heads, infinite key/query dimension, and infinite depth) which have different statistical descriptions depending on which infinite limit is taken and how attention layers are scaled. We provide numerical evidence of convergence to the limits and show they maintain the correct scale of updates for both SGD and Adam.
Poster
Tian Huang · Shengbo Wang · Ke Li

[ East Exhibit Hall A-C ]

Abstract
The ultimate goal of multi-objective optimization (MO) is to assist human decision-makers (DMs) in identifying solutions of interest (SOI) that optimally reconcile multiple objectives according to their preferences. Preference-based evolutionary MO (PBEMO) has emerged as a promising framework that progressively approximates SOI by involving human in the optimization-cum-decision-making process. Yet, current PBEMO approaches are prone to be inefficient and misaligned with the DM’s true aspirations, especially when inadvertently exploiting mis-calibrated reward models. This is further exacerbated when considering the stochastic nature of human feedback. This paper proposes a novel framework that navigates MO to SOI by directly leveraging human feedback without being restricted by a predefined reward model nor cumbersome model selection. Specifically, we developed a clustering-based stochastic dueling bandits algorithm that strategically scales well to high-dimensional dueling bandits, and achieves a regret of $\mathcal{O}(K^2\log T)$, where $K$ is the number of clusters and $T$ is the number of rounds. The learned preferences are then transformed into a unified probabilistic format that can be readily adapted to prevalent EMO algorithms. This also leads to a principled termination criterion that strategically manages human cognitive loads and computational budget. Experiments on $48$ benchmark test problems, including synthetic problems, RNA inverse design and …
Poster
Guangji Bai · Yijiang Li · Chen LING · Kibaek Kim · Liang Zhao

[ East Exhibit Hall A-C ]

Abstract
The transformative impact of large language models (LLMs) like LLaMA and GPT on natural language processing is countered by their prohibitive computational demands. Pruning has emerged as a pivotal compression strategy, introducing sparsity to enhance both memory and computational efficiency. Yet, traditional global pruning is impractical for LLMs due to scalability issues, while local pruning, despite its efficiency, leads to suboptimal solutions. Addressing these challenges, we propose *SparseLLM*, a novel framework that redefines the global pruning process into manageable, coordinated subproblems, allowing for resource-efficient optimization with global optimality. SparseLLM's approach, which conceptualizes LLMs as a chain of modular functions and leverages auxiliary variables for problem decomposition, not only facilitates a pragmatic application on LLMs but also demonstrates significant performance improvements, particularly in high-sparsity regimes where it surpasses current state-of-the-art methods. Our source code is publicly available at https://github.com/BaiTheBest/SparseLLM.
Poster
Xiulong Liu · Kun Su · Eli Shlizerman

[ East Exhibit Hall A-C ]

Abstract
The content of visual and audio scenes is multi-faceted such that a video stream canbe paired with various audio streams and vice-versa. Thereby, in video-to-audiogeneration task, it is imperative to introduce steering approaches for controlling thegenerated audio. While Video-to-Audio generation is a well-established generativetask, existing methods lack such controllability. In this work, we propose VATT, amulti-modal generative framework that takes a video and an optional text promptas input, and generates audio and optional textual description (caption) of theaudio. Such a framework has two unique advantages: i) Video-to-Audio generationprocess can be refined and controlled via text which complements the contextof the visual information, and ii) The model can suggest what audio to generatefor the video by generating audio captions. VATT consists of two key modules:VATT Converter, which is an LLM that has been fine-tuned for instructions andincludes a projection layer that maps video features to the LLM vector space, andVATT Audio, a bi-directional transformer that generates audio tokens from visualframes and from optional text prompt using iterative parallel decoding. The audiotokens and the text prompt are used by a pretrained neural codec to convert theminto a waveform. Our experiments show that when VATT is compared to existingvideo-to-audio generation methods in objective …
Poster
Jeongyeol Kwon · Shie Mannor · Constantine Caramanis · Yonathan Efroni

[ East Exhibit Hall A-C ]

Abstract
In many real-world decision problems there is partially observed, hidden or latent information that remains fixed throughout an interaction. Such decision problems can be modeled as Latent Markov Decision Processes (LMDPs), where a latent variable is selected at the beginning of an interaction and is not disclosed to the agent initially. In last decade, there has been significant progress in designing learning algorithms for solving LMDPs under different structural assumptions. However, for general LMDPs, there is no known learning algorithm that provably matches the existing lower bound. We effectively resolve this open question, introducing the first sample-efficient algorithm for LMDPs without *any additional structural assumptions*. Our result builds off a new perspective on the role off-policy evaluation guarantees and coverage coefficient in LMDPs, a perspective, which has been overlooked in the context of exploration in partially observed environments. Specifically, we establish a novel off-policy evaluation lemma and introduce a new coverage coefficient for LMDPs. Then, we show how these can be used to derive near-optimal guarantees of an optimistic exploration algorithm. These results, we believe, can be valuable for a wide range of interactive learning problems beyond the LMDP class, and especially, for partially observed environments.
Poster
Ioannis Anagnostides · Tuomas Sandholm

[ East Exhibit Hall A-C ]

Abstract
Gradient-based algorithms have shown great promise in solving large (two-player) zero-sum games. However, their success has been mostly confined to the low-precision regime since the number of iterations grows polynomially in $1/\epsilon$, where $\epsilon > 0$ is the duality gap. While it has been well-documented that linear convergence---an iteration complexity scaling as $\text{log}(1/\epsilon)$---can be attained even with gradient-based algorithms, that comes at the cost of introducing a dependency on certain condition number-like quantities which can be exponentially large in the description of the game. To address this shortcoming, we examine the iteration complexity of several gradient-based algorithms in the celebrated framework of smoothed analysis, and we show that they have polynomial smoothed complexity, in that their number of iterations grows as a polynomial in the dimensions of the game, $\text{log}(1/\epsilon)$, and $1/\sigma$, where $\sigma$ measures the magnitude of the smoothing perturbation. Our result applies to optimistic gradient and extra-gradient descent/ascent, as well as a certain iterative variant of Nesterov's smoothing technique. From a technical standpoint, the proof proceeds by characterizing and performing a smoothed analysis of a certain error bound, the key ingredient driving linear convergence in zero-sum games. En route, our characterization also makes a natural connection between the convergence …
Poster
Haiquan Lu · Yefan Zhou · Shiwei Liu · Zhangyang &quot;Atlas&quot; Wang · Michael Mahoney · Yaoqing Yang

[ East Exhibit Hall A-C ]

Abstract
Recent work on pruning large language models (LLMs) has shown that one can eliminate a large number of parameters without compromising performance, making pruning a promising strategy to reduce LLM model size. Existing LLM pruning strategies typically assign uniform pruning ratios across layers, limiting overall pruning ability; and recent work on layerwise pruning of LLMs is often based on heuristics that can easily lead to suboptimal performance. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory, in particular the shape of empirical spectral densities (ESDs) of weight matrices, to design improved layerwise pruning ratios for LLMs. Our analysis reveals a wide variability in how well-trained, and thus relatedly how prunable, different layers of an LLM are. Based on this, we propose AlphaPruning, which uses shape metrics to allocate layerwise sparsity ratios in a more theoretically-principled manner. AlphaPruning can be used in conjunction with multiple existing LLM pruning methods. Our empirical results show that AlphaPruning prunes LLaMA-7B to 80% sparsity while maintaining reasonable perplexity, marking a first in the literature on LLMs.
Poster
Zheng Zhan · Zhenglun Kong · Yifan Gong · Yushu Wu · Zichong Meng · Hangyu Zheng · Xuan Shen · Stratis Ioannidis · Wei Niu · Pu Zhao · Yanzhi Wang

[ East Exhibit Hall A-C ]

Abstract
State Space Models (SSMs) have the advantage of keeping linear computational complexity compared to attention modules in transformers, and have been applied to vision tasks as a new type of powerful vision foundation model. Inspired by the observations that the final prediction in vision transformers (ViTs) is only based on a subset of most informative tokens, we take the novel step of enhancing the efficiency of SSM-based vision models through token-based pruning. However, direct applications of existing token pruning techniques designed for ViTs fail to deliver good performance, even with extensive fine-tuning. To address this issue, we revisit the unique computational characteristics of SSMs and discover that naive application disrupts the sequential token positions. This insight motivates us to design a novel and general token pruning method specifically for SSM-based vision models. We first introduce a pruning-aware hidden state alignment method to stabilize the neighborhood of remaining tokens for performance enhancement. Besides, based on our detailed analysis, we propose a token importance evaluation method adapted for SSM models, to guide the token pruning. With efficient implementation and practical acceleration methods, our method brings actual speedup. Extensive experiments demonstrate that our approach can achieve significant computation reduction with minimal impact on …

Poster Session 5 West Fri 13 Dec 11:00 a.m.  

Oral Poster
Siyuan Guo · Chi Zhang · Karthika Mohan · Ferenc Huszar · Bernhard Schölkopf

[ West Ballroom A-D ]

Abstract
We study causal effect estimation in a setting where the data are not i.i.d.$\ $(independent and identically distributed). We focus on exchangeable data satisfying an assumption of independent causal mechanisms. Traditional causal effect estimation frameworks, e.g., relying on structural causal models and do-calculus, are typically limited to i.i.d. data and do not extend to more general exchangeable generative processes, which naturally arise in multi-environment data. To address this gap, we develop a generalized framework for exchangeable data and introduce a truncated factorization formula that facilitates both the identification and estimation of causal effects in our setting. To illustrate potential applications, we introduce a causal Pólya urn model and demonstrate how intervention propagates effects in exchangeable data settings. Finally, we develop an algorithm that performs simultaneous causal discovery and effect estimation given multi-environment data.
Poster
Yuanyuan Wang · Biwei Huang · Wei Huang · Xi Geng · Mingming Gong

[ West Ballroom A-D ]

Abstract
The identifiability analysis of linear Ordinary Differential Equation (ODE) systems is a necessary prerequisite for making reliable causal inferences about these systems. While identifiability has been well studied in scenarios where the system is fully observable, the conditions for identifiability remain unexplored when latent variables interact with the system. This paper aims to address this gap by presenting a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders. Specifically, we investigate two cases of such systems. In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific functional forms, such as polynomial functions of time $t$. Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies, with the causal structure of latent variables described by a Directed Acyclic Graph (DAG). The second case represents a more intricate variation of the first case, prompting a more comprehensive identifiability analysis. Accordingly, we conduct detailed identifiability analyses of the second system under various observation conditions, including both continuous and discrete observations from single or multiple trajectories. To validate our theoretical results, we perform a series of simulations, which support and substantiate our findings.
Poster
Mohammad Shahverdikondori · Ehsan Mokhtarian · Negar Kiyavash

[ West Ballroom A-D ]

Abstract
Causal discovery is essential for understanding relationships among variables of interest in many scientific domains. In this paper, we focus on permutation-based methods for learning causal graphs in Linear Gaussian Acyclic Models (LiGAMs), where the permutation encodes a causal ordering of the variables. Existing methods in this setting are not scalable due to their high computational complexity. These methods are comprised of two main components: (i) constructing a specific DAG, $\mathcal{G}^\pi$, for a given permutation $\pi$, which represents the best structure that can be learned from the available data while adhering to $\pi$, and (ii) searching over the space of permutations (i.e., causal orders) to minimize the number of edges in $\mathcal{G}^\pi$. We introduce QWO, a novel approach that significantly enhances the efficiency of computing $\mathcal{G}^\pi$ for a given permutation $\pi$. QWO has a speed-up of $O(n^2)$ ($n$ is the number of variables) compared to the state-of-the-art BIC-based method, making it highly scalable. We show that our method is theoretically sound and can be integrated into existing search strategies such as GRASP and hill-climbing-based methods to improve their performance.
Oral Poster
Feng Xie · Zhen Yao · Lin Xie · Yan Zeng · Zhi Geng

[ West Ballroom A-D ]

Abstract
We consider the challenging problem of estimating causal effects from purely observational data in the bi-directional Mendelian randomization (MR), where some invalid instruments, as well as unmeasured confounding, usually exist. To address this problem, most existing methods attempt to find proper valid instrumental variables (IVs) for the target causal effect by expert knowledge or by assuming that the causal model is a one-directional MR model. As such, in this paper, we first theoretically investigate the identification of the bi-directional MR from observational data. In particular, we provide necessary and sufficient conditions under which valid IV sets are correctly identified such that the bi-directional MR model is identifiable, including the causal directions of a pair of phenotypes (i.e., the treatment and outcome).Moreover, based on the identification theory, we develop a cluster fusion-like method to discover valid IV sets and estimate the causal effects of interest.We theoretically demonstrate the correctness of the proposed algorithm.Experimental results show the effectiveness of our method for estimating causal effects in both one-directional and bi-directional MR models.
Poster
Abbavaram Gowtham Reddy · Vineeth N Balasubramanian

[ West Ballroom A-D ]

Abstract
Detecting and measuring confounding effects from data is a key challenge in causal inference. Existing methods frequently assume causal sufficiency, disregarding the presence of unobserved confounding variables. Causal sufficiency is both unrealistic and empirically untestable. Additionally, existing methods make strong parametric assumptions about the underlying causal generative process to guarantee the identifiability of confounding variables. Relaxing the causal sufficiency and parametric assumptions and leveraging recent advancements in causal discovery and confounding analysis with non-i.i.d. data, we propose a comprehensive approach for detecting and measuring confounding. We consider various definitions of confounding and introduce tailored methodologies to achieve three objectives: (i) detecting and measuring confounding among a set of variables, (ii) separating observed and unobserved confounding effects, and (iii) understanding the relative strengths of confounding bias between different sets of variables. We present useful properties of a confounding measure and present measures that satisfy those properties. Our empirical results support the usefulness of the proposed measures.
Poster
Miruna Oprescu · Nathan Kallus

[ West Ballroom A-D ]

Abstract
Accurately predicting conditional average treatment effects (CATEs) is crucial in personalized medicine and digital platform analytics. Since the treatments of interest often cannot be directly randomized, observational data is leveraged to learn CATEs, but this approach can incur significant bias from unobserved confounding. One strategy to overcome these limitations is to leverage instrumental variables (IVs) as latent quasi-experiments, such as randomized intent-to-treat assignments or randomized product recommendations. This approach, on the other hand, can suffer from low compliance, i.e., IV weakness. Some subgroups may even exhibit zero compliance, meaning we cannot instrument for their CATEs at all. In this paper, we develop a novel approach to combine IV and observational data to enable reliable CATE estimation in the presence of unobserved confounding in the observational data and low compliance in the IV data, including no compliance for some subgroups. We propose a two-stage framework that first learns \textit{biased} CATEs from the observational data, and then applies a compliance-weighted correction using IV data, effectively leveraging IV strength variability across covariates. We characterize the convergence rates of our method and validate its effectiveness through a simulation study. Additionally, we demonstrate its utility with real data by analyzing the heterogeneous effects of 401(k) …
Poster
Yiwen Qiu · Yujia Zheng · Kun Zhang

[ West Ballroom A-D ]

Abstract
When solving long-horizon tasks, it is intriguing to decompose the high-level task into subtasks. Decomposing experiences into reusable subtasks can improve data efficiency, accelerate policy generalization, and in general provide promising solutions to multi-task reinforcement learning and imitation learning problems. However, the concept of subtasks is not sufficiently understood and modeled yet, and existing works often overlook the true structure of the data generation process: subtasks are the results of a *selection* mechanism on actions, rather than possible underlying confounders or intermediates. Specifically, we provide a theory to identify, and experiments to verify the existence of selection variables in such data. These selections serve as subgoals that indicate subtasks and guide policy. In light of this idea, we develop a sequential non-negative matrix factorization (seq- NMF) method to learn these subgoals and extract meaningful behavior patterns as subtasks. Our empirical results on a challenging Kitchen environment demonstrate that the learned subtasks effectively enhance the generalization to new tasks in multi-task imitation learning scenarios. The codes are provided at this [*link*](https://anonymous.4open.science/r/Identifying\_Selections\_for\_Unsupervised\_Subtask\_Discovery/README.md).
Poster
Amir Mohammad Abouei · Ehsan Mokhtarian · Negar Kiyavash · Matthias Grossglauser

[ West Ballroom A-D ]

Abstract
The s-ID problem seeks to compute a causal effect in a specific sub-population from the observational data pertaining to the same sub population (Abouei et al., 2023). This problem has been addressed when all the variables in the system are observable. In this paper, we consider an extension of the s-ID problem that allows for the presence of latent variables. To tackle the challenges induced by the presence of latent variables in a sub-population, we first extend the classical relevant graphical definitions, such as c-components and Hedges, initially defined for the so-called ID problem (Pearl, 1995; Tian & Pearl, 2002), to their new counterparts. Subsequently, we propose a sound algorithm for the s-ID problem with latent variables.
Poster
Loka Li · Haoyue Dai · Hanin Al Ghothani · Biwei Huang · Jiji Zhang · Shahar Harel · Isaac Bentwich · Guangyi Chen · Kun Zhang

[ West Ballroom A-D ]

Abstract
Many causal discovery methods typically rely on the assumption of independent noise, yet real-life situations often involve deterministic relationships. In these cases, observed variables are represented as deterministic functions of their parental variables without noise.When determinism is present, constraint-based methods encounter challenges due to the violation of the faithfulness assumption. In this paper, we find, supported by both theoretical analysis and empirical evidence, that score-based methods with exact search can naturally address the issues of deterministic relations under rather mild assumptions. Nonetheless, exact score-based methods can be computationally expensive. To enhance the efficiency and scalability, we develop a novel framework for causal discovery that can detect and handle deterministic relations, called Determinism-aware Greedy Equivalent Search (DGES). DGES comprises three phases: (1) identify minimal deterministic clusters (i.e., a minimal set of variables with deterministic relationships), (2) run modified Greedy Equivalent Search (GES) to obtain an initial graph, and (3) perform exact search exclusively on the deterministic cluster and its neighbors. The proposed DGES accommodates both linear and nonlinear causal relationships, as well as both continuous and discrete data types. Furthermore, we investigate the identifiability conditions of DGES. We conducted extensive experiments on both simulated and real-world datasets to show the efficacy …
Poster
Alexis Bellot · Silvia Chiappa

[ West Ballroom A-D ]

Abstract
As many practical fields transition to provide personalized decisions, data is increasingly relevant to support the evaluation of candidate plans and policies (e.g., guidelines for the treatment of disease, government directives, etc.). In the machine learning literature, significant efforts have been put into developing machinery to predict the effectiveness of policies efficiently. The challenge is that, in practice, the effectiveness of a candidate policy is not always identifiable, i.e., not uniquely estimable from the combination of the available data and assumptions about the domain at hand (e.g., encoded in a causal graph). In this paper, we develop graphical characterizations and estimation tools to bound the effect of policies given a causal graph and observational data collected in non-identifiable settings. Specifically, our contributions are two-fold: (1) we derive analytical bounds for general probabilistic and conditional policies that are tighter than existing results, (2) we develop an estimation framework to estimate bounds from finite samples, applicable in higher-dimensional spaces and continuously-valued data. We further show that the resulting estimators have favourable statistical properties such as fast convergence and robustness to model misspecification.
Poster
Linyi Li · Shijie Geng · Zhenwen Li · Yibo He · Hao Yu · Ziyue Hua · Guanghan Ning · Siwei Wang · Tao Xie · Hongxia Yang

[ West Ballroom A-D ]

Abstract
Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source at https://infi-coder.github.io/infibench and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.
Poster
Yilun Jin · Zheng Li · Chenwei Zhang · Tianyu Cao · Yifan Gao · Pratik Jayarao · Mao Li · Xin Liu · Ritesh Sarkhel · Xianfeng Tang · Haodong Wang · Zhengyang Wang · Wenju Xu · Jingfeng Yang · Qingyu Yin · Xian Li · Priyanka Nigam · Yi Xu · Kai Chen · Qiang Yang · Meng Jiang · Bing Yin

[ West Ballroom A-D ]

Abstract
Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shoppping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we are hosting a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and …
Poster
George Tsoukalas · Jasper Lee · John Jennings · Jimmy Xin · Michelle Ding · Michael Jennings · Amitayush Thakur · Swarat Chaudhuri

[ West Ballroom A-D ]

Abstract
We present PutnamBench, a new multi-language benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1692 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the problems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. PutnamBench requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench.
Poster
Zahra Gharaee · Scott C. Lowe · ZeMing Gong · Pablo Millan Arias · Nicholas Pellegrino · Austin T. Wang · Joakim Bruslund Haurum · Iuliia Eyriay · Lila Kari · Dirk Steinke · Graham Taylor · Paul Fieguth · Angel Chang

[ West Ballroom A-D ]

Abstract
As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, this paper presents the BIOSCAN-5M Insect dataset to the machine learning community and establish several benchmark tasks. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens, and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, geographical, and size information. We propose three benchmark experiments to demonstrate the impact of the multi-modal data types on the classification and clustering accuracy. First, we pretrain a masked language model on the DNA barcode sequences of the BIOSCAN-5M dataset, and demonstrate the impact of using this large reference library on species- and genus-level classification performance. Second, we propose a zero-shot transfer learning task applied to images and DNA barcodes to cluster feature embeddings obtained from self-supervised learning, to investigate whether meaningful clusters can be derived from these representation embeddings. Third, we benchmark multi-modality by performing contrastive learning on DNA barcodes, image data, and taxonomic information. This yields a general shared embedding space enabling taxonomic classification using multiple types of information and modalities. The code repository of the BIOSCAN-5M Insect dataset is available at https://github.com/bioscan-ml/BIOSCAN-5M.
Poster
Mehran Kazemi · Nishanth Dikkala · Ankit Anand · Petar Devic · Ishita Dasgupta · Fangyu Liu · Bahare Fatemi · Pranjal Awasthi · Sreenivas Gollapudi · Dee Guo · Ahmed Qureshi

[ West Ballroom A-D ]

Abstract
With the continuous advancement of large language models (LLMs), it is essential to create new benchmarks to evaluate their expanding capabilities and identify areas for improvement. This work focuses on multi-image reasoning, an emerging capability in state-of-the-art LLMs. We introduce ReMI, a dataset designed to assess LLMs' ability to reason with multiple images. This dataset encompasses a diverse range of tasks, spanning various reasoning domains such as math, physics, logic, code, table/chart understanding, and spatial and temporal reasoning. It also covers a broad spectrum of characteristics found in multi-image reasoning scenarios. We have benchmarked several cutting-edge LLMs using ReMI and found a substantial gap between their performance and human-level proficiency. This highlights the challenges in multi-image reasoning and the need for further research. Our analysis also reveals the strengths and weaknesses of different models, shedding light on the types of reasoning that are currently attainable and areas where future models require improvement. We anticipate that ReMI will be a valuable resource for developing and evaluating more sophisticated LLMs capable of handling real-world multi-image understanding tasks.
Poster
Patrick Tser Jern Kon · Jiachen Liu · Yiming Qiu · Weijun Fan · Ting He · Lei Lin · Haoran Zhang · Owen Park · George Elengikal · Yuxin Kang · Ang Chen · Mosharaf Chowdhury · Myungjin Lee · Xinyu Wang

[ West Ballroom A-D ]

Abstract
Infrastructure-as-Code (IaC), an important component of cloud computing, allows the definition of cloud infrastructure in high-level programs. However, developing IaC programs is challenging, complicated by factors that include the burgeoning complexity of the cloud ecosystem (e.g., diversity of cloud services and workloads), and the relative scarcity of IaC-specific code examples and public repositories. While large language models (LLMs) have shown promise in general code generation and could potentially aid in IaC development, no benchmarks currently exist for evaluating their ability to generate IaC code. We present IaC-Eval, a first step in this research direction. IaC-Eval's dataset includes 458 human-curated scenarios covering a wide range of popular AWS services, at varying difficulty levels. Each scenario mainly comprises a natural language IaC problem description and an infrastructure intent specification. The former is fed as user input to the LLM, while the latter is a general notion used to verify if the generated IaC program conforms to the user's intent; by making explicit the problem's requirements that can encompass various cloud services, resources and internal infrastructure details. Our in-depth evaluation shows that contemporary LLMs perform poorly on IaC-Eval, with the top-performing model, GPT-4, obtaining a pass@1 accuracy of 19.36%. In contrast, it scores …
Poster
Arian Prabowo · Xiachong LIN · Imran Razzak · Hao Xue · Emily Yap · Matthew Amos · Flora Salim

[ West Ballroom A-D ]

Abstract
Buildings play a crucial role in human well-being, influencing occupant comfort, health, and safety.Additionally, they contribute significantly to global energy consumption, accounting for one-third of total energy usage, and carbon emissions.Optimizing building performance presents a vital opportunity to combat climate change and promote human flourishing.However, research in building analytics has been hampered by the lack of accessible, available, and comprehensive real-world datasets on multiple building operations.In this paper, we introduce the Building TimeSeries (BTS) dataset.Our dataset covers three buildings over a three-year period, comprising more than ten thousand timeseries data points with hundreds of unique ontologies.Moreover, the metadata is standardized using the Brick schema.To demonstrate the utility of this dataset, we performed benchmarks on two tasks: timeseries ontology classification and zero-shot forecasting.These tasks represent an essential initial step in addressing challenges related to interoperability in building analytics.Access to the dataset and the code used for benchmarking are available here: https://github.com/cruiseresearchgroup/DIEF\_BTS
Poster
Haiji Liang · Ruize Han

[ West Ballroom A-D ]

Abstract
Open-vocabulary object perception has become an important topic in artificial intelligence, which aims to identify objects with novel classes that have not been seen during training. Under this setting, open-vocabulary object detection (OVD) in a single image has been studied in many literature. However, open-vocabulary object tracking (OVT) from a video has been studied less, and one reason is the shortage of benchmarks. In this work, we have built a new large-scale benchmark for open-vocabulary multi-object tracking namely OVT-B. OVT-B contains 1,048 categories of objects and 1,973 videos with 637,608 bounding box annotations, which is much larger than the sole open-vocabulary tracking dataset, i.e., OVTAO-val dataset (200+ categories, 900+ videos). The proposed OVT-B can be used as a new benchmark to pave the way for OVT research. We also develop a simple yet effective baseline method for OVT. It integrates the motion features for object tracking, which is an important feature for MOT but is ignored in previous OVT methods. Experimental results have verified the usefulness of the proposed benchmark and the effectiveness of our method. We have released the benchmark to the public at https://github.com/Coo1Sea/OVT-B-Dataset.
Poster
Nithish Kannen Senthilkumar · Arif Ahmad · Marco Andreetto · Vinodkumar Prabhakaran · Utsav Prabhu · Adji Bousso Dieng · Pushpak Bhattacharyya · Shachi Dave

[ West Ballroom A-D ]

Abstract
Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of *cultural competence*. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide …
Poster
Nidhish Shah · Zulkuf Genc · Dogu Araci

[ West Ballroom A-D ]

Abstract
We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval.
Poster
Ashwin Sankar · Srija Anand · Praveen Varadhan · Sherry Thomas · Mehak Singal · Shridhar Kumar · Deovrat Mehendale · Aditi Krishana · Giri Raju · Mitesh Khapra

[ West Ballroom A-D ]

Abstract
Recent advancements in text-to-speech (TTS) synthesis show that large-scale models trained with extensive web data produce highly natural-sounding output. However, such data is scarce for Indian languages due to the lack of high-quality, manually subtitled data on platforms like LibriVox or YouTube. To address this gap, we enhance existing large-scale ASR datasets containing natural conversations collected in low-quality environments to generate high-quality TTS training data. Our pipeline leverages the cross-lingual generalization of denoising and speech enhancement models trained on English and applied to Indian languages. This results in IndicVoices-R (IV-R), the largest multilingual Indian TTS dataset derived from an ASR dataset, with 1,704 hours of high-quality speech from 10,496 speakers across 22 Indian languages. IV-R matches the quality of gold-standard TTS datasets like LJSpeech, LibriTTS, and IndicTTS. We also introduce the IV-R Benchmark, the first to assess zero-shot, few-shot, and many-shot speaker generalization capabilities of TTS models on Indian voices, ensuring diversity in age, gender, and style. We demonstrate that fine-tuning an English pre-trained model on a combined dataset of high-quality IndicTTS and our IV-R dataset results in better zero-shot speaker generalization compared to fine-tuning on the IndicTTS dataset alone. Further, our evaluation reveals limited zero-shot generalization for Indian voices …
Poster
Lemei Zhang · Peng Liu · Marcus Henriksboe · Even Lauvrak · Jon Atle Gulla · Heri Ramampiaro

[ West Ballroom A-D ]

Abstract
With the rapid advancement of Natural Language Processing in recent years, numerous studies have shown that generic summaries generated by Large Language Models (LLMs) can sometimes surpass those annotated by experts, such as journalists, according to human evaluations. However, there is limited research on whether these generic summaries meet the individual needs of ordinary people. The biggest obstacle is the lack of human-annotated datasets from the general public. Existing work on personalized summarization often relies on pseudo datasets created from generic summarization datasets or controllable tasks that focus on specific named entities or other aspects, such as the length and specificity of generated summaries, collected from hypothetical tasks without the annotators' initiative. To bridge this gap, we propose a high-quality, personalized, manually annotated summarization dataset called PersonalSum. This dataset is the first to investigate whether the focus of public readers differs from the generic summaries generated by LLMs. It includes user profiles, personalized summaries accompanied by source sentences from given articles, and machine-generated generic summaries along with their sources. We investigate several personal signals — entities/topics, plot, and structure of articles—that may affect the generation of personalized summaries using LLMs in a few-shot in-context learning scenario. Our preliminary results and …
Poster
Viswanath Sivakumar · Jeffrey Seely · Alan Du · Sean Bittner · Adam Berenzweig · Anuoluwapo Bolarinwa · Alex Gramfort · Michael Mandel

[ West Ballroom A-D ]

Abstract
Surface electromyography (sEMG) non-invasively measures signals generated by muscle activity with sufficient sensitivity to detect individual spinal neurons and richness to identify dozens of gestures and their nuances. Wearable wrist-based sEMG sensors have the potential to offer low friction, subtle, information rich, always available human-computer inputs. To this end, we introduce emg2qwerty, a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard, together with ground-truth annotations and reproducible baselines. With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date. These data demonstrate non-trivial, but well defined hierarchical relationships both in terms of the generative process, from neurons to muscles and muscle combinations, as well as in terms of domain shift across users and user sessions. Applying standard modeling techniques from the closely related field of Automatic Speech Recognition (ASR), we show strong baseline performance on predicting key-presses using sEMG signals alone. We believe the richness of this task and dataset will facilitate progress in several problems of interest to both the machine learning and neuroscientific communities. Dataset and code can be accessed at https://github.com/facebookresearch/emg2qwerty.
Poster
Rebecca Saul · Chang Liu · Noah Fleischmann · Richard Zak · Kristopher Micinski · Edward Raff · James Holt

[ West Ballroom A-D ]

Abstract
Binary analysis is a core component of many critical security tasks, including reverse engineering, malware analysis, and vulnerability detection. Manual analysis is often time-consuming, but identifying commonly-used or previously-seen functions can reduce the time it takes to understand a new file. However, given the complexity of assembly, and the NP-hard nature of determining function equivalence, this task is extremely difficult. Common approaches often use sophisticated disassembly and decompilation tools, graph analysis, and other expensive pre-processing steps to perform function similarity searches over some corpus. In this work, we identify a number of discrepancies between the current research environment and the underlying application need. To remedy this, we build a new benchmark, REFuSe-Bench, for binary function similarity detection consisting of high-quality datasets and tests that better reflect real-world use cases. In doing so, we address issues like data duplication and accurate labeling, experiment with real malware, and perform the first serious evaluation of ML binary function similarity models on Windows data. Our benchmark reveals that a new, simple baseline — one which looks at only the raw bytes of a function, and requires no disassembly or other pre-processing --- is able to achieve state-of-the-art performance in multiple settings. Our findings challenge …
Poster
Nicholas Dronen · Bardiya Akhbari · Manish Digambar Gawali

[ West Ballroom A-D ]

Abstract
Set theory is foundational to mathematics and, when sets are finite, to reasoning about the world. An intelligent system should perform set operations consistently, regardless of superficial variations in the operands. Initially designed for semantically-oriented NLP tasks, large language models (LLMs) are now being evaluated on algorithmic tasks. Because sets are comprised of arbitrary symbols (e.g. numbers, words), they provide an opportunity to test, systematically, the invariance of LLMs’ algorithmic abilities under simple lexical or semantic variations. To this end, we present the SETLEXSEM CHALLENGE, a synthetic benchmark that evaluates the performance of LLMs on set operations. SETLEXSEM assesses the robustness of LLMs’ instruction-following abilities under various conditions, focusing on the set operations and the nature and construction of the set members. Evaluating seven LLMs with SETLEXSEM, we find that they exhibit poor robust- ness to variation in both operation and operands. We show – via the framework’s systematic sampling of set members along lexical and semantic dimensions – that LLMs are not only not robust to variation along these dimensions but demonstrate unique failure modes in particular, easy-to-create semantic groupings of "deceptive" sets. We find that rigorously measuring language model robustness to variation in frequency and length is challenging …
Poster
Xiongkun Linghu · Jiangyong Huang · Xuesong Niu · Xiaojian (Shawn) Ma · Baoxiong Jia · Siyuan Huang

[ West Ballroom A-D ]

Abstract
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding suffer from severe limitations in data modality, scope, diversity, and scale. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated questionanswering pairs across 9 distinct question categories, covering complex scenarios and object modalities within 3D scenes. We introduce a novel interleaved multimodal input setting in our benchmark to provide both texts, images, and point clouds for situation and question description, aiming to resolve ambiguity in describing situations with single-modality inputs (e.g., texts). Additionally, we devise the Multi-modal Next-step Navigation (MSNN) benchmark to evaluate models’ grounding of actions and transitions between situations. Comprehensive evaluations on reasoning and navigation tasks highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and crossdomain transfer further demonstrate the effectiveness of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models, contributing to advancements in 3D …
Poster
Jason Yang · Ariane Mora · Shengchao Liu · Bruce Wittmann · Animashree Anandkumar · Frances Arnold · Yisong Yue

[ West Ballroom A-D ]

Abstract
Enzymes are important proteins that catalyze chemical reactions. In recent years, machine learning methods have emerged to predict enzyme function from sequence; however, there are no standardized benchmarks to evaluate these methods. We introduce CARE, a benchmark and dataset suite for the Classification And Retrieval of Enzymes (CARE). CARE centers on two tasks: (1) classification of a protein sequence by its enzyme commission (EC) number and (2) retrieval of an EC number given a chemical reaction. For each task, we design train-test splits to evaluate different kinds of out-of-distribution generalization that are relevant to real use cases. For the classification task, we provide baselines for state-of-the-art methods. Because the retrieval task has not been previously formalized, we propose a method called Contrastive Reaction-EnzymE Pretraining (CREEP) as one of the first baselines for this task and compare it to the recent method, CLIPZyme. CARE is available at https://github.com/jsunn-y/CARE/.
Spotlight Poster
Zeyu Wang · Xiyuxing Zhang · Ruotong Yu · Yuntao Wang · Kenneth Christofferson · Jingru Zhang · Alex Mariakakis · Yuanchun Shi

[ West Ballroom A-D ]

Abstract
Poor quality sleep can be characterized by the occurrence of events ranging from body movement to breathing impairment. Widely available earbuds equipped with sensors (also known as earables) can be combined with a sleep event detection algorithm to offer a convenient alternative to laborious clinical tests for individuals suffering from sleep disorders. Although various solutions utilizing such devices have been proposed to detect sleep events, they ignore the fact that individuals often share sleeping spaces with roommates or couples. To address this issue, we introduce DreamCatcher, the first publicly available dataset for wearer-aware sleep event algorithm development on earables. DreamCatcher encompasses eight distinct sleep events, including synchronous dual-channel audio and motion data collected from 12 pairs (24 participants) totaling 210 hours (420 hour.person) with fine-grained label. We tested multiple benchmark models on three tasks related to sleep event detection, demonstrating the usability and unique challenge of DreamCatcher. We hope that the proposed DreamCatcher can inspire other researchers to further explore efficient wearer-aware human vocal activity sensing on earables. DreamCatcher is publicly available at https://github.com/thuhci/DreamCatcher.
Poster
Mustafa Chasmai · Alexander Shepard · Subhransu Maji · Grant Van Horn

[ West Ballroom A-D ]

Abstract
We present the iNaturalist Sounds Dataset (iNatSounds), a collection of 230,000 audio files capturing sounds from over 5,500 species, contributed by more than 27,000 recordists worldwide. The dataset encompasses sounds from birds, mammals, insects, reptiles, and amphibians, with audio and species labels derived from observations submitted to iNaturalist, a global citizen science platform. Each recording in the dataset varies in length and includes a single species annotation. We benchmark multiple backbone architectures, comparing multiclass classification objectives with multilabel objectives. Despite weak labeling, we demonstrate that iNatSounds serves as a useful pretraining resource by benchmarking it on strongly labeled downstream evaluation datasets. The dataset is available as a single, freely accessible archive, promoting accessibility and research in this important domain. We envision models trained on this data powering next-generation public engagement applications, and assisting biologists, ecologists, and land use managers in processing large audio collections, thereby contributing to the understanding of species compositions in diverse soundscapes.
Poster
Julen Etxaniz · Gorka Azkune · Aitor Soroa · Oier Lacalle · Mikel Artetxe

[ West Ballroom A-D ]

Abstract
Large Language Models (LLMs) exhibit extensive knowledge about the world, but most evaluations have been limited to global or anglocentric subjects. This raises the question of how well these models perform on topics relevant to other cultures, whose presence on the web is not that prominent. To address this gap, we introduce BertaQA, a multiple-choice trivia dataset that is parallel in English and Basque. The dataset consists of a local subset with questions pertinent to the Basque culture, and a global subset with questions of broader interest. We find that state-of-the-art LLMs struggle with local cultural knowledge, even as they excel on global topics. However, we show that continued pre-training in Basque significantly improves the models' performance on Basque culture, even when queried in English. To our knowledge, this is the first solid evidence of knowledge transfer from a low-resource to a high-resource language. Our analysis sheds light on the complex interplay between language and knowledge, and reveals that some prior findings do not fully hold when reassessed on local topics. Our dataset and evaluation code are available under open licenses at https://github.com/juletx/BertaQA.
Poster
Hongbo Zhao · Lue Fan · Yuntao Chen · Haochen Wang · yuran Yang · Xiaojuan Jin · YIXIN ZHANG · GAOFENG MENG · ZHAO-XIANG ZHANG

[ West Ballroom A-D ]

Abstract
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
Poster
Yunchao Liu · Ha Dong · Xin Wang · Rocco Moretti · Yu Wang · Zhaoqian Su · Jiawei Gu · Bobby Bodenheimer · Charles Weaver · Jens Meiler · Tyler Derr

[ West Ballroom A-D ]

Abstract
While deep learning has revolutionized computer-aided drug discovery, the AI community has predominantly focused on model innovation and placed less emphasis on establishing best benchmarking practices. We posit that without a sound model evaluation framework, the AI community's efforts cannot reach their full potential, thereby slowing the progress and transfer of innovation into real-world drug discovery.Thus, in this paper, we seek to establish a new gold standard for small molecule drug discovery benchmarking, *WelQrate*. Specifically, our contributions are threefold: ***WelQrate*** **dataset collection** - we introduce a meticulously curated collection of 9 datasets spanning 5 therapeutic target classes. Our hierarchical curation pipelines, designed by drug discovery experts, go beyond the primary high-throughput screen by leveraging additional confirmatory and counter screens along with rigorous domain-driven preprocessing, such as Pan-Assay Interference Compounds (PAINS) filtering, to ensure the high-quality data in the datasets; ***WelQrate*** **Evaluation Framework** - we propose a standardized model evaluation framework considering high-quality datasets, featurization, 3D conformation generation, evaluation metrics, and data splits, which provides a reliable benchmarking for drug discovery experts conducting real-world virtual screening; **Benchmarking** - we evaluate model performance through various research questions using the *WelQrate* dataset collection, exploring the effects of different models, dataset quality, featurization methods, …
Poster
Fanqi Kong · Yizhe Huang · Song-Chun Zhu · Siyuan Qi · Xue Feng

[ West Ballroom A-D ]

Abstract
Real-world multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation. However, existing approaches often struggle to achieve both objectives. In this paper, based on that empathic responses are modulated by learned social relationships between agents, we propose LASE (**L**earning to balance **A**ltruism and **S**elf-interest based on **E**mpathy), a distributed multi-agent reinforcement learning algorithm that fosters altruistic cooperation through gifting while avoiding exploitation by other agents in mixed-motive games. LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship --- a metric evaluating the friendliness of co-players estimated by counterfactual reasoning. In particular, social relationship measures each co-player by comparing the estimated $Q$-function of current joint action to a counterfactual baseline which marginalizes the co-player's action, with its action distribution inferred by a perspective-taking module. Comprehensive experiments are performed in spatially and temporally extended mixed-motive games, demonstrating LASE's ability to promote group collaboration without compromising fairness and its capacity to adapt policies to various types of interactive co-players.
Poster
Mason Hargrave · Alex Spaeth · Logan Grosenick

[ West Ballroom A-D ]

Abstract
Healthcare applications pose significant challenges to existing reinforcement learning (RL) methods due to implementation risks, low data availability, short treatment episodes, sparse rewards, partial observations, and heterogeneous treatment effects. Despite significant interest in using RL to generate dynamic treatment regimes for longitudinal patient care scenarios, no standardized benchmark has yet been developed.To fill this need we introduce *Episodes of Care* (*EpiCare*), a benchmark designed to mimic the challenges associated with applying RL to longitudinal healthcare settings. We leverage this benchmark to test five state-of-the-art offline RL models as well as five common off-policy evaluation (OPE) techniques.Our results suggest that while offline RL may be capable of improving upon existing standards of care given large data availability, its applicability does not appear to extend to the moderate to low data regimes typical of healthcare settings. Additionally, we demonstrate that several OPE techniques which have become standard in the the medical RL literature fail to perform adequately on our benchmark. These results suggest that the performance of RL models in dynamic treatment regimes may be difficult to meaningfully evaluate using current OPE methods, indicating that RL for this application may still be in its early stages. We hope that these results along …
Poster
Pengkun Wang · Zhe Zhao · HaiBin Wen · Fanfu Wang · Binwu Wang · Qingfu Zhang · Yang Wang

[ West Ballroom A-D ]

Abstract
The long-tailed distribution is the underlying nature of real-world data, and it presents unprecedented challenges for training deep learning models. Existing long-tailed learning paradigms based on re-balancing or data augmentation have partially alleviated the long-tailed problem. However, they still have limitations, such as relying on manually designed augmentation strategies, having a limited search space, and using fixed augmentation strategies. To address these limitations, this paper proposes a novel LLM-based long-tailed data augmentation framework called LLM-AutoDA, which leverages large-scale pretrained models to automatically search for the optimal augmentation strategies suitable for long-tailed data distributions. In addition, it applies this strategy to the original imbalanced data to create an augmented dataset and fine-tune the underlying long-tailed learning model. The performance improvement on the validation set serves as a reward signal to update the generation model, enabling the generation of more effective augmentation strategies in the next iteration. We conducted extensive experiments on multiple mainstream long-tailed learning benchmarks. The results show that LLM-AutoDA outperforms state-of-the-art data augmentation methods and other re-balancing methods significantly.
Poster
Zirui Wang · Mengzhou Xia · Luxi He · Howard Chen · Yitao Liu · Richard Zhu · Kaiqu Liang · Xindi Wu · Haotian Liu · Sadhika Malladi · Chevalier · Sanjeev Arora · Danqi Chen

[ West Ballroom A-D ]

Abstract
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an overly optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions deteriorates performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from scientific papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope that CharXiv facilitates …
Spotlight Poster
Peter Jansen · Marc-Alexandre Côté · Tushar Khot · Erin Bransom · Bhavana Dalvi Mishra · Bodhisattwa Prasad Majumder · Oyvind Tafjord · Peter Clark

[ West Ballroom A-D ]

Abstract
Automated scientific discovery promises to accelerate progress across scientific domains, but evaluating an agent's capacity for end-to-end scientific reasoning is challenging as running real-world experiments is often prohibitively expensive or infeasible. In this work we introduce DiscoveryWorld, a virtual environment that enables benchmarking an agent's ability to perform complete cycles of novel scientific discovery in an inexpensive, simulated, multi-modal, long-horizon, and fictional setting.DiscoveryWorld consists of 24 scientific tasks across three levels of difficulty, each with parametric variations that provide new discoveries for agents to make across runs. Tasks require an agent to form hypotheses, design and run experiments, analyze results, and act on conclusions. Task difficulties are normed to range from straightforward to challenging for human scientists with advanced degrees. DiscoveryWorld further provides three automatic metrics for evaluating performance, including: (1) binary task completion, (2) fine-grained report cards detailing procedural scoring of task-relevant actions, and (3) the accuracy of discovered explanatory knowledge.While simulated environments such as DiscoveryWorld are low-fidelity compared to the real world, we find that strong baseline agents struggle on most DiscoveryWorld tasks, highlighting the utility of using simulated environments as proxy tasks for near-term development of scientific discovery competency in agents.
Poster
Sasha Salter · Richard Warren · Collin Schlager · Adrian Spurr · Shangchen Han · Rohin Bhasin · Yujun Cai · Peter Walkington · Anuoluwapo Bolarinwa · Robert Wang · Nathan Danielson · Josh Merel · Eftychios Pnevmatikakis · Jesse Marshall

[ West Ballroom A-D ]

Abstract
Hands are the primary means through which humans interact with the world. Reliable and always-available hand pose inference could yield new and intuitive control schemes for human-computer interactions, particularly in virtual and augmented reality. Computer vision is effective but requires one or multiple cameras and can struggle with occlusions, limited field of view, and poor lighting. Wearable wrist-based surface electromyography (sEMG) presents a promising alternative as an always-available modality sensing muscle activities that drive hand motion. However, sEMG signals are strongly dependent on user anatomy and sensor placement; existing sEMG models have thus required hundreds of users and device placements to effectively generalize for tasks other than pose inference. To facilitate progress on sEMG pose inference, we introduce the emg2pose benchmark, which is to our knowledge the first publicly available dataset of high-quality hand pose labels and wrist sEMG recordings. emg2pose contains 2kHz, 16 channel sEMG and pose labels from a 26-camera motion capture rig for 193 users, 370 hours, and 29 stages with diverse gestures - a scale comparable to vision-based hand pose datasets. We provide competitive baselines and challenging tasks evaluating real-world generalization scenarios: held-out users, sensor placements, and stages. This benchmark provides the machine learning community a …
Poster
Jize Wang · Ma Zerun · Yining Li · Songyang Zhang · Cailian Chen · Kai Chen · Xinyi Le

[ West Ballroom A-D ]

Abstract
In developing general-purpose agents, significant focus has been placed on integrating large language models (LLMs) with various tools. This poses a challenge to the tool-use capabilities of LLMs. However, there are evident gaps between existing tool evaluations and real-world scenarios. Current evaluations often use AI-generated queries, single-step tasks, dummy tools, and text-only inputs, which fail to reveal the agents' real-world problem-solving abilities effectively. To address this, we propose GTA, a benchmark for **G**eneral **T**ool **A**gents, featuring three main aspects: (i) *Real user queries*: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps. (ii) *Real deployed tools*: an evaluation platform equipped with tools across perception, operation, logic, and creativity categories to evaluate the agents' actual task execution performance. (iii) *Real multimodal inputs*: authentic image files, such as spatial scenes, web page screenshots, tables, code snippets, and printed/handwritten materials, used as the query contexts to align with real-world scenarios closely. We designed 229 real-world tasks and executable tool chains to evaluate mainstream LLMs. Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50\% of the tasks and most LLMs achieving below …
Poster
Hao Zhongkai · Jiachen Yao · Chang Su · Hang Su · Ziao Wang · Fanzhi Lu · Zeyu Xia · Yichi Zhang · Songming Liu · Lu Lu · Jun Zhu

[ West Ballroom A-D ]

Abstract
While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains, including heat conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsulate key challenges inherent to real-world problems, such as complex geometry, multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also offers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods for systematic evaluation and comparison. We have conducted extensive experiments with these methods, offering insights into their strengths and weaknesses. In addition to providing a standardized means of assessing performance, PINNacle also offers an in-depth analysis to guide future research, particularly in areas such as domain decomposition methods and loss reweighting for handling multi-scale problems and complex geometry. To the best of our knowledge, it is the largest benchmark with a diverse and comprehensive evaluation that will undoubtedly foster further research in PINNs.
Poster
Rohith Peddi · Shivvrat Arya · Bharath Challa · Likhitha Pallapothula · Akshay Vyas · Bhavya Gouripeddi · Qifan Zhang · Jikai Wang · Vasundhara Komaragiri · Eric Ragan · Nicholas Ruozzi · Yu Xiang · Vibhav Gogate

[ West Ballroom A-D ]

Abstract
Following step-by-step procedures is an essential component of various activities carried out by individuals in their daily lives. These procedures serve as a guiding framework that helps to achieve goals efficiently, whether it is assembling furniture or preparing a recipe. However, the complexity and duration of procedural activities inherently increase the likelihood of making errors. Understanding such procedural activities from a sequence of frames is a challenging task that demands an accurate interpretation of visual information and the ability to reason about the structure of the activity. To this end, we collect a new egocentric 4D dataset, CaptainCook4D, comprising 384 recordings (94.5 hours) of people performing recipes in real kitchen environments. This dataset consists of two distinct types of activity: one in which participants adhere to the provided recipe instructions and another in which they deviate and induce errors. We provide 5.3K step annotations and 10K fine-grained action annotations and benchmark the dataset for the following tasks: error recognition, multistep localization and procedure learning.
Poster
Marek Herde · Denis Huseljic · Lukas Rauch · Bernhard Sick

[ West Ballroom A-D ]

Abstract
Human annotators typically provide annotated data for training machine learning models, such as neural networks. Yet, human annotations are subject to noise, impairing generalization performances. Methodological research on approaches counteracting noisy annotations requires corresponding datasets for a meaningful empirical evaluation. Consequently, we introduce a novel benchmark dataset, dopanim, consisting of about 15,750 animal images of 15 classes with ground truth labels. For approximately 10,500 of these images, 20 humans provided over 52,000 annotations with an accuracy of circa 67%. Its key attributes include (1) the challenging task of classifying doppelganger animals, (2) human-estimated likelihoods as annotations, and (3) annotator metadata. We benchmark well-known multi-annotator learning approaches using seven variants of this dataset and outline further evaluation use cases such as learning beyond hard class labels and active learning. Our dataset and a comprehensive codebase are publicly available to emulate the data collection process and to reproduce all empirical results.
Poster
Amelia Jiménez-Sánchez · Natalia-Rozalia Avlona · Dovile Juodelyte · Théo Sourget · Caroline Vang-Larsen · Anna Rogers · Hubert Zając · Veronika Cheplygina

[ West Ballroom A-D ]

Abstract
Medical Imaging (MI) datasets are fundamental to artificial intelligence in healthcare. The accuracy, robustness, and fairness of diagnostic algorithms depend on the data (and its quality) used to train and evaluate the models. MI datasets used to be proprietary, but have become increasingly available to the public, including on community-contributed platforms (CCPs) like Kaggle or HuggingFace. While open data is important to enhance the redistribution of data's public value, we find that the current CCP governance model fails to uphold the quality needed and recommended practices for sharing, documenting, and evaluating datasets. In this paper, we conduct an analysis of publicly available machine learning datasets on CCPs, discussing datasets' context, and identifying limitations and gaps in the current CCP landscape. We highlight differences between MI and computer vision datasets, particularly in the potentially harmful downstream effects from poor adoption of recommended dataset management practices. We compare the analyzed datasets across several dimensions, including data sharing, data documentation, and maintenance. We find vague licenses, lack of persistent identifiers and storage, duplicates, and missing metadata, with differences between the platforms. Our research contributes to efforts in responsible data curation and AI algorithms for healthcare.
Poster
Imanol Miranda · Ander Salaberria · Eneko Agirre · Gorka Azkune

[ West Ballroom A-D ]

Abstract
Existing Vision-Language Compositionality (VLC) benchmarks like SugarCrepe are formulated as image-to-text retrieval problems, where, given an image, the models need to select between the correct textual description and a synthetic hard negative text. In this work, we present the Bidirectional Vision-Language Compositionality (BiVLC) dataset. The novelty of BiVLC is to add a synthetic hard negative image generated from the synthetic text, resulting in two image-to-text retrieval examples (one for each image) and, more importantly, two text-to-image retrieval examples (one for each text). Human annotators filter out ill-formed examples ensuring the validity of the benchmark. The experiments on BiVLC uncover a weakness of current multimodal models, as they perform poorly in the text-to-image direction. In fact, when considering both retrieval directions, the conclusions obtained in previous works change significantly. In addition to the benchmark, weshow that a contrastive model trained using synthetic images and texts significantly improves over the base model in SugarCrepe and in BiVLC for both retrieval directions. The gap to human performance in BiVLC confirms that Vision-Language Compositionality is still a challenging problem.
Poster
Prasenjit Karmakar · Swadhin Pradhan · Sandip Chakraborty

[ West Ballroom A-D ]

Abstract
In recent years, indoor air pollution has posed a significant threat to our society, claiming over 3.2 million lives annually. Developing nations, such as India, are most affected since lack of knowledge, inadequate regulation, and outdoor air pollution lead to severe daily exposure to pollutants. However, only a limited number of studies have attempted to understand how indoor air pollution affects developing countries like India. To address this gap, we present spatiotemporal measurements of air quality from 30 indoor sites over six months during summer and winter seasons. The sites are geographically located across four regions of type: rural, suburban, and urban, covering the typical low to middle-income population in India. The dataset contains various types of indoor environments (e.g., studio apartments, classrooms, research laboratories, food canteens, and residential households), and can provide the basis for data-driven learning model research aimed at coping with unique pollution patterns in developing countries. This unique dataset demands advanced data cleaning and imputation techniques for handling missing data due to power failure or network outages during data collection. Furthermore, through a simple speech-to-text application, we provide real-time indoor activity labels annotated by occupants. Therefore, environmentalists and ML enthusiasts can utilize this dataset to understand …
Poster
Austin Coursey · Junyi Ji · Marcos Quinones Grueiro · William Barbour · Yuhang Zhang · Tyler Derr · Gautam Biswas · Daniel Work

[ West Ballroom A-D ]

Abstract
Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and mistakes from manual crash reporting records make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements. We also collect official crash reports from the Tennessee Department of Transportation Traffic Management Center and manually label all other potential anomalies in the dataset. To show the potential for our dataset to be used in future machine learning and traffic research, we benchmark numerous deep learning anomaly detection models on our dataset. We find that unsupervised graph neural network autoencoders are a promising solution for this problem and that ignoring spatial relationships leads to decreased performance. We demonstrate that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes. Our dataset and all …
Poster
Jiawen Chen · Muqing Zhou · Wenrong Wu · Jinwei Zhang · Yun Li · Didong Li

[ West Ballroom A-D ]

Abstract
Recent advances in multi-modal algorithms have driven and been driven by the increasing availability of large image-text datasets, leading to significant strides in various fields, including computational pathology. However, in most existing medical image-text datasets, the text typically provides high-level summaries that may not sufficiently describe sub-tile regions within a large pathology image. For example, an image might cover an extensive tissue area containing cancerous and healthy regions, but the accompanying text might only specify that this image is a cancer slide, lacking the nuanced details needed for in-depth analysis. In this study, we introduce STimage-1K4M, a novel dataset designed to bridge this gap by providing genomic features for sub-tile images. STimage-1K4M contains 1,149 images derived from spatial transcriptomics data, which captures gene expression information at the level of individual spatial spots within a pathology image. Specifically, each image in the dataset is broken down into smaller sub-image tiles, with each tile paired with $15,000-30,000$ dimensional gene expressions. With $4,293,195$ pairs of sub-tile images and gene expressions, STimage-1K4M offers unprecedented granularity, paving the way for a wide range of advanced research in multi-modal data analysis an innovative applications in computational pathology, and beyond.
Poster
Anton Antonov · Andrei Moskalenko · Denis Shepelev · Alexander Krapukhin · Konstantin Soshin · Anton Konushin · Vlad Shakhuro

[ West Ballroom A-D ]

Abstract
The emergence of Segment Anything (SAM) sparked research interest in the field of interactive segmentation, especially in the context of image editing tasks and speeding up data annotation. Unlike common semantic segmentation, interactive segmentation methods allow users to directly influence their output through prompts (e.g. clicks). However, click patterns in real-world interactive segmentation scenarios remain largely unexplored. Most methods rely on the assumption that users would click in the center of the largest erroneous area. Nevertheless, recent studies show that this is not always the case. Thus, methods may have poor performance in real-world deployment despite high metrics in a baseline benchmark. To accurately simulate real-user clicks, we conducted a large crowdsourcing study of click patterns in an interactive segmentation scenario and collected 475K real-user clicks. Drawing on ideas from saliency tasks, we develop a clickability model that enables sampling clicks, which closely resemble actual user inputs. Using our model and dataset, we propose RClicks benchmark for a comprehensive comparison of existing interactive segmentation methods on realistic clicks. Specifically, we evaluate not only the average quality of methods, but also the robustness w.r.t. click patterns. According to our benchmark, in real-world usage interactive segmentation models may perform worse than it …
Poster
Emanuele Vivoli · Marco Bertini · Dimosthenis Karatzas

[ West Ballroom A-D ]

Abstract
The comic domain is rapidly advancing with the development of single-page analysis and synthesis models. However, evaluation metrics and datasets lag behind, often limited to small-scale or single-style test sets. We introduce a novel benchmark, CoMix, designed to evaluate the multi-task capabilities of models in comic analysis. Unlike existing benchmarks that focus on isolated tasks such as object detection or text recognition, CoMix addresses a broader range of tasks including object detection, speaker identification, character re-identification, reading order, and multi-modal reasoning tasks like character naming and dialogue generation. Our benchmark comprises three existing datasets with expanded annotations to support multi-task evaluation. To mitigate the over-representation of manga-style data, we have incorporated a new dataset of carefully selected American comic-style books, thereby enriching the diversity of comic styles. CoMix is designed to assess pre-trained models in zero-shot and limited fine-tuning settings, probing their transfer capabilities across different comic styles and tasks. The validation split of the benchmark is publicly available for research purposes, and an evaluation server for the held-out test split is also provided. Comparative results between human performance and state-of-the-art models reveal a significant performance gap, highlighting substantial opportunities for advancements in comic understanding. The dataset, baseline models, and …
Poster
Dapeng Hu · Romy Luo · Jian Liang · Chuan Sheng Foo

[ West Ballroom A-D ]

Abstract
Selecting appropriate hyperparameters is crucial for unlocking the full potential of advanced unsupervised domain adaptation (UDA) methods in unlabeled target domains. Although this challenge remains under-explored, it has recently garnered increasing attention with the proposals of various model selection methods. Reliable model selection should maintain performance across diverse UDA methods and scenarios, especially avoiding highly risky worst-case selections—selecting the model or hyperparameter with the worst performance in the pool.\textit{Are existing model selection methods reliable and versatile enough for different UDA tasks?} In this paper, we provide a comprehensive empirical study involving 8 existing model selection approaches to answer this question. Our evaluation spans 12 UDA methods across 5 diverse UDA benchmarks and 5 popular UDA scenarios.Surprisingly, we find that none of these approaches can effectively avoid the worst-case selection. In contrast, a simple but overlooked ensemble-based selection approach, which we call EnsV, is both theoretically and empirically certified to avoid the worst-case selection, ensuring high reliability. Additionally, EnsV is versatile for various practical but challenging UDA scenarios, including validation of open-partial-set UDA and source-free UDA.Finally, we call for more attention to the reliability of model selection in UDA: avoiding the worst-case is as significant as achieving peak selection performance and …
Poster
Ralph Peterson · Aramis Tanelus · Christopher Ick · Bartul Mimica · Niegil Francis Muttath Joseph · Violet Ivan · Aman Choudhri · Annegret Falkner · Mala Murthy · David Schneider · Dan Sanes · Alex Williams

[ West Ballroom A-D ]

Abstract
Understanding the behavioral and neural dynamics of social interactions is a goalof contemporary neuroscience. Many machine learning methods have emergedin recent years to make sense of complex video and neurophysiological data thatresult from these experiments. Less focus has been placed on understanding howanimals process acoustic information, including social vocalizations. A criticalstep to bridge this gap is determining the senders and receivers of acoustic infor-mation in social interactions. While sound source localization (SSL) is a classicproblem in signal processing, existing approaches are limited in their ability tolocalize animal-generated sounds in standard laboratory environments. Advancesin deep learning methods for SSL are likely to help address these limitations,however there are currently no publicly available models, datasets, or benchmarksto systematically evaluate SSL algorithms in the domain of bioacoustics. Here,we present the VCL Benchmark: the first large-scale dataset for benchmarkingSSL algorithms in rodents. We acquired synchronized video and multi-channelaudio recordings of 767,295 sounds with annotated ground truth sources across 9conditions. The dataset provides benchmarks which evaluate SSL performance onreal data, simulated acoustic data, and a mixture of real and simulated data. Weintend for this benchmark to facilitate knowledge transfer between the neuroscienceand acoustic machine learning communities, which have had limited overlap.
Poster
David Castillo-Bolado · Joseph Davidson · Finlay Gray · Marek Rosa

[ West Ballroom A-D ]

Abstract
We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy user$\leftrightarrow$agent interaction. The interaction is a conversation between the user and agent, where multiple tasks are introduced and then undertaken concurrently. We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents. Results from both proprietary and open-source Large-Language Models show that LLMs in general perform well on single-task interactions, but they struggle on the same tasks when they are interleaved. Notably, short-context LLMs supplemented with an LTM system perform as well as or better than those with larger contexts. Our benchmark suggests that there are other challenges for LLMs responding to more natural interactions that contemporary benchmarks have heretofore not been able to capture.
Spotlight Poster
Jio Oh · Soyeon Kim · Junseok Seo · Jindong Wang · Ruochen Xu · Xing Xie · Steven Whang

[ West Ballroom A-D ]

Abstract
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging. Existing benchmarks are either manually constructed or are automatic, but lack the ability to evaluate the thought process of LLMs with arbitrary complexity. We contend that utilizing existing relational databases based on the entity-relationship (ER) model is a promising approach for constructing benchmarks as they contain structured knowledge that can be used to question LLMs. Unlike knowledge graphs, which are also used to evaluate LLMs, relational databases have integrity constraints that can be used to better construct complex in-depth questions and verify answers: (1) functional dependencies can be used to pinpoint critical keywords that an LLM must know to properly answer a given question containing certain attribute values; and (2) foreign key constraints can be used to join relations and construct multi-hop questions, which can be arbitrarily long and used to debug intermediate answers. We thus propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark. ERBench supports continuous evaluation as databases change, multimodal questions, and various prompt engineering techniques. In our experiments, we construct LLM benchmarks using databases of multiple domains and make an extensive comparison of …
Poster
Suzanne Duncan · Gianna Leoni · Lee Steven · Keoni K Mahelona · Peter Lucas K Jones

[ West Ballroom A-D ]

Abstract
Influential and popular benchmarks in AI are largely irrelevant to developing NLP tools for low-resource, Indigenous languages. With the primary goal of measuring the performance of general-purpose AI systems, these benchmarks fail to give due consideration and care to individual language communities, especially low-resource languages. The datasets contain numerous grammatical and orthographic errors, poor pronunciation, limited vocabulary, and the content lacks cultural relevance to the language community. To overcome the issues with these benchmarks, we have created a dataset for te reo Māori (the Indigenous language of Aotearoa/New Zealand) to pursue NLP tools that are ‘fit-for-our-purpose’. This paper demonstrates how low-resourced, Indigenous languages can develop tailored, high-quality benchmarks that; i. Consider the impact of colonisation on their language; ii. Reflect the diversity of speakers in the language community; iii. Support the aspirations for the tools they are developing and their language revitalisation efforts.
Poster
Yao Tang · Zhihui Xie · Zichuan Lin · Deheng Ye · Shuai Li

[ West Ballroom A-D ]

Abstract
Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme.
Poster
Lucas Slot · Stefan Tiegel · Manuel Wiedmer

[ West Ballroom A-D ]

Abstract
Rubinfeld \& Vasilyan recently introduced the framework of *testable learning* as an extension of the classical agnostic model. It relaxes distributional assumptions which are difficult to verify by conditions that can be checked efficiently by a *tester*. The tester has to accept whenever the data truly satisfies the original assumptions, and the learner has to succeed whenever the tester accepts. We focus on the setting where the tester has to accept standard Gaussian data. There, it is known that basic concept classes such as halfspaces can be learned testably with the same time complexity as in the (distribution-specific) agnostic model. In this work, we ask whether there is a price to pay for testably learning more complex concept classes. In particular, we consider polynomial threshold functions (PTFs), which naturally generalize halfspaces. We show that PTFs of arbitrary constant degree can be testably learned up to excess error $\varepsilon > 0$ in time $n^{\mathrm{poly}(1/\varepsilon)}$. This qualitatively matches the best known guarantees in the agnostic model. Our results build on a connection between testable learning and *fooling*. In particular, we show that distributions that approximately match at least $\mathrm{poly}(1/\varepsilon)$ moments of the standard Gaussian fool constant-degree PTFs (up to error $\varepsilon$). As a …
Poster
Soichiro Kumano · Hiroshi Kera · Toshihiko Yamasaki

[ West Ballroom A-D ]

Abstract
Adversarial examples have raised several open questions, such as why they can deceive classifiers and transfer between different models. A prevailing hypothesis to explain these phenomena suggests that adversarial perturbations appear as random noise but contain class-specific features. This hypothesis is supported by the success of perturbation learning, where classifiers trained solely on adversarial examples and the corresponding incorrect labels generalize well to correctly labeled test data. Although this hypothesis and perturbation learning are effective in explaining intriguing properties of adversarial examples, their solid theoretical foundation is limited. In this study, we theoretically explain the counterintuitive success of perturbation learning. We assume wide two-layer networks and the results hold for any data distribution. We prove that adversarial perturbations contain sufficient class-specific features for networks to generalize from them. Moreover, the predictions of classifiers trained on mislabeled adversarial examples coincide with those of classifiers trained on correctly labeled clean samples. The code is available at https://github.com/s-kumano/perturbation-learning.
Poster
Joachim Baumann · Celestine Mendler-Dünner

[ West Ballroom A-D ]

Abstract
We investigate algorithmic collective action in transformer-based recommender systems. Our use case is a collective of fans aiming to promote the visibility of an underrepresented artist by strategically placing one of their songs in the existing playlists they control. We introduce two easily implementable strategies to select the position at which to insert the song and boost recommendations at test time. The strategies exploit statistical properties of the learner to leverage discontinuities in the recommendations, and the long-tail nature of song distributions. We evaluate the efficacy of our strategies using a publicly available recommender system model released by a major music streaming platform. Our findings reveal that even small collectives (controlling less than 0.01\% of the training data) can achieve up to $40\times$ more test time recommendations than songs with similar training set occurrences, on average. Focusing on the externalities of the strategy, we find that the recommendations of other songs are largely preserved, and the newly gained recommendations are distributed across various artists. Together, our findings demonstrate how carefully designed collective action strategies can be effective while not necessarily being adversarial.
Poster
Saachi Jain · Kimia Hamidieh · Kristian Georgiev · Andrew Ilyas · Marzyeh Ghassemi · Aleksander Madry

[ West Ballroom A-D ]

Abstract
Machine learning models can often fail on subgroups that are underrepresentedduring training. While dataset balancing can improve performance onunderperforming groups, it requires access to training group annotations and canend up removing large portions of the dataset. In this paper, we introduceData Debiasing with Datamodels (D3M), a debiasing approachwhich isolates and removes specific training examples that drive the model'sfailures on minority groups. Our approach enables us to efficiently traindebiased classifiers while removing only a small number of examples, and doesnot require training group annotations or additional hyperparameter tuning.
Poster
Cheng Li · Mengzhuo Chen · Jindong Wang · Sunayana Sitaram · Xing Xie

[ West Ballroom A-D ]

Abstract
Large language models (LLMs) have been observed to exhibit bias towards certain cultures due to the predominance of training data obtained from English corpora. Considering that multilingual cultural data is often expensive to procure, existing methodologies address this challenge through prompt engineering or culture-specific pre-training. However, these strategies may neglect the knowledge deficiency of low-resource cultures and necessitate substantial computing resources. In this paper, we propose CultureLLM, a cost-effective solution to integrate cultural differences into LLMs. CultureLLM employs the World Value Survey (WVS) as seed data and generates semantically equivalent training data through the proposed semantic data augmentation. Utilizing only $50$ seed samples from WVS with augmented data, we fine-tune culture-specific LLMs as well as a unified model (CultureLLM-One) for $9$ cultures, encompassing both rich and low-resource languages. Extensive experiments conducted on $60$ culture-related datasets reveal that CultureLLM significantly surpasses various counterparts such as GPT-3.5 (by $8.1$\%) and Gemini Pro (by $9.5$\%), demonstrating performance comparable to or exceeding that of GPT-4. Our human study indicates that the generated samples maintain semantic equivalence to the original samples, offering an effective solution for LLMs augmentation. Code is released at https://github.com/Scarelette/CultureLLM.
Poster
Mehdi Yazdani-Jahromi · Ali Khodabandeh Yalabadi · Amirarsalan Rajabi · Aida Tayebi · Ivan Garibay · OZLEM GARIBAY

[ West Ballroom A-D ]

Abstract
The persistent challenge of bias in machine learning models necessitates robust solutions to ensure parity and equal treatment across diverse groups, particularly in classification tasks. Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness. To address this, we propose a novel methodology grounded in bilevel optimization principles. Our deep learning-based approach concurrently optimizes for both accuracy and fairness objectives, and under certain assumptions, achieving proven Pareto optimal solutions while mitigating bias in the trained model. Theoretical analysis indicates that the upper bound on the loss incurred by this method is less than or equal to the loss of the Lagrangian approach, which involves adding a regularization term to the loss function. We demonstrate the efficacy of our model primarily on tabular datasets such as UCI Adult and Heritage Health. When benchmarked against state-of-the-art fairness methods, our model exhibits superior performance, advancing fairness-aware machine learning solutions and bridging the accuracy-fairness gap. The implementation of FairBiNN is available on https://github.com/yazdanimehdi/FairBiNN.
Poster
Rashida Hakim · Ana-Andreea Stoica · Christos Papadimitriou · Mihalis Yannakakis

[ West Ballroom A-D ]

Abstract
Fairness in clustering has been considered extensively in the past; however, the trade-off between the two objectives --- e.g., can we sacrifice just a little in the quality of the clustering to significantly increase fairness, or vice-versa? --- has rarely been addressed. We introduce novel algorithms for tracing the complete trade-off curve, or Pareto front, between quality and fairness in clustering problems; that is, computing all clusterings that are not dominated in both objectives by other clusterings. Unlike previous work that deals with specific objectives for quality and fairness, we deal with all objectives for fairness and quality in two general classes encompassing most of the special cases addressed in previous work. Our algorithm must take exponential time in the worst case as the Parero front itself can be exponential. Even when the Pareto front is polynomial, our algorithm may take exponential time, and we prove that this is inevitable unless P = NP. However, we also present a new polynomial-time algorithm for computing the entire Pareto front when the cluster centers are fixed, and for perhaps the most natural fairness objective: minimizing the sum, over all clusters, of the imbalance between the two groups in each cluster.
Poster
Jessica Schrouff · Alexis Bellot · Amal Rannen-Triki · Alan Malek · Isabela Albuquerque · Arthur Gretton · Alexander D'Amour · Silvia Chiappa

[ West Ballroom A-D ]

Abstract
Failures of fairness or robustness in machine learning predictive settings can be due to undesired dependencies between covariates, outcomes and auxiliary factors of variation. A common strategy to mitigate these failures is data balancing, which attempts to remove those undesired dependencies. In this work, we define conditions on the training distribution for data balancing to lead to fair or robust models. Our results display that in many cases, the balanced distribution does not correspond to selectively removing the undesired dependencies in a causal graph of the task, leading to multiple failure modes and even interference with other mitigation techniques such as regularization. Overall, our results highlight the importance of taking the causal graph into account before performing data balancing.
Poster
Leon Kellerhals · Jannik Peters

[ West Ballroom A-D ]

Abstract
We study the proportional clustering problem of Chen et al. (ICML'19) and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters (EC'23) simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al., but also to individual fairness (Jung et al., FORC'20) and the ``core'' (Li et al., ICML'21). In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters imply approximations to these stronger guarantees.
Poster
Hanlin Zhu · Baihe Huang · Shaolun Zhang · Michael Jordan · Jiantao Jiao · Yuandong Tian · Stuart J Russell

[ West Ballroom A-D ]

Abstract
Auto-regressive large language models (LLMs) show impressive capacities to solve many complex reasoning tasks while struggling with some simple logical reasoning tasks such as inverse search: when trained on ''$A \to B$'' (e.g., *Tom is the parent of John*), LLM fails to directly conclude ''$B \gets A$'' (e.g., *John is the child of Tom*) during inference even if the two sentences are semantically identical, which is known as the ''reversal curse''. In this paper, we theoretically analyze the reversal curse via the training dynamics of (stochastic) gradient descent for two auto-regressive models: (1) a bilinear model that can be viewed as a simplification of a one-layer transformer; (2) one-layer transformers under certain assumptions. Our analysis reveals that for both models, the reversal curse is a consequence of the (effective) model weights *asymmetry*, i.e., the increase of weights from a token $A$ to token $B$ during training does not necessarily cause the increase of the weights from $B$ to $A$, which is caused by the training dynamics under certain choice of loss function and the optimization space of model parameters. Moreover, our analysis can be naturally applied to other logical reasoning tasks such as chain-of-thought (COT), which provides a new perspective …
Poster
Kien Nguyen · Fengchun Qiao · Arthur Trembanis · Xi Peng

[ West Ballroom A-D ]

Abstract
A major obstacle to the advancements of machine learning models in marine science, particularly in sonar imagery analysis, is the scarcity of AI-ready datasets. While there have been efforts to make AI-ready sonar image dataset publicly available, they suffer from limitations in terms of environment setting and scale. To bridge this gap, we introduce $\texttt{SeafloorAI}$, the first extensive AI-ready datasets for seafloor mapping across 5 geological layers that is curated in collaboration with marine scientists. We further extend the dataset to $\texttt{SeafloorGenAI}$ by incorporating the language component in order to facilitate the development of both $\textit{vision}$- and $\textit{language}$-capable machine learning models for sonar imagery. The dataset consists of 62 geo-distributed data surveys spanning 17,300 square kilometers, with 696K sonar images, 827K annotated segmentation masks, 696K detailed language descriptions and approximately 7M question-answer pairs. By making our data processing source code publicly available, we aim to engage the marine science community to enrich the data pool and inspire the machine learning community to develop more robust models. This collaborative approach will enhance the capabilities and applications of our datasets within both fields.
Poster
Ayoub El Hanchi · Chris Maddison · Murat Erdogdu

[ West Ballroom A-D ]

Abstract
Given a collection of feature maps indexed by a set $\mathcal{T}$, we study the performance of empirical risk minimization (ERM) on regression problems with square loss over the union of the linear classes induced by these feature maps. This setup aims at capturing the simplest instance of feature learning, where the model is expected to jointly learn from the data an appropriate feature map and a linear predictor. We start by studying the asymptotic quantiles of the excess risk of sequences of empirical risk minimizers. Remarkably, we show that when the set $\mathcal{T}$ is not too large and when there is a unique optimal feature map, these quantiles coincide, up to a factor of two, with those of the excess risk of the oracle procedure, which knows a priori this optimal feature map and deterministically outputs an empirical risk minimizer from the associated optimal linear class. We complement this asymptotic result with a non-asymptotic analysis that quantifies the decaying effect of the global complexity of the set $\mathcal{T}$ on the excess risk of ERM, and relates it to the size of the sublevel sets of the suboptimality of the feature maps. As an application of our results, we characterize the …
Spotlight Poster
Wei Li · Hehe Fan · Yongkang Wong · Mohan Kankanhalli · Yi Yang

[ West Ballroom A-D ]

Abstract
Recent advancements in image understanding have benefited from the extensive use of web image-text pairs. However, video understanding remains a challenge despite the availability of substantial web video-text data. This difficulty primarily arises from the inherent complexity of videos and the inefficient language supervision in recent web-collected video-text datasets. In this paper, we introduce Text-Only Pre-Alignment (TOPA), a novel approach to extend large language models (LLMs) for video understanding, without the need for pre-training on real video data. Specifically, we first employ an advanced LLM to automatically generate Textual Videos comprising continuous textual frames, along with corresponding annotations to simulate real video-text data. Then, these annotated textual videos are used to pre-align a language-only LLM with the video modality. To bridge the gap between textual and real videos, we employ the CLIP model as the feature extractor to align image and text modalities. During text-only pre-alignment, the continuous textual frames, encoded as a sequence of CLIP text features, are analogous to continuous CLIP image features, thus aligning the LLM with real video representation. Extensive experiments, including zero-shot evaluation and finetuning on various video understanding tasks, demonstrate that TOPA is an effective and efficient framework for aligning video content with LLMs. …
Poster
François Bachoc · Nicolò Cesa-Bianchi · Tom Cesari · Roberto Colomboni

[ West Ballroom A-D ]

Abstract
In online bilateral trade, a platform posts prices to incoming pairs of buyers and sellers that have private valuations for a certain good. If the price is lower than the buyers' valuation and higher than the sellers' valuation, then a trade takes place. Previous work focused on the platform perspective, with the goal of setting prices maximizing the *gain from trade* (the sum of sellers' and buyers' utilities). Gain from trade is, however, potentially unfair to traders, as they may receive highly uneven shares of the total utility. In this work we enforce fairness by rewarding the platform with the _fair gain from trade_, defined as the minimum between sellers' and buyers' utilities.After showing that any no-regret learning algorithm designed to maximize the sum of the utilities may fail badly with fair gain from trade, we present our main contribution: a complete characterization of the regret regimes for fair gain from trade when, after each interaction, the platform only learns whether each trader accepted the current price. Specifically, we prove the following regret bounds: $\Theta(\ln T)$ in the deterministic setting, $\Omega(T)$ in the stochastic setting, and $\tilde{\Theta}(T^{2/3})$ in the stochastic setting when sellers' and buyers' valuations are independent of each …
Poster
Jake Soloff · Rina Barber · Rebecca Willett

[ West Ballroom A-D ]

Abstract
We propose a new framework for algorithmic stability in the context of multiclass classification. In practice, classification algorithms often operate by first assigning a continuous score (for instance, an estimated probability) to each possible label, then taking the maximizer---i.e., selecting the class that has the highest score. A drawback of this type of approach is that it is inherently unstable, meaning that it is very sensitive to slight perturbations of the training data, since taking the maximizer is discontinuous. Motivated by this challenge, we propose a pipeline for constructing stable classifiers from data, using bagging (i.e., resampling and averaging) to produce stable continuous scores, and then using a stable relaxation of argmax, which we call the "inflated argmax", to convert these scores to a set of candidate labels. The resulting stability guarantee places no distributional assumptions on the data, does not depend on the number of classes or dimensionality of the covariates, and holds for any base classifier. Using a common benchmark data set, we demonstrate that the inflated argmax provides necessary protection against unstable classifiers, without loss of accuracy.
Spotlight Poster
Yi-Shan Wu · Yijie Zhang · Badr-Eddine Cherief-Abdellatif · Yevgeny Seldin

[ West Ballroom A-D ]

Abstract
PAC-Bayesian analysis is a frequentist framework for incorporating prior knowledge into learning. It was inspired by Bayesian learning, which allows sequential data processing and naturally turns posteriors from one processing step into priors for the next. However, despite two and a half decades of research, the ability to update priors sequentially without losing confidence information along the way remained elusive for PAC-Bayes. While PAC-Bayes allows construction of data-informed priors, the final confidence intervals depend only on the number of points that were not used for the construction of the prior, whereas confidence information in the prior, which is related to the number of points used to construct the prior, is lost. This limits the possibility and benefit of sequential prior updates, because the final bounds depend only on the size of the final batch.We present a novel and, in retrospect, surprisingly simple and powerful PAC-Bayesian procedure that allows sequential prior updates with no information loss. The procedure is based on a novel decomposition of the expected loss of randomized classifiers. The decomposition rewrites the loss of the posterior as an excess loss relative to a downscaled loss of the prior plus the downscaled loss of the prior, which is bounded …
Poster
Shuyao Li · Sushrut Karmalkar · Ilias Diakonikolas · Jelena Diakonikolas

[ West Ballroom A-D ]

Abstract
We study the problem of learning a single neuron with respect to the $L_2^2$-loss in the presence of adversarial distribution shifts, where the labels can be arbitrary, and the goal is to find a "best-fit" function.More precisely, given training samples from a reference distribution $p_0$, the goal is to approximate the vector $\mathbf{w}^*$which minimizes the squared loss with respect to the worst-case distribution that is close in $\chi^2$-divergence to $p_{0}$.We design a computationally efficient algorithm that recovers a vector $ \hat{\mathbf{w}}$satisfying $\mathbb{E}\_{p^*} (\sigma(\hat{\mathbf{w}} \cdot \mathbf{x}) - y)^2 \leq C \hspace{0.2em} \mathbb{E}\_{p^*} (\sigma(\mathbf{w}^* \cdot \mathbf{x}) - y)^2 + \epsilon$, where $C>1$ is a dimension-independent constant and $(\mathbf{w}^*, p^*)$ is the witness attaining the min-max risk$\min_{\mathbf{w}:\|\mathbf{w}\| \leq W} \max\_{p} \mathbb{E}\_{(\mathbf{x}, y) \sim p} (\sigma(\mathbf{w} \cdot \mathbf{x}) - y)^2 - \nu \chi^2(p, p_0)$.Our algorithm follows the primal-dual framework and is designed by directly bounding the risk with respect to the original, nonconvex $L_2^2$ loss.From an optimization standpoint, our work opens new avenues for the design of primal-dual algorithms under structured nonconvexity.
Poster
Bikang Pan · Wei Huang · Ye Shi

[ West Ballroom A-D ]

Abstract
Integrating pretrained vision-language foundation models like CLIP into federated learning has attracted significant attention for enhancing generalization across diverse tasks. Typically, federated learning of vision-language models employs prompt learning to reduce communication and computational costs, i.e., prompt-based federated learning. However, there is limited theoretical analysis to understand the performance of prompt-based federated learning. In this work, we construct a theoretical analysis framework for prompt-based federated learning via feature learning theory. Specifically, we monitor the evolution of signal learning and noise memorization in prompt-based federated learning, demonstrating that performance can be assessed by the ratio of task-relevant to task-irrelevant coefficients. Furthermore, we draw an analogy between income and risk in portfolio optimization and the task-relevant and task-irrelevant terms in feature learning. Leveraging inspiration from portfolio optimization that combining two independent assets will maintain the income while reducing the risk, we introduce two prompts: global prompt and local prompt to construct a prompt portfolio to balance the generalization and personalization. Consequently, we showed the performance advantage of the prompt portfolio and derived the optimal mixing coefficient. These theoretical claims have been further supported by empirical experiments.
Poster
Charlie Tan · Inés García-Redondo · Qiquan Wang · Michael Bronstein · Anthea Monod

[ West Ballroom A-D ]

Abstract
Bounding and predicting the generalization gap of overparameterized neural networks remains a central open problem in theoretical machine learning. There is a recent and growing body of literature that proposes the framework of fractals to model optimization trajectories of neural networks, motivating generalization bounds and measures based on the fractal dimension of the trajectory. Notably, the persistent homology dimension has been proposed to correlate with the generalization gap. This paper performs an empirical evaluation of these persistent homology-based generalization measures, with an in-depth statistical analysis. Our study reveals confounding effects in the observed correlation between generalization and topological measures due to the variation of hyperparameters. We also observe that fractal dimension fails to predict generalization of models trained from poor initializations. We lastly reveal the intriguing manifestation of model-wise double descent in these topological generalization measures. Our work forms a basis for a deeper investigation of the causal relationships between fractal geometry, topological data analysis, and neural network optimization.
Poster
Xiaoge Deng · Tao Sun · Shengwei Li · Dongsheng Li · Xicheng Lu

[ West Ballroom A-D ]

Abstract
Asynchronous stochastic gradient descent (ASGD) has evolved into an indispensable optimization algorithm for training modern large-scale distributed machine learning tasks. Therefore, it is imperative to explore the generalization performance of the ASGD algorithm. However, the existing results are either pessimistic and vacuous or restricted by strict assumptions that fail to reveal the intrinsic impact of asynchronous training on generalization. In this study, we establish sharper stability and generalization bounds for ASGD under much weaker assumptions. Firstly, this paper studies the on-average model stability of ASGD and provides a non-vacuous upper bound on the generalization error, without relying on the Lipschitz assumption. Furthermore, we investigate the excess generalization error of the ASGD algorithm, revealing the effects of asynchronous delay, model initialization, number of training samples and iterations on generalization performance. Secondly, for the first time, this study explores the generalization performance of ASGD in the non-smooth case. We replace smoothness with the much weaker Hölder continuous assumption and achieve similar generalization results as in the smooth case. Finally, we validate our theoretical findings by training numerous machine learning models, including convex problems and non-convex tasks in computer vision and natural language processing.
Poster
Christian Schmid · James M Murray

[ West Ballroom A-D ]

Abstract
The ability of a brain or a neural network to efficiently learn depends crucially on both the task structure and the learning rule.Previous works have analyzed the dynamical equations describing learning in the relatively simplified context of the perceptron under assumptions of a student-teacher framework or a linearized output. While these assumptions have facilitated theoretical understanding, they have precluded a detailed understanding of the roles of the nonlinearity and input-data distribution in determining the learning dynamics, limiting the applicability of the theories to real biological or artificial neural networks.Here, we use a stochastic-process approach to derive flow equations describing learning, applying this framework to the case of a nonlinear perceptron performing binary classification. We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve and the forgetting curve as subsequent tasks are learned.In particular, we find that the input-data noise differently affects the learning speed under SL vs. RL, as well as determines how quickly learning of a task is overwritten by subsequent learning. Additionally, we verify our approach with real data using the MNIST dataset.This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
Poster
Matteo Russo · Andrea Celli · Riccardo Colini Baldeschi · Federico Fusco · Daniel Haimovich · Dima Karamshuk · Stefano Leonardi · Niek Tax

[ West Ballroom A-D ]

Abstract
In online learning, a decision maker repeatedly selects one of a set of actions, with the goal of minimizing the overall loss incurred. Following the recent line of research on algorithms endowed with additional predictive features, we revisit this problem by allowing the decision maker to acquire additional information on the actions to be selected. In particular, we study the power of \emph{best-action queries}, which reveal beforehand the identity of the best action at a given time step. In practice, predictive features may be expensive, so we allow the decision maker to issue at most $k$ such queries.We establish tight bounds on the performance any algorithm can achieve when given access to $k$ best-action queries for different types of feedback models. In particular, we prove that in the full feedback model, $k$ queries are enough to achieve an optimal regret of $\Theta(\min\{\sqrt T, \frac{T}{k}\})$. This finding highlights the significant multiplicative advantage in the regret rate achievable with even a modest (sublinear) number $k \in \Omega(\sqrt{T})$ of queries. Additionally, we study the challenging setting in which the only available feedback is obtained during the time steps corresponding to the $k$ best-action queries. There, we provide a tight regret rate of $\Theta(\min\{\frac{T}{\sqrt …
Poster
Zixian Yang · Xin Liu · Lei Ying

[ West Ballroom A-D ]

Abstract
The traditional multi-armed bandit (MAB) model for recommendation systems assumes the user stays in the system for the entire learning horizon. In new online education platforms such as ALEKS or new video recommendation systems such as TikTok, the amount of time a user spends on the app depends on how engaging the recommended contents are. Users may temporarily leave the system if the recommended items cannot engage the users. To understand the exploration, exploitation, and engagement in these systems, we propose a new model, called MAB-A where ``A'' stands for abandonment and the abandonment probability depends on the current recommended item and the user's past experience (called state). We propose two algorithms, ULCB and KL-ULCB, both of which do more exploration (being optimistic) when the user likes the previous recommended item and less exploration (being pessimistic) when the user does not. We prove that both ULCB and KL-ULCB achieve logarithmic regret, $O(\log K)$, where $K$ is the number of visits (or episodes). Furthermore, the regret bound under KL-ULCB is asymptotically sharp. We also extend the proposed algorithms to the general-state setting. Simulation results show that the proposed algorithms have significantly lower regret than the traditional UCB and KL-UCB, and Q-learning-based …
Poster
Anqi Mao · Mehryar Mohri · Yutao Zhong

[ West Ballroom A-D ]

Abstract
We present a detailed study of surrogate losses and algorithms for multi-label learning, supported by $H$-consistency bounds. We first show that, for the simplest form of multi-label loss (the popular Hamming loss), the well-known consistent binary relevance surrogate suffers from a sub-optimal dependency on the number of labels in terms of $H$-consistency bounds, when using smooth losses such as logistic losses. Furthermore, this loss function fails to account for label correlations. To address these drawbacks, we introduce a novel surrogate loss, *multi-label logistic loss*, that accounts for label correlations and benefits from label-independent $H$-consistency bounds. We then broaden our analysis to cover a more extensive family of multi-label losses, including all common ones and a new extension defined based on linear-fractional functions with respect to the confusion matrix. We also extend our multi-label logistic losses to more comprehensive multi-label comp-sum losses, adapting comp-sum losses from standard classification to the multi-label learning. We prove that this family of surrogate losses benefits from $H$-consistency bounds, and thus Bayes-consistency, across any general multi-label loss. Our work thus proposes a unified surrogate loss framework benefiting from strong consistency guarantees for any multi-label loss, significantly expanding upon previous work which only established Bayes-consistency and for …
Poster
Christos Thrampoulidis

[ West Ballroom A-D ]

Abstract
We initiate an investigation into the optimization properties of next-token prediction (NTP), the dominant training paradigm for modern language models. Specifically, we study the structural properties of the solutions selected by gradient-based optimizers among the many possible minimizers of the NTP objective. By framing NTP as cross-entropy minimization across \emph{distinct} contexts, each tied with a \emph{sparse} conditional probability distribution across a finite vocabulary of tokens, we introduce ``NTP-separability conditions'' that enable reaching the data-entropy lower bound. With this setup, and focusing on linear models with fixed context embeddings, we characterize the optimization bias of gradient descent (GD): Within the data subspace defined by the sparsity patterns of distinct contexts, GD selects parameters that equate the logits' differences of in-support tokens to their log-odds. In the orthogonal subspace, the GD parameters diverge in norm and select the direction that maximizes a margin specific to NTP. These findings extend previous research on implicit bias in one-hot classification to the NTP setting, highlighting key differences and prompting further research into the optimization and generalization properties of NTP, irrespective of the specific architecture used to generate the context embeddings.
Poster
Chenyang Zhang · Difan Zou · Yuan Cao

[ West Ballroom A-D ]

Abstract
Adam has become one of the most favored optimizers in deep learning problems. Despite its success in practice, numerous mysteries persist regarding its theoretical understanding. In this paper, we study the implicit bias of Adam in linear logistic regression. Specifically, we show that when the training data are linearly separable, the iterates of Adam converge towards a linear classifier that achieves the maximum $\ell_\infty$-margin in direction. Notably, for a general class of diminishing learning rates, this convergence occurs within polynomial time. Our result shed light on the difference between Adam and (stochastic) gradient descent from a theoretical perspective.
Poster
Haiquan Lu · Xiaotian Liu · Yefan Zhou · Qunli Li · Kurt Keutzer · Michael Mahoney · Yujun Yan · Huanrui Yang · Yaoqing Yang

[ West Ballroom A-D ]

Abstract
Recent studies on deep ensembles have identified the sharpness of the local minima of individual learners and the diversity of the ensemble members as key factors in improving test-time performance. Building on this, our study investigates the interplay between sharpness and diversity within deep ensembles, illustrating their crucial role in robust generalization to both in-distribution (ID) and out-of-distribution (OOD) data. We discover a trade-off between sharpness and diversity: minimizing the sharpness in the loss landscape tends to diminish the diversity of individual members within the ensemble, adversely affecting the ensemble's improvement. The trade-off is justified through our rigorous theoretical analysis and verified empirically through extensive experiments. To address the issue of reduced diversity, we introduce SharpBalance, a novel training approach that balances sharpness and diversity within ensembles. Theoretically, we show that our training strategy achieves a better sharpness-diversity trade-off. Empirically, we conducted comprehensive evaluations in various data sets (CIFAR-10, CIFAR-100, TinyImageNet) and showed that SharpBalance not only effectively improves the sharpness-diversity trade-off but also significantly improves ensemble performance in ID and OOD scenarios.
Poster
Ziang Chen · Rong Ge

[ West Ballroom A-D ]

Abstract
In this work, we study the mean-field flow for learning subspace-sparse polynomials using stochastic gradient descent and two-layer neural networks, where the input distribution is standard Gaussian and the output only depends on the projection of the input onto a low-dimensional subspace. We establish a necessary condition for SGD-learnability, involving both the characteristics of the target function and the expressiveness of the activation function. In addition, we prove that the condition is almost sufficient, in the sense that a condition slightly stronger than the necessary condition can guarantee the exponential decay of the loss functional to zero.
Poster
Eszter Szekely · Lorenzo Bardone · Federica Gerace · Sebastian Goldt

[ West Ballroom A-D ]

Abstract
Neural networks excel at discovering statistical patterns inhigh-dimensional data sets. In practice, higher-order cumulants, which quantifythe non-Gaussian correlations between three or more variables, are particularlyimportant for the performance of neural networks. But how efficient are neuralnetworks at extracting features from higher-order cumulants? We study thisquestion in the spiked cumulant model, where the statistician needs to recover aprivileged direction or "spike'' from the order-$p\ge 4$ cumulantsof $d$-dimensional inputs. We first discuss the fundamental statistical andcomputational limits of recovering the spike by analysing the number of samples $n$ required to strongly distinguish between inputs from the spikedcumulant model and isotropic Gaussian inputs. Existing literature established the presence of a wide statistical-to-computational gap in this problem. We deepen this line of work by finding an exact formula for the likelihood ratio norm which proves that statisticaldistinguishability requires $n\gtrsim d$ samples, while distinguishing the twodistributions in polynomial time requires $n \gtrsim d^2$ samples for a wideclass of algorithms, i.e. those covered by the low-degree conjecture. Numerical experiments show that neural networks do indeed learn to distinguishthe two distributions with quadratic sample complexity, while ``lazy'' methodslike random features are not better than random guessing in this regime. Ourresults show that neural networks extract information from …
Poster
Hyunsuk Kim · Liam Hodgkinson · Ryan Theisen · Michael Mahoney

[ West Ballroom A-D ]

Abstract
As performance gains through scaling data and/or model size experience diminishing returns, it is becoming increasingly popular to turn to ensembling, where the predictions of multiple models are combined to improve accuracy. In this paper, we provide a detailed analysis of how the disagreement and the polarization (a notion we introduce and define in this paper) among classifiers relate to the performance gain achieved by aggregating individual classifiers, for majority vote strategies in classification tasks.We address these questions in the following ways. (1) An upper bound for polarization is derived, and we propose what we call a neural polarization law: most interpolating neural network models are 4/3-polarized. Our empirical results not only support this conjecture but also show that polarization is nearly constant for a dataset, regardless of hyperparameters or architectures of classifiers. (2) The error rate of the majority vote classifier is considered under restricted entropy conditions, and we present a tight upper bound that indicates that the disagreement is linearly correlated with the error rate, and that the slope is linear in the polarization.(3) We prove results for the asymptotic behavior of the disagreement in terms of the number of classifiers, which we show can help in predicting …
Poster
Steve Hanneke · Shay Moran · Qian Zhang

[ West Ballroom A-D ]

Abstract
We aim to understand the optimal PAC sample complexity in multiclass learning. While finiteness of the Daniely-Shalev-Shwartz (DS) dimension has been shown to characterize the PAC learnability of a concept class [Brukhim, Carmon, Dinur, Moran, and Yehudayoff, 2022], there exist polylog factor gaps in the leading term of the sample complexity. In this paper, we reduce the gap in terms of the dependence on the error parameter to a single log factor and also propose two possible routes towards completely resolving the optimal sample complexity, each based on a key open question we formulate: one concerning list learning with bounded list size, the other concerning a new type of shifting for multiclass concept classes. We prove that a positive answer to either of the two questions would completely resolve the optimal sample complexity up to log factors of the DS dimension.
Poster
Divyansh Pareek · Simon Du · Sewoong Oh

[ West Ballroom A-D ]

Abstract
Self-Distillation is a special type of knowledge distillation where the student model has the same architecture as the teacher model. Despite using the same architecture and the same training data, self-distillation has been empirically observed to improve performance, especially when applied repeatedly. For such a process, there is a fundamental question of interest: How much gain is possible by applying multiple steps of self-distillation? To investigate this relative gain, we propose using the simple but canonical task of linear regression. Our analysis shows that the excess risk achieved by multi-step self-distillation can significantly improve upon a single step of self-distillation, reducing the excess risk by a factor of $d$, where $d$ is the input dimension. Empirical results on regression tasks from the UCI repository show a reduction in the learnt model's risk (MSE) by up to $47$%.
Spotlight Poster
Ayush Sawarni · Nirjhar Das · Siddharth Barman · Gaurav Sinha

[ West Ballroom A-D ]

Abstract
We study the generalized linear contextual bandit problem within the constraints of limited adaptivity. In this paper, we present two algorithms, B-GLinCB and RS-GLinCB, that address, respectively, two prevalent limited adaptivity settings. Given a budget $M$ on the number of policy updates, in the first setting, the algorithm needs to decide upfront $M$ rounds at which it will update its policy, while in the second setting it can adaptively perform $M$ policy updates during its course. For the first setting, we design an algorithm B-GLinCB, that incurs $\tilde{O}(\sqrt{T})$ regret when $M = \Omega( \log{\log T} )$ and the arm feature vectors are generated stochastically. For the second setting, we design an algorithm RS-GLinCB that updates its policy $\tilde{O}(\log^2 T)$ times and achieves a regret of $\tilde{O}(\sqrt{T})$ even when the arm feature vectors are adversarially generated. Notably, in these bounds, we manage to eliminate the dependence on a key instance dependent parameter $\kappa$, that captures non-linearity of the underlying reward model. Our novel approach for removing this dependence for generalized linear contextual bandits might be of independent interest.
Poster
Rui Ai · David Simchi-Levi · Feng Zhu

[ West Ballroom A-D ]

Abstract
We study a dynamic pricing problem for third-party platform service fees under strategic, far-sighted customers. In each time period, the platform sets a service fee based on historical data, observes the resulting transaction quantities, and collects revenue. The platform also monitors equilibrium prices influenced by both demand and supply. The objective is to maximize total revenue over a time horizon $T$. Our problem incorporates three practical challenges: (a) initially, the platform lacks knowledge of the demand side beforehand, necessitating a balance between exploring (learning the demand curve) and exploiting (maximizing revenue) simultaneously; (b) since only equilibrium prices and quantities are observable, traditional Ordinary Least Squares (OLS) estimators would be biased and inconsistent; (c) buyers are rational and strategic, seeking to maximize their consumer surplus and potentially misrepresenting their preferences. To address these challenges, we propose novel algorithmic solutions. Our approach involves: (i) a carefully designed active randomness injection to balance exploration and exploitation effectively; (ii) using non-i.i.d. actions as instrumental variables (IV) to consistently estimate demand; (iii) a low-switching cost design that promotes nearly truthful buyer behavior. We show an expected regret bound of $\tilde{\mathcal{O}} (\sqrt{T}\wedge\sigma_S^{-2})$ and demonstrate its optimality, up to logarithmic factors, with respect to both the time …
Poster
Artin Tajdini · Lalit Jain · Kevin Jamieson

[ West Ballroom A-D ]

Abstract
We consider maximizing an unknown monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ with cardinality constraint under stochastic bandit feedback. At each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret with respect to an approximation of the maximum $f(S_*)$ with $|S_*| = k$, obtained through robust greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable using standard multi-armed bandit algorithms. In this work, we establish the first minimax lower bound for this setting that scales like $\tilde{\Omega}(\min_{L \le k}(L^{1/3}n^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. For a slightly restricted algorithm class, we prove a stronger regret lower bound of $\tilde{\Omega}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. Moreover, we propose an algorithm Sub-UCB that achieves regret $\tilde{\mathcal{O}}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$ capable of matching the lower bound on regret for the restricted class up to logarithmic factors.
Poster
Phuong Nam Tran · The Anh Ta · Debmalya Mandal · Long Tran-Thanh

[ West Ballroom A-D ]

Abstract
High-dimensional linear bandits with low-dimensional structure have received considerable attention in recent studies due to their practical significance. The most common structure in the literature is sparsity. However, it may not be available in practice. Symmetry, where the reward is invariant under certain groups of transformations on the set of arms, is another important inductive bias in the high-dimensional case that covers many standard structures, including sparsity. In this work, we study high-dimensional symmetric linear bandits where the symmetry is hidden from the learner, and the correct symmetry needs to be learned in an online setting. We examine the structure of a collection of hidden symmetry and provide a method based on model selection within the collection of low-dimensional subspaces. Our algorithm achieves a regret bound of $ O(d_0^{2/3} T^{2/3} \log(d))$, where $d$ is the ambient dimension which is potentially very large, and $d_0$ is the dimension of the true low-dimensional subspace such that $d_0 \ll d$. With an extra assumption on well-separated models, we can further improve the regret to $ O(d_0 \sqrt{T\log(d)} )$.
Poster
Rakshit Trivedi · Akbir Khan · Jesse Clifton · Lewis Hammond · Edgar Duenez-Guzman · Dipam Chakraborty · John Agapiou · Jayd Matyas · Sasha Vezhnevets · Barna Pásztor · Yunke Ao · Omar G. Younis · Jiawei Huang · Benjamin Swain · Haoyuan Qin · Deng · Ziwei Deng · Utku Erdoğanaras · Yue Zhao · Marko Tesic · Natasha Jaques · Jakob Foerster · Vincent Conitzer · José Hernández-Orallo · Dylan Hadfield-Menell · Joel Leibo

[ West Ballroom A-D ]

Abstract
Multi-agent AI research promises a path to develop human-like and human-compatible intelligent technologies that complement the solipsistic view of other approaches, which mostly do not consider interactions between agents. Aiming to make progress in this direction, the Melting Pot contest 2023 focused on the problem of cooperation among interacting agents and challenged researchers to push the boundaries of multi-agent reinforcement learning (MARL) for mixed-motive games. The contest leveraged the Melting Pot environment suite to rigorously evaluate how well agents can adapt their cooperative skills to interact with novel partners in unforeseen situations. Unlike other reinforcement learning challenges, this challenge focused on social rather than environmental generalization. In particular, a population of agents performs well in Melting Pot when its component individuals are adept at finding ways to cooperate both with others in their population and with strangers. Thus Melting Pot measures cooperative intelligence.The contest attracted over 600 participants across 100+ teams globally and was a success on multiple fronts: (i) it contributed to our goal of pushing the frontiers of MARL towards building more cooperatively intelligent agents, evidenced by several submissions that outperformed established baselines; (ii) it attracted a diverse range of participants, from independent researchers to industry affiliates and …
Spotlight Poster
Stephen Pasteris · Chris Hicks · Vasilios Mavroudis · Mark Herbster

[ West Ballroom A-D ]

Abstract
We consider the classic problem of online convex optimisation. Whereas the notion of static regret is relevant for stationary problems, the notion of switching regret is more appropriate for non-stationary problems. A switching regret is defined relative to any segmentation of the trial sequence, and is equal to the sum of the static regrets of each segment. In this paper we show that, perhaps surprisingly, we can achieve the asymptotically optimal switching regret on every possible segmentation simultaneously. Our algorithm for doing so is very efficient: having a space and per-trial time complexity that is logarithmic in the time-horizon. Our algorithm also obtains novel bounds on its dynamic regret: being adaptive to variations in the rate of change of the comparator sequence.
Poster
Ziyi Liu · Idan Attias · Dan Roy

[ West Ballroom A-D ]

Abstract
We study the fundamental problem of sequential probability assignment, also known as online learning with logarithmic loss, with respect to an arbitrary, possibly nonparametric hypothesis class. Our goal is to obtain a complexity measure for the hypothesis class that characterizes the minimax regret and to determine a general, minimax optimal algorithm. Notably, the sequential $\ell_{\infty}$ entropy, extensively studied in the literature (Rakhlin and Sridharan, 2015, Bilodeau et al., 2020, Wu et al., 2023), was shown to not characterize minimax regret in general. Inspired by the seminal work of Shtarkov (1987) and Rakhlin, Sridharan, and Tewari (2010), we introduce a novel complexity measure, the \emph{contextual Shtarkov sum}, corresponding to the Shtarkov sum after projection onto a multiary context tree, and show that the worst case log contextual Shtarkov sum equals the minimax regret. Using the contextual Shtarkov sum, we derive the minimax optimal strategy, dubbed \emph{contextual Normalized Maximum Likelihood} (cNML). Our results hold for sequential experts, beyond binary labels, which are settings rarely considered in prior work. To illustrate the utility of this characterization, we provide a short proof of a new regret upper bound in terms of sequential $\ell_{\infty}$ entropy, unifying and sharpening state-of-the-art bounds by Bilodeau et al. (2020) …
Poster
Barna Pásztor · Parnian Kassraie · Andreas Krause

[ West Ballroom A-D ]

Abstract
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for tuning large language models.The problem is fairly understood in toy settings with linear target functions or over finite small domains that limits practical interest.Taking the next step, we consider infinite domains and kernelized rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm.We propose MaxMinLCB, which emulates this trade-off as a zero-sum Stackelberg game and chooses action pairs that are informative and have favorable reward values. MaxMinLCB consistently outperforms algorithms in the literature and satisfies an anytime-valid rate-optimal regret guarantee. This is owed to our novel preference-based confidence sequences for kernelized logistic estimators, which are of independent interest.
Spotlight Poster
Stephen Boyd · Tetiana Parshakova · Ernest Ryu · Jaewook J. Suh

[ West Ballroom A-D ]

Abstract
We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuous-time dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.
Spotlight Poster
Wenyu Du · Tongxu Luo · Zihan Qiu · Zeyu Huang · Yikang Shen · Reynold Cheng · Yike Guo · Jie Fu

[ West Ballroom A-D ]

Abstract
LLMs are computationally expensive to pre-train due to their large scale.Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored.This work identifies three critical $\underline{\textit{O}}$bstacles: ($\textit{O}$1) lack of comprehensive evaluation, ($\textit{O}$2) untested viability for scaling, and ($\textit{O}$3) lack of empirical guidelines.To tackle $\textit{O}$1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting.Our findings reveal that a depthwise stacking operator, called $G_{\text{stack}}$, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into $G_{\text{stack}}$ to address $\textit{O}$2 and $\textit{O}$3.For $\textit{O}$2 (untested scalability), our study shows that $G_{\text{stack}}$ is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens.For example, compared to a conventionally trained 7B model using 300B tokens, our $G_{\text{stack}}$ model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address $\textit{O}$3 (lack of empirical guidelines) by formalizing guidelines …
Poster
Nolan Dey · Shane Bergsma · Joel Hestness

[ West Ballroom A-D ]

Abstract
Several challenges make it difficult for sparse neural networks to compete with dense models. First, setting a large fraction of weights to zero impairs forward and gradient signal propagation. Second, sparse studies often need to test multiple sparsity levels, while also introducing new hyperparameters (HPs), leading to prohibitive tuning costs. Indeed, the standard practice is to re-use the learning HPs originally crafted for dense models. Unfortunately, we show sparse anddense networks do not share the same optimal HPs. Without stable dynamics and effective training recipes, it is costly to test sparsity at scale, which is key to surpassing dense networks and making the business case for sparsity acceleration in hardware.A holistic approach is needed to tackle these challenges and we propose S$\textmu$Par as one such approach. For random unstructured static sparsity, S$\textmu$Par ensures activations, gradients, and weight updates all scale independently of sparsity level. Further, by reparameterizing the HPs, S$\textmu$Par enables the same HP values to be optimal as we vary both sparsity level and model width. HPs can be tuned on small dense networks and transferred to large sparse models, greatly reducing tuning costs. On large-scale language modeling, S$\textmu$Par shows increasing improvements over standard parameterization as sparsity increases, leading …
Poster
Abdurakhmon Sadiev · Grigory Malinovsky · Eduard Gorbunov · Igor Sokolov · Ahmed Khaled · Konstantin Burlachenko · Peter Richtarik

[ West Ballroom A-D ]

Abstract
Gradient compression is a popular technique for improving communication complexity of stochastic first-order methods in distributed training of machine learning models. However, the existing works consider only with-replacement sampling of stochastic gradients. In contrast, it is well-known in practice and recently confirmed in theory that stochastic methods based on without-replacement sampling, e.g., Random Reshuffling (RR) method, perform better than ones that sample the gradients with-replacement. In this work, we close this gap in the literature and provide the first analysis of methods with gradient compression and without-replacement sampling. We first develop a distributed variant of random reshuffling with gradient compression (Q-RR), and show how to reduce the variance coming from gradient quantization through the use of control iterates. Next, to have a better fit to Federated Learning applications, we incorporate local computation and propose a variant of Q-RR called Q-NASTYA. Q-NASTYA uses local gradient steps and different local and global stepsizes. Next, we show how to reduce compression variance in this setting as well. Finally, we prove the convergence results for the proposed methods and outline several settings in which they improve upon existing algorithms.
Poster
XINNUO XU · Minyoung Kim · Royson Lee · Brais Martinez · Timothy Hospedales

[ West Ballroom A-D ]

Abstract
Data point selection (DPS) is becoming a critical topic in deep learning due to the ease of acquiring uncurated training data compared to the difficulty of obtaining curated or processed data. Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation, which is demanding in terms of memory and computation, and exhibits some theoretical defects regarding minibatches.Thus, we propose a novel Bayesian approach to DPS. We view the DPS problem as posterior inference in a novel Bayesian model where the posterior distributions of the instance-wise weights and the main neural network parameters are inferred under a reasonable prior and likelihood model.We employ stochastic gradient Langevin MCMC sampling to learn the main network and instance-wise weights jointly, ensuring convergence even with minibatches. Our update equation is comparable to the widely used SGD and much more efficient than existing BLO-based methods. Through controlled experiments in both the vision and language domains, we present the proof-of-concept. Additionally, we demonstrate that our method scales effectively to large language models and facilitates automated per-task optimization for instruction fine-tuning datasets.
Poster
Qian Chen · Tianjian Zhang · Linxin Yang · Qingyu Han · Akang Wang · Ruoyu Sun · Xiaodong Luo · Tsung-Hui Chang

[ West Ballroom A-D ]

Abstract
Integer linear programs (ILPs) are commonly employed to model diverse practical problems such as scheduling and planning. Recently, machine learning techniques have been utilized to solve ILPs. A straightforward idea is to train a model via supervised learning, with an ILP as the input and an optimal solution as the label. An ILP is symmetric if its variables can be permuted without changing the problem structure, resulting in numerous equivalent and optimal solutions. Randomly selecting an optimal solution as the label can introduce variability in the training data, which may hinder the model from learning stable patterns. In this work, we incorporate the intrinsic symmetry of ILPs and propose a novel training framework called SymILO. Specifically, we modify the learning task by introducing solution permutation along with neural network weights as learnable parameters and then design an alternating algorithm to jointly optimize the loss function.We conduct extensive experiments on ILPs involving different symmetries and the computational results demonstrate that our symmetry-aware approach significantly outperforms three existing methods----achieving $50.3\\%$, $66.5\\%$, and $45.4\\%$ average improvements, respectively.
Poster
Miria Feng · Zachary Frangella · Mert Pilanci

[ West Ballroom A-D ]

Abstract
We introduce the CRONOS algorithm for convex optimization of two-layer neural networks. CRONOS is the first algorithm capable of scaling to high-dimensional datasets such as ImageNet, which are ubiquitous in modern deep learning. This significantly improves upon prior work, which has been restricted to downsampled versions of MNIST and CIFAR-10.Taking CRONOS as a primitive, we then develop a new algorithm called CRONOS-AM, which combines CRONOS with alternating minimization, to obtain an algorithm capable of training multi-layer networks with arbitrary architectures.Our theoretical analysis proves that CRONOS converges to the global minimum of the convex reformulation under mild assumptions. In addition, we validate the efficacy of CRONOS and CRONOS-AM through extensive large-scale numerical experiments with GPU acceleration in JAX.Our results show that CRONOS-AM can obtain comparable or better validation accuracy than predominant tuned deep learning optimizers on vision and language tasks with benchmark datasets such as ImageNet and IMDb.To the best of our knowledge, CRONOS is the first algorithm which utilizes the convex reformulation to enhance performance on large-scale learning tasks.
Poster
Youyuan Long · Tolga Ok · Pedro Zattoni Scroccaro · Peyman Mohajerin Esfahani

[ West Ballroom A-D ]

Abstract
Inverse Optimization (IO) is a framework for learning the unknown objective function of an expert decision-maker from a past dataset.In this paper, we extend the hypothesis class of IO objective functions to a reproducing kernel Hilbert space (RKHS), thereby enhancing feature representation to an infinite-dimensional space.We demonstrate that a variant of the representer theorem holds for a specific training loss, allowing the reformulation of the problem as a finite-dimensional convex optimization program.To address scalability issues commonly associated with kernel methods, we propose the Sequential Selection Optimization (SSO) algorithm to efficiently train the proposed Kernel Inverse Optimization (KIO) model.Finally, we validate the generalization capabilities of the proposed KIO model and the effectiveness of the SSO algorithm through learning-from-demonstration tasks on the MuJoCo benchmark.
Poster
Hanmin Li · Kirill Acharya · Peter Richtarik

[ West Ballroom A-D ]

Abstract
We propose and study several server-extrapolation strategies for enhancing the theoretical and empirical convergence properties of the popular federated learning optimizer FedProx [Li et al., 2020]. While it has long been known that some form of extrapolation can help in the practice of FL, only a handful of works provide any theoretical guarantees. The phenomenon seems elusive, and our current theoretical understanding remains severely incomplete. In our work, we focus on smooth convex or strongly convex problems in the interpolation regime. In particular, we propose Extrapolated FedProx (FedExProx), and study three extrapolation strategies: a constant strategy (depending on various smoothness parameters and the number of participating devices), and two smoothness-adaptive strategies; one based on the notion of gradient diversity (FedExProx-GraDS), and the other one based on the stochastic Polyak stepsize (FedExProx-StoPS). Our theory is corroborated with carefully constructed numerical experiments.
Poster
Seta Rakotomandimby · Jean-Philippe Chancelier · Michel De Lara · Mathieu Blondel

[ West Ballroom A-D ]

Abstract
Fenchel-Young losses are a family of loss functions, encompassing the squared,logistic and sparsemax losses, among others. They are convex w.r.t. the modeloutput and the target, separately. Each Fenchel-Young loss is implicitly associatedwith a link function, that maps model outputs to predictions. For instance, thelogistic loss is associated with the soft argmax link function. Can we build newloss functions associated with the same link function as Fenchel-Young losses?In this paper, we introduce Fitzpatrick losses, a new family of separately convexloss functions based on the Fitzpatrick function. A well-known theoretical tool inmaximal monotone operator theory, the Fitzpatrick function naturally leads to arefined Fenchel-Young inequality, making Fitzpatrick losses tighter than Fenchel-Young losses, while maintaining the same link function for prediction. As anexample, we introduce the Fitzpatrick logistic loss and the Fitzpatrick sparsemaxloss, counterparts of the logistic and the sparsemax losses. This yields two newtighter losses associated with the soft argmax and the sparse argmax, two of themost ubiquitous output layers used in machine learning. We study in details theproperties of Fitzpatrick losses and, in particular, we show that they can be seen asFenchel-Young losses using a modified, target-dependent generating function. Wedemonstrate the effectiveness of Fitzpatrick losses for label proportion estimation.
Poster
Liuyuan Jiang · Quan Xiao · Victor Tenorio · Fernando Real-Rojas · Antonio G. Marques · Tianyi Chen

[ West Ballroom A-D ]

Abstract
Interest in bilevel optimization has grown in recent years, partially due to its relevance for challenging machine-learning problems. Several exciting recent works have been centered around developing efficient gradient-based algorithms that can solve bilevel optimization problems with provable guarantees. However, the existing literature mainly focuses on bilevel problems either without constraints, or featuring only simple constraints that do not couple variables across the upper and lower levels, excluding a range of complex applications. Our paper studies this challenging but less explored scenario and develops a (fully) first-order algorithm, which we term BLOCC, to tackle BiLevel Optimization problems with Coupled Constraints. We establish rigorous convergence theory for the proposed algorithm and demonstrate its effectiveness on two well-known real-world applications - support vector machine (SVM) - based model training and infrastructure planning in transportation networks.
Poster
Shuchen Zhu · Boao Kong · Songtao Lu · Xinmeng Huang · Kun Yuan

[ West Ballroom A-D ]

Abstract
This paper studies decentralized bilevel optimization, in which multiple agents collaborate to solve problems involving nested optimization structures with neighborhood communications. Most existing literature primarily utilizes gradient tracking to mitigate the influence of data heterogeneity, without exploring other well-known heterogeneity-correction techniques such as EXTRA or Exact Diffusion. Additionally, these studies often employ identical decentralized strategies for both upper- and lower-level problems, neglecting to leverage distinct mechanisms across different levels. To address these limitations, this paper proposes SPARKLE, a unified single-loop primal-dual algorithm framework for decentralized bilevel optimization. SPARKLE offers the flexibility to incorporate various heterogeneity-correction strategies into the algorithm. Moreover, SPARKLE allows for different strategies to solve upper- and lower-level problems. We present a unified convergence analysis for SPARKLE, applicable to all its variants, with state-of-the-art convergence rates compared to existing decentralized bilevel algorithms. Our results further reveal that EXTRA and Exact Diffusion are more suitable for decentralized bilevel optimization, and using mixed strategies in bilevel algorithms brings more benefits than relying solely on gradient tracking.
Poster
Jincheng Cao · Ruichen Jiang · Erfan Yazdandoost Hamedani · Aryan Mokhtari

[ West Ballroom A-D ]

Abstract
In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria. Specifically, when the feasible set is compact, we show that our method requires at most $\mathcal{O}(\max\\{1/\sqrt{\epsilon_{f}}, 1/\epsilon_g\\})$ iterations to find a solution that is $\epsilon_f$-suboptimal and $\epsilon_g$-infeasible. Moreover, under the additional assumption that the lower-level objective satisfies the $r$-th Hölderian error bound, we show that our method achieves an iteration complexity of $\mathcal{O}(\max\\{\epsilon_{f}^{-\frac{2r-1}{2r}},\epsilon_{g}^{-\frac{2r-1}{2r}}\\})$, which matches the optimal complexity of single-level convex constrained optimization when $r=1$.
Poster
Xufeng Cai · Cheuk Yin Lin · Jelena Diakonikolas

[ West Ballroom A-D ]

Abstract
Stochastic gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning. Contrary to the empirical practice of sampling from the datasets \emph{without replacement} and with (possible) reshuffling at each epoch, the theoretical counterpart of SGD usually relies on the assumption of \emph{sampling with replacement}. It is only very recently that SGD using sampling without replacement -- shuffled SGD -- has been analyzed with matching upper and lower bounds. However, we observe that those bounds are too pessimistic to explain often superior empirical performance of data permutations (sampling without replacement) over vanilla counterparts (sampling with replacement) on machine learning problems. Through fine-grained analysis in the lens of primal-dual cyclic coordinate methods and the introduction of novel smoothness parameters, we present several results for shuffled SGD on smooth and non-smooth convex losses, where our novel analysis framework provides tighter convergence bounds over all popular shuffling schemes (IG, SO, and RR). Notably, our new bounds predict faster convergence than existing bounds in the literature -- by up to a factor of $O(\sqrt{n})$, mirroring benefits from tighter convergence bounds using component smoothness parameters in randomized coordinate methods. Lastly, we numerically demonstrate on common machine learning datasets that our bounds are …
Poster
Ipsita Ghosh · Abiy Tasissa · Christian Kümmerle

[ West Ballroom A-D ]

Abstract
The problem of finding suitable point embedding or geometric configurations given only Euclidean distance information of point pairs arises both as a core task and as a sub-problem in a variety of machine learning applications. In this paper, we aim to solve this problem given a minimal number of distance samples. To this end, we leverage continuous and non-convex rank minimization formulations of the problem and establish a local convergence guarantee for a variant of iteratively reweighted least squares (IRLS), which applies if a minimal random set of observed distances is provided. As a technical tool, we establish a restricted isometry property (RIP) restricted to a tangent space of the manifold of symmetric rank-$r$ matrices given random Euclidean distance measurements, which might be of independent interest for the analysis of other non-convex approaches. Furthermore, we assess data efficiency, scalability and generalizability of different reconstruction algorithms through numerical experiments with simulated data as well as real-world data, demonstrating the proposed algorithm's ability to identify the underlying geometry from fewer distance samples compared to the state-of-the-art. The Matlab code can be found at \href{https://github.com/ipsita-ghosh-1/EDG-IRLS}{github\_SEGRED}
Poster
Xiufeng Song · Xiao Guo · Jiache Zhang · Qirui Li · LEI BAI · Xiaoming Liu · Guangtao Zhai · Xiaohong Liu

[ West Ballroom A-D ]

Abstract
Large numbers of synthesized videos from diffusion models pose threats to information security and authenticity, leading to an increasing demand for generated content detection. However, existing video-level detection algorithms primarily focus on detecting facial forgeries and often fail to identify diffusion-generated content with a diverse range of semantics. To advance the field of video forensics, we propose an innovative algorithm named Multi-Modal Detection(MM-Det) for detecting diffusion-generated videos. MM-Det utilizes the profound perceptual and comprehensive abilities of Large Multi-modal Models (LMMs) by generating a Multi-Modal Forgery Representation (MMFR) from LMM's multi-modal space, enhancing its ability to detect unseen forgery content. Besides, MM-Det leverages an In-and-Across Frame Attention (IAFA) mechanism for feature augmentation in the spatio-temporal domain. A dynamic fusion strategy helps refine forgery representations for the fusion. Moreover, we construct a comprehensive diffusion video dataset, called Diffusion Video Forensics (DVF), across a wide range of forgery videos. MM-Det achieves state-of-the-art performance in DVF, demonstrating the effectiveness of our algorithm. Both source code and DVF are available at https://github.com/SparkleXFantasy/MM-Det.
Poster
Quanqi Hu · Qi Qi · Zhaosong Lu · Tianbao Yang

[ West Ballroom A-D ]

Abstract
In this paper, we study a class of non-smooth non-convex problems in the form of $\min_{x}[\max_{y\in\mathcal Y}\phi(x, y) - \max_{z\in\mathcal Z}\psi(x, z)]$, where both $\Phi(x) = \max_{y\in\mathcal Y}\phi(x, y)$ and $\Psi(x)=\max_{z\in\mathcal Z}\psi(x, z)$ are weakly convex functions, and $\phi(x, y), \psi(x, z)$ are strongly concave functions in terms of $y$ and $z$, respectively. It covers two families of problems that have been studied but are missing single-loop stochastic algorithms, i.e., difference of weakly convex functions and weakly convex strongly-concave min-max problems. We propose a stochastic Moreau envelope approximate gradient method dubbed SMAG, the first single-loop algorithm for solving these problems, and provide a state-of-the-art non-asymptotic convergence rate. The key idea of the design is to compute an approximate gradient of the Moreau envelopes of $\Phi, \Psi$ using only one step of stochastic gradient update of the primal and dual variables. Empirically, we conduct experiments on positive-unlabeled (PU) learning and partial area under ROC curve (pAUC) optimization with an adversarial fairness regularizer to validate the effectiveness of our proposed algorithms.
Poster
Yassine Laguel · Yasa Syed · Necdet Serhat Aybat · Mert Gurbuzbalaban

[ West Ballroom A-D ]

Abstract
Stochastic smooth nonconvex minimax problems are prevalent in machine learning, e.g., GAN training, fair classification, and distributionally robust learning. Stochastic gradient descent ascent (GDA)-type methods are popular in practice due to their simplicity and single-loop nature. However, there is a significant gap between the theory and practice regarding high-probability complexity guarantees for these methods on stochastic nonconvex minimax problems. Existing high-probability bounds for GDA-type single-loop methods only apply to convex/concave minimax problems and to particular non-monotone variational inequality problems under some restrictive assumptions. In this work, we address this gap by providing the first high-probability complexity guarantees for nonconvex/PL minimax problems corresponding to a smooth function that satisfies the PL-condition in the dual variable. Specifically, we show that when the stochastic gradients are light-tailed, the smoothed alternating GDA method can compute an $\varepsilon$-stationary point within $\mathcal{O}(\frac{\ell \kappa^2 \delta^2}{\varepsilon^4} + \frac{\kappa}{\varepsilon^2}(\ell+\delta^2\log({1}/{\bar{q}})))$ stochastic gradient calls with probability at least $1-\bar{q}$ for any $\bar{q}\in(0,1)$, where $\mu$ is the PL constant, $\ell$ is the Lipschitz constant of the gradient, $\kappa=\ell/\mu$ is the condition number, and $\delta^2$ denotes a bound on the variance of stochastic gradients. We also present numerical results on a nonconvex/PL problem with synthetic data and on distributionally robust optimization problems with …
Poster
Theodore Brown · Alexandru Cioba · Ilija Bogunovic

[ West Ballroom A-D ]

Abstract
Bayesian optimisation (BO) is a powerful framework for global optimisation of costly functions, using predictions from Gaussian process models (GPs). In this work, we apply BO to functions that exhibit invariance to a known group of transformations. We show that vanilla and constrained BO algorithms are inefficient when optimising such invariant objectives, and provide a method for incorporating group invariances into the kernel of the GP to produce invariance-aware algorithms that achieve significant improvements in sample efficiency. We derive a bound on the maximum information gain of these invariant kernels, and provide novel upper and lower bounds on the number of observations required for invariance-aware BO algorithms to achieve $\epsilon$-optimality. We demonstrate our method's improved performance on a range of synthetic invariant and quasi-invariant functions. We also apply our method in the case where only some of the invariance is incorporated into the kernel, and find that these kernels achieve similar gains in sample efficiency at significantly reduced computational cost. Finally, we use invariant BO to design a current drive system for a nuclear fusion reactor, finding a high-performance solution where non-invariant methods failed.
Poster
Yuko Kuroki · Atsushi Miyauchi · Francesco Bonchi · Wei Chen

[ West Ballroom A-D ]

Abstract
We study a general clustering setting in which we have $n$ elements to be clustered, and we aim to perform as few queries as possible to an oracle that returns a noisy sample of the weighted similarity between two elements. Our setting encompasses many application domains in which the similarity function is costly to compute and inherently noisy. We introduce two novel formulations of online learning problems rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits (PE-CMAB): fixed confidence and fixed budget settings. For both settings, we design algorithms that combine a sampling strategy with a classic approximation algorithm for correlation clustering and study their theoretical guarantees. Our results are the first examples of polynomial-time algorithms that work for the case of PE-CMAB in which the underlying offline optimization problem is NP-hard.
Poster
Jose Pablo Folch · Calvin Tsay · Robert Lee · Behrang Shafei · Weronika Ormaniec · Andreas Krause · Mark van der Wilk · Ruth Misener · Mojmir Mutny

[ West Ballroom A-D ]

Abstract
Bayesian optimization is a methodology to optimize black-box functions. Traditionally, it focuses on the setting where you can arbitrarily query the search space. However, many real-life problems do not offer this flexibility; in particular, the search space of the next query may depend on previous ones. Example challenges arise in the physical sciences in the form of local movement constraints, required monotonicity in certain variables, and transitions influencing the accuracy of measurements. Altogether, such *transition constraints* necessitate a form of planning. This work extends classical Bayesian optimization via the framework of Markov Decision Processes. We iteratively solve a tractable linearization of our utility function using reinforcement learning to obtain a policy that plans ahead for the entire horizon. This is a parallel to the optimization of an *acquisition function in policy space*. The resulting policy is potentially history-dependent and non-Markovian. We showcase applications in chemical reactor optimization, informative path planning, machine calibration, and other synthetic examples.
Poster
Quoc Phong Nguyen · Sunil Gupta · Svetha Venkatesh · Bryan Kian Hsiang Low · Patrick Jaillet

[ West Ballroom A-D ]

Abstract
In this paper, we formalize the active set ordering problem, which involves actively discovering a set of inputs based on their orderings determined by expensive evaluations of a blackbox function. We then propose the mean prediction (MP) algorithm and theoretically analyze it in terms of the regret of predicted pairwise orderings between inputs. Notably, as a special case of this framework, we can cast Bayesian optimization as an active set ordering problem by recognizing that maximizers can be identified solely by comparison rather than by precisely estimating the function evaluations. As a result, we are able to construct the popular Gaussian process upper confidence bound (GP-UCB) algorithm through the lens of ordering with several nuanced insights. We empirically validate the performance of our proposed solution using various synthetic functions and real-world datasets.
Poster
Huidong Liang · Xingchen Wan · Xiaowen Dong

[ West Ballroom A-D ]

Abstract
We address the problem of optimizing over functions defined on node subsets in a graph. The optimization of such functions is often a non-trivial task given their combinatorial, black-box and expensive-to-evaluate nature. Although various algorithms have been introduced in the literature, most are either task-specific or computationally inefficient and only utilize information about the graph structure without considering the characteristics of the function. To address these limitations, we utilize Bayesian Optimization (BO), a sample-efficient black-box solver, and propose a novel framework for combinatorial optimization on graphs. More specifically, we map each $k$-node subset in the original graph to a node in a new combinatorial graph and adopt a local modeling approach to efficiently traverse the latter graph by progressively sampling its subgraphs using a recursive algorithm. Extensive experiments under both synthetic and real-world setups demonstrate the effectiveness of the proposed BO framework on various types of graphs and optimization tasks, where its behavior is analyzed in detail with ablation studies.
Poster
Batuhan Tömekçe · Mark Vero · Robin Staab · Martin Vechev

[ West Ballroom A-D ]

Abstract
As large language models (LLMs) become ubiquitous in our daily tasks and digital interactions, associated privacy risks are increasingly in focus. While LLM privacy research has primarily focused on the leakage of model training data, it has recently been shown that LLMs can make accurate privacy-infringing inferences from previously unseen texts. With the rise of vision-language models (VLMs), capable of understanding both images and text, a key question is whether this concern transfers to the previously unexplored domain of benign images posted online. To answer this question, we compile an image dataset with human-annotated labels of the image owner's personal attributes. In order to understand the privacy risks posed by VLMs beyond traditional human attribute recognition, our dataset consists of images where the inferable private attributes do not stem from direct depictions of humans. On this dataset, we evaluate 7 state-of-the-art VLMs, finding that they can infer various personal attributes at up to 77.6% accuracy. Concerningly, we observe that accuracy scales with the general capabilities of the models, implying that future models can be misused as stronger inferential adversaries, establishing an imperative for the development of adequate defenses.
Poster
Mishaal Kazmi · Hadrien Lautraite · Alireza Akbari · Qiaoyue Tang · Mauricio Soroco · Tao Wang · Sébastien Gambs · Mathias Lécuyer

[ West Ballroom A-D ]

Abstract
We present PANORAMIA, a privacy leakage measurement framework for machine learning models that relies on membership inference attacks using generated data as non-members. By relying on generated non-member data, PANORAMIA eliminates the common dependency of privacy measurement tools on in-distribution non-member data. As a result, PANORAMIA does not modify the model, training data, or training process, and only requires access to a subset of the training data. We evaluate PANORAMIA on ML models for image and tabular data classification, as well as on large-scale language models.
Poster
Yanxiao Liu · Wei-Ning Chen · Ayfer Ozgur · Cheuk Ting Li

[ West Ballroom A-D ]

Abstract
To reduce the communication cost of differential privacy mechanisms, we introduce a novel construction, called Poisson private representation (PPR), designed to compress and simulate any local randomizer while ensuring local differential privacy. Unlike previous simulation-based local differential privacy mechanisms, PPR exactly preserves the joint distribution of the data and the output of the original local randomizer. Hence, the PPR-compressed privacy mechanism retains all desirable statistical properties of the original privacy mechanism such as unbiasedness and Gaussianity. Moreover, PPR achieves a compression size within a logarithmic gap from the theoretical lower bound. Using the PPR, we give a new order-wise trade-off between communication, accuracy, central and local differential privacy for distributed mean estimation. Experiment results on distributed mean estimation show that PPR consistently gives a better trade-off between communication, accuracy and central differential privacy compared to the coordinate subsampled Gaussian mechanism, while also providing local differential privacy.
Poster
Pratiksha Thaker · Amrith Setlur · Steven Wu · Virginia Smith

[ West Ballroom A-D ]

Abstract
Public pretraining is a promising approach to improve differentially private model training. However, recent work has noted that many positive research results studying this paradigm only consider in-distribution tasks, and may not apply to settings where there is distribution shift between the pretraining and finetuning data---a scenario that is likely when finetuning private tasks due to the sensitive nature of the data. In this work, we show empirically across three tasks that even in settings with large distribution shift, where both zero-shot performance from public data and training from scratch with private data give unusably weak results, public features can in fact improve private training accuracy by up to 67\% over private training from scratch. We provide a theoretical explanation for this phenomenon, showing that if the public and private data share a low-dimensional representation, public representations can improve the sample complexity of private training even if it is \emph{impossible} to learn the private task from the public data alone. Altogether, our results provide evidence that public data can indeed make private training practical in realistic settings of extreme distribution shift.
Poster
Jialin Chen · Jan Eric Lenssen · Aosong Feng · Weihua Hu · Matthias Fey · Leandros Tassiulas · Jure Leskovec · Rex Ying

[ West Ballroom A-D ]

Abstract
Time series forecasting has attracted significant attention in recent decades. Previous studies have demonstrated that the Channel-Independent (CI) strategy improves forecasting performance by treating different channels individually, while it leads to poor generalization on unseen instances and ignores potentially necessary interactions between channels. Conversely, the Channel-Dependent (CD) strategy mixes all channels with even irrelevant and indiscriminate information, which, however, results in oversmoothing issues and limits forecasting accuracy. There is a lack of channel strategy that effectively balances individual channel treatment for improved forecasting performance without overlooking essential interactions between channels. Motivated by our observation of a correlation between the time series model's performance boost against channel mixing and the intrinsic similarity on a pair of channels, we developed a novel and adaptable \textbf{C}hannel \textbf{C}lustering \textbf{M}odule (CCM). CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities, combining the best of CD and CI worlds. Extensive experiments on real-world datasets demonstrate that CCM can (1) boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively; (2) enable zero-shot forecasting with mainstream time series forecasting models; (3) uncover intrinsic time series patterns among …
Spotlight Poster
Junghyuk Yeom · Yonghyeon Jo · Jeongmo Kim · Sanghyeon Lee · Seungyul Han

[ West Ballroom A-D ]

Abstract
Constraint-based offline reinforcement learning (RL) involves policy constraints or imposing penalties on the value function to mitigate overestimation errors caused by distributional shift. This paper focuses on a limitation in existing offline RL methods with penalized value function, indicating the potential for underestimation bias due to unnecessary bias introduced in the value function. To address this concern, we propose Exclusively Penalized Q-learning (EPQ), which reduces estimation bias in the value function by selectively penalizing states that are prone to inducing estimation errors. Numerical results show that our method significantly reduces underestimation bias and improves performance in various offline control tasks compared to other offline RL methods.
Poster
Joseph Ortiz · Antoine Dedieu · Wolfgang Lehrach · J Swaroop Guntupalli · Carter Wendelken · Ahmad Humayun · Sivaramakrishnan Swaminathan · Guangyao Zhou · Miguel Lazaro-Gredilla · Kevin Murphy

[ West Ballroom A-D ]

Abstract
Learning from previously collected data via behavioral cloning or offline reinforcement learning (RL) is a powerful recipe for scaling generalist agents by avoiding the need for expensive online learning. Despite strong generalization in some respects, agents are often remarkably brittle to minor visual variations in control-irrelevant factors such as the background or camera viewpoint. In this paper, we present theDeepMind Control Visual Benchmark (DMC-VB), a dataset collected in the DeepMind Control Suite to evaluate the robustness of offline RL agents for solving continuous control tasks from visual input in the presence of visual distractors. In contrast to prior works, our dataset (a) combines locomotion and navigation tasks of varying difficulties, (b) includes static and dynamic visual variations, (c) considers data generated by policies with different skill levels, (d) systematically returns pairs of state and pixel observation, (e) is an order of magnitude larger, and (f) includes tasks with hidden goals. Accompanying our dataset, we propose three benchmarks to evaluate representation learning methods for pretraining, and carry out experiments on several recently proposed methods. First, we find that pretrained representations do not help policy learning on DMC-VB, and we highlight a large representation gap between policies learned on pixel observations and …
Poster
Xinwei Zhang · Zhiqi Bu · Mingyi Hong · Meisam Razaviyayn

[ West Ballroom A-D ]

Abstract
Privacy is a growing concern in modern deep-learning systems and applications. Differentially private (DP) training prevents the leakage of sensitive information in the collected training data from the trained machine learning models. DP optimizers, including DP stochastic gradient descent (DPSGD) and its variants, privatize the training procedure by gradient clipping and *DP noise* injection. However, in practice, DP models trained using DPSGD and its variants often suffer from significant model performance degradation. Such degradation prevents the application of DP optimization in many key tasks, such as foundation model pretraining. In this paper, we provide a novel *signal processing perspective* to the design and analysis of DP optimizers. We show that a ''frequency domain'' operation called *low-pass filtering* can be used to effectively reduce the impact of DP noise. More specifically, by defining the ''frequency domain'' for both the gradient and differential privacy (DP) noise, we have developed a new component, called DOPPLER. This component is designed for DP algorithms and works by effectively amplifying the gradient while suppressing DP noise within this frequency domain. As a result, it maintains privacy guarantees and enhances the quality of the DP-protected model. Our experiments show that the proposed DP optimizers with a low-pass …
Poster
Or Sheffet · Daniel Omer

[ West Ballroom A-D ]

Abstract
We present the first algorithm for testing equivalence between two continuous distributions using differential privacy (DP). Our algorithm is a private version of the algorithm of Diakonikolas et al. The algorithm of Diakonikolas et al uses the data itself to repeatedly discretize the real line so that --- when the two distributions are far apart in ${\cal A}_k$-norm --- one of the discretized distributions exhibits large $L_2$-norm difference; and upon repeated sampling such large gap would be detected. Designing its private analogue poses two difficulties. First, our DP algorithm can not resample new datapoints as a change to a single datapoint may lead to a very large change in the descretization of the real line. In contrast, the (sorted) index of the discretization point changes only by $1$ between neighboring instances, and so we use a novel algorithm that set the discretization points using random Bernoulli noise, resulting in only a few buckets being affected under the right coupling. Second, our algorithm, which doesn't resample data, requires we also revisit the utility analysis of the original algorithm and prove its correctness w.r.t. the original sorted data; a problem we tackle using sampling a subset of Poisson-drawn size from each discretized …
Poster
Daizong Liu · Mingyu Yang · Xiaoye Qu · Pan Zhou · Xiang Fang · Keke Tang · Yao Wan · Lichao Sun

[ West Ballroom A-D ]

Abstract
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding tasks. Nevertheless, these models are susceptible to adversarial examples. In real-world applications, existing LVLM attackers generally rely on the detailed prior knowledge of the model to generate effective perturbations. Moreover, these attacks are task-specific, leading to significant costs for designing perturbation. Motivated by the research gap and practical demands, in this paper, we make the first attempt to build a universal attacker against real-world LVLMs, focusing on two critical aspects: (i) restricting access to only the LVLM inputs and outputs. (ii) devising a universal adversarial patch, which is task-agnostic and can deceive any LVLM-driven task when applied to various inputs. Specifically, we start by initializing the location and the pattern of the adversarial patch through random sampling, guided by the semantic distance between their output and the target label. Subsequently, we maintain a consistent patch location while refining the pattern to enhance semantic resemblance to the target. In particular, our approach incorporates a diverse set of LVLM task inputs as query samples to approximate the patch gradient, capitalizing on the importance of distinct inputs. In this way, the optimized patch is universally adversarial against different …
Poster
Hilal Asi · Tomer Koren · Daogao Liu · Kunal Talwar

[ West Ballroom A-D ]

Abstract
We study the problem of private online learning, specifically, online prediction from experts (OPE) and online convex optimization (OCO). We propose a new transformation that transforms lazy online learning algorithms into private algorithms. We apply our transformation for differentially private OPE and OCO using existing lazy algorithms for these problems. Our final algorithms obtain regret which significantly improves the regret in the high privacy regime $\varepsilon \ll 1$, obtaining $\sqrt{T \log d} + T^{1/3} \log(d)/\varepsilon^{2/3}$ for DP-OPE and $\sqrt{T} + T^{1/3} \sqrt{d}/\varepsilon^{2/3}$ for DP-OCO. We also complement our results with a lower bound for DP-OPE, showing that these rates are optimal for a natural family of low-switching private algorithms.
Poster
Mahdi Haghifam · Thomas Steinke · Jonathan Ullman

[ West Ballroom A-D ]

Abstract
In this paper, we study differentially private (DP) algorithms for computing the geometric median (GM) of a dataset: Given $n$ points, $x_1,\dots,x_n$ in $\mathbb{R}^d$, the goal is to find a point $\theta$ that minimizes the sum of the Euclidean distances to these points, i.e., $\sum_{i=1}^{n} \lVert|\theta - x_i\rVert_2$. Off-the-shelf methods, such as DP-GD, require strong a priori knowledge locating the data within a ball of radius $R$, and the excess risk of the algorithm depends linearly on $R$. In this paper, we ask: can we design an efficient and private algorithm with an excess error guarantee that scales with the (unknown) radius containing the majority of the datapoints? Our main contribution is a pair of polynomial-time DP algorithms for the task of private GM with an excess error guarantee that scales with the effective diameter of the datapoints. Additionally, we propose an inefficient algorithm based on the inverse smooth sensitivity mechanism, which satisfies the more restrictive notion of pure DP. We complement our results with a lower bound and demonstrate the optimality of our polynomial-time algorithms in terms of sample complexity.
Poster
Hanlin Gu · WinKent Ong · Chee Seng Chan · Lixin Fan

[ West Ballroom A-D ]

Abstract
The advent of Federated Learning (FL) highlights the practical necessity for the ’right to be forgotten’ for all clients, allowing them to request data deletion from the machine learning model’s service provider. This necessity has spurred a growing demand for Federated Unlearning (FU). Feature unlearning has gained considerable attention due to its applications in unlearning sensitive, backdoor, and biased features. Existing methods employ the influence function to achieve feature unlearning, which is impractical for FL as it necessitates the participation of other clients, if not all, in the unlearning process. Furthermore, current research lacks an evaluation of the effectiveness of feature unlearning. To address these limitations, we define feature sensitivity in evaluating feature unlearning according to Lipschitz continuity. This metric characterizes the model output’s rate of change or sensitivity to perturbations in the input feature. We then propose an effective federated feature unlearning framework called Ferrari, which minimizes feature sensitivity. Extensive experimental results and theoretical analysis demonstrate the effectiveness of Ferrari across various feature unlearning scenarios, including sensitive, backdoor, and biased features. The code is publicly available at https://github.com/OngWinKent/Federated-Feature-Unlearning
Poster
Tianshi Xu · Lemeng Wu · Runsheng Wang · Meng Li

[ West Ballroom A-D ]

Abstract
Homomorphic encryption (HE)-based deep neural network (DNN) inference protects data and model privacy but suffers from significant computation overhead. We observe transforming the DNN weights into circulant matrices converts general matrix-vector multiplications into HE-friendly 1-dimensional convolutions, drastically reducing the HE computation cost. Hence, in this paper, we propose PrivCirNet, a protocol/network co-optimization framework based on block circulant transformation. At the protocol level, PrivCirNet customizes the HE encoding algorithm that is fully compatible with the block circulant transformation and reduces the computation latency in proportion to the block size. At the network level, we propose a latency-aware formulation to search for the layer-wise block size assignment based on second-order information. PrivCirNet also leverages layer fusion to further reduce the inference cost. We compare PrivCirNet with the state-of-the-art HE-based framework Bolt (IEEE S\&P 2024) and HE-friendly pruning method SpENCNN (ICML 2023). For ResNet-18 and Vision Transformer (ViT) on Tiny ImageNet, PrivCirNet reduces latency by $5.0\times$ and $1.3\times$ with iso-accuracy over Bolt, respectively, and improves accuracy by $4.1$\% and $12$\% over SpENCNN, respectively. For MobileNetV2 on ImageNet, PrivCirNet achieves $1.7\times$ lower latency and $4.2$\% better accuracy over Bolt and SpENCNN, respectively. Our code and checkpoints are available on Git Hub.
Poster
Wenjie Fu · Huandong Wang · Chen Gao · Guanghua Liu · Yong Li · Tao Jiang

[ West Ballroom A-D ]

Abstract
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs. Thus, these reasons lead to high false-positive rates of MIAs in practical scenarios.We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA). Specifically, we introduce a self-prompt approach, which constructs the dataset to fine-tune the reference model by prompting the target LLM itself. In this manner, the adversary can collect a dataset with a similar distribution from public APIs.Furthermore, we introduce probabilistic variation, a more reliable membership signal based on LLM memorization rather than overfitting, from which we rediscover the …
Poster
ZhenTing Liu · ShangTse Chen

[ West Ballroom A-D ]

Abstract
Model Inversion (MI) attacks pose a significant threat to the privacy of Deep Neural Networks by recovering training data distribution from well-trained models. While existing defenses often rely on regularization techniques to reduce information leakage, they remain vulnerable to recent attacks. In this paper, we propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI attacks. A trapdoor is integrated into the model to predict a specific label when the input is injected with the corresponding trigger. Consequently, this trapdoor information serves as the "shortcut" for MI attacks, leading them to extract trapdoor triggers rather than private data. We provide theoretical insights into the impacts of trapdoor's effectiveness and naturalness on deceiving MI attacks. In addition, empirical experiments demonstrate the state-of-the-art defense performance of Trap-MID against various MI attacks without the requirements for extra data or large computational overhead. Our source code is publicly available at https://github.com/ntuaislab/Trap-MID.
Poster
Jeonghye Kim · Suyoung Lee · Woojun Kim · Youngchul Sung

[ West Ballroom A-D ]

Abstract
Offline reinforcement learning (RL) has progressed with return-conditioned supervised learning (RCSL), but its lack of stitching ability remains a limitation. We introduce $Q$-Aided Conditional Supervised Learning (QCS), which effectively combines the stability of RCSL with the stitching capability of $Q$-functions. By analyzing $Q$-function over-generalization, which impairs stable stitching, QCS adaptively integrates $Q$-aid into RCSL's loss function based on trajectory return. Empirical results show that QCS significantly outperforms RCSL and value-based methods, consistently achieving or exceeding the highest trajectory returns across diverse offline RL benchmarks. QCS represents a breakthrough in offline RL, pushing the limits of what can be achieved and fostering further innovations.
Poster
Yuanlin Duan · Guofeng Cui · He Zhu

[ West Ballroom A-D ]

Abstract
Exploring unknown environments efficiently is a fundamental challenge in unsupervised goal-conditioned reinforcement learning. While selecting exploratory goals at the frontier of previously explored states is an effective strategy, the policy during training may still have limited capability of reaching rare goals on the frontier, resulting in reduced exploratory behavior. We propose "Cluster Edge Exploration" (CE$^2$), a new goal-directed exploration algorithm that when choosing goals in sparsely explored areas of the state space gives priority to goal states that remain accessible to the agent. The key idea is clustering to group states that are easily reachable from one another by the current policy under training in a latent space, and traversing to states holding significant exploration potential on the boundary of these clusters before doing exploratory behavior. In challenging robotics environments including navigating a maze with a multi-legged ant robot, manipulating objects with a robot arm on a cluttered tabletop, and rotating objects in the palm of an anthropomorphic robotic hand, CE$^2$ demonstrates superior efficiency in exploration compared to baseline methods and ablations.
Poster
Yang Cai · Xiangyu Liu · Argyris Oikonomou · Kaiqing Zhang

[ West Ballroom A-D ]

Abstract
Partial observability of the underlying states generally presents significant challenges for reinforcement learning (RL). In practice, certain *privileged information* , e.g., the access to states from simulators, has been exploited in training and achieved prominent empirical successes. To better understand the benefits of privileged information, we revisit and examine several simple and practically used paradigms in this setting, with both computation and sample efficiency analyses. Specifically, we first formalize the empirical paradigm of *expert distillation* (also known as *teacher-student* learning), demonstrating its pitfall in finding near-optimal policies. We then identify a condition of the partially observable environment, the deterministic filter condition, under which expert distillation achieves sample and computational complexities that are *both* polynomial. Furthermore, we investigate another successful empirical paradigm of *asymmetric actor-critic*, and focus on the more challenging setting of observable partially observable Markov decision processes. We develop a belief-weighted optimistic asymmetric actor-critic algorithm with polynomial sample and quasi-polynomial computational complexities, where one key component is a new provable oracle for learning belief states that preserve *filter stability* under a misspecified model, which may be of independent interest. Finally, we also investigate the provable efficiency of partially observable multi-agent RL (MARL) with privileged information. We develop algorithms with …
Poster
Allen Nie · Yash Chandak · Christina Yuan · Anirudhan Badrinath · Yannis Flet-Berliac · Emma Brunskill

[ West Ballroom A-D ]

Abstract
Offline policy evaluation (OPE) allows us to evaluate and estimate a new sequential decision-making policy's performance by leveraging historical interaction data collected from other policies. Evaluating a new policy online without a confident estimate of its performance can lead to costly, unsafe, or hazardous outcomes, especially in education and healthcare. Several OPE estimators have been proposed in the last decade, many of which have hyperparameters and require training. Unfortunately, choosing the best OPE algorithm for each task and domain is still unclear. In this paper, we propose a new algorithm that adaptively blends a set of OPE estimators given a dataset without relying on an explicit selection using a statistical procedure. We prove that our estimator is consistent and satisfies several desirable properties for policy evaluation. Additionally, we demonstrate that when compared to alternative approaches, our estimator can be used to select higher-performing policies in healthcare and robotics. Our work contributes to improving ease of use for a general-purpose, estimator-agnostic, off-policy evaluation framework for offline RL.
Poster
Qi Wang · Junming Yang · Yunbo Wang · Xin Jin · Wenjun Zeng · Xiaokang Yang

[ West Ballroom A-D ]

Abstract
Training offline RL models using visual inputs poses two significant challenges, *i.e.*, the overfitting problem in representation learning and the overestimation bias for expected future rewards. Recent work has attempted to alleviate the overestimation bias by encouraging conservative behaviors. This paper, in contrast, tries to build more flexible constraints for value estimation without impeding the exploration of potential advantages. The key idea is to leverage off-the-shelf RL simulators, which can be easily interacted with in an online manner, as the “*test bed*” for offline policies. To enable effective online-to-offline knowledge transfer, we introduce CoWorld, a model-based RL approach that mitigates cross-domain discrepancies in state and reward spaces. Experimental results demonstrate the effectiveness of CoWorld, outperforming existing RL approaches by large margins.
Poster
Pranav Singh Chib · Pravendra Singh

[ West Ballroom A-D ]

Abstract
Pedestrian trajectory prediction is crucial for several applications such as robotics and self-driving vehicles. Significant progress has been made in the past decade thanks to the availability of pedestrian trajectory datasets, which enable trajectory prediction methods to learn from pedestrians' past movements and predict future trajectories. However, these datasets and methods typically assume that the observed trajectory sequence is complete, ignoring real-world issues such as sensor failure, occlusion, and limited fields of view that can result in missing values in observed trajectories. To address this challenge, we present TrajImpute, a pedestrian trajectory prediction dataset that simulates missing coordinates in the observed trajectory, enhancing real-world applicability. TrajImpute maintains a uniform distribution of missing data within the observed trajectories. In this work, we comprehensively examine several imputation methods to reconstruct the missing coordinates and benchmark them for imputing pedestrian trajectories. Furthermore, we provide a thorough analysis of recent trajectory prediction methods and evaluate the performance of these models on the imputed trajectories. Our experimental evaluation of the imputation and trajectory prediction methods offers several valuable insights. Our dataset provides a foundational resource for future research on imputation-aware pedestrian trajectory prediction, potentially accelerating the deployment of these methods in real-world applications. Publicly accessible …
Spotlight Poster
Otmane Sakhi · Imad Aouali · Pierre Alquier · Nicolas Chopin

[ West Ballroom A-D ]

Abstract
This work investigates the offline formulation of the contextual bandit problem, where the goal is to leverage past interactions collected under a behavior policy to evaluate, select, and learn new, potentially better-performing, policies. Motivated by critical applications, we move beyond point estimators. Instead, we adopt the principle of _pessimism_ where we construct upper bounds that assess a policy's worst-case performance, enabling us to confidently select and learn improved policies. Precisely, we introduce novel, fully empirical concentration bounds for a broad class of importance weighting risk estimators. These bounds are general enough to cover most existing estimators and pave the way for the development of new ones. In particular, our pursuit of the tightest bound within this class motivates a novel estimator (LS), that _logarithmically smoothes_ large importance weights. The bound for LS is provably tighter than its competitors, and naturally results in improved policy selection and learning strategies. Extensive policy evaluation, selection, and learning experiments highlight the versatility and favorable performance of LS.
Poster
Alexander Nikulin · Vladislav Kurenkov · Ilya Zisman · Artem Agarkov · Viacheslav Sinii · Sergey Kolesnikov

[ West Ballroom A-D ]

Abstract
Inspired by the diversity and depth of XLand and the simplicity and minimalism of MiniGrid, we present XLand-MiniGrid, a suite of tools and grid-world environments for meta-reinforcement learning research. Written in JAX, XLand-MiniGrid is designed to be highly scalable and can potentially run on GPU or TPU accelerators, democratizing large-scale experimentation with limited resources. Along with the environments, XLand-MiniGrid provides pre-sampled benchmarks with millions of unique tasks of varying difficulty and easy-to-use baselines that allow users to quickly start training adaptive agents. In addition, we have conducted a preliminary analysis of scaling and generalization, showing that our baselines are capable of reaching millions of steps per second during training and validating that the proposed benchmarks are challenging. XLand-MiniGrid is open-source and available at \url{https://github.com/corl-team/xland-minigrid}.
Poster
Hongyao Tang · Min Zhang · Chen Chen · Jianye Hao

[ West Ballroom A-D ]

Abstract
Knowing the learning dynamics of policy is significant to unveiling the mysteries of Reinforcement Learning (RL). It is especially crucial yet challenging to Deep RL, from which the remedies to notorious issues like sample inefficiency and learning instability could be obtained. In this paper, we study how the policy networks of typical DRL agents evolve during the learning process by empirically investigating several kinds of temporal change for each policy parameter. In popular MuJoCo and DeepMind Control Suite (DMC) environments, we find common phenomena for TD3 and RAD agents: (1) the activity of policy network parameters is highly asymmetric and policy networks advance monotonically along a very limited number of major parameter directions; (2) severe detours occur in parameter update and harmonic-like changes are observed for all minor parameter directions. By performing a novel temporal SVD along the policy learning path, the major and minor parameter directions are identified as the columns of the right unitary matrix associated with dominant and insignificant singular values respectively. Driven by the discoveries above, we propose a simple and effective method, called Policy Path Trimming and Boosting (PPTB), as a general plug-in improvement to DRL algorithms. The key idea of PPTB is to trim …
Poster
HYUNSEUNG KIM · BYUNG KUN LEE · Hojoon Lee · Dongyoon Hwang · Donghu Kim · Jaegul Choo

[ West Ballroom A-D ]

Abstract
Unsupervised skill discovery is a learning paradigm that aims to acquire diverse behaviors without explicit rewards. However, it faces challenges in learning complex behaviors and often leads to learning unsafe or undesirable behaviors. For instance, in various continuous control tasks, current unsupervised skill discovery methods succeed in learning basic locomotions like standing but struggle with learning more complex movements such as walking and running. Moreover, they may acquire unsafe behaviors like tripping and rolling or navigate to undesirable locations such as pitfalls or hazardous areas. In response, we present **DoDont** (Do’s and Dont’s), an instruction-based skill discovery algorithm composed of two stages. First, in instruction learning stage, DoDont leverages action-free instruction videos to train an instruction network to distinguish desirable transitions from undesirable ones. Then, in the skill learning stage, the instruction network adjusts the reward function of the skill discovery algorithm to weight the desired behaviors. Specifically, we integrate the instruction network into a distance-maximizing skill discovery algorithm, where the instruction network serves as the distance function. Empirically, with less than 8 instruction videos, DoDont effectively learns desirable behaviors and avoids undesirable ones across complex continuous control tasks. Code and videos are available at https://mynsng.github.io/dodont/
Poster
Xianghua Zeng · Hao Peng · Angsheng Li

[ West Ballroom A-D ]

Abstract
Traditional information theory provides a valuable foundation for Reinforcement Learning (RL), particularly through representation learning and entropy maximiza tion for agent exploration. However, existing methods primarily concentrate on modeling the uncertainty associated with RL’s random variables, neglecting the in herent structure within the state and action spaces. In this paper, we propose a novel Structural Information principles-based Effective Exploration framework, namely SI2E. Structural mutual information between two variables is defined to address the single-variable limitation in structural information, and an innovative embedding principle is presented to capture dynamics-relevant state-action representations. The SI2E analyzes value differences in the agent’s policy between state-action pairs and minimizes structural entropy to derive the hierarchical state-action struc ture, referred to as the encoding tree. Under this tree structure, value-conditional structural entropy is defined and maximized to design an intrinsic reward mechanism that avoids redundant transitions and promotes enhanced coverage in the state-action space. Theoretical connections are established between SI2E and classical information-theoretic methodologies, highlighting our framework’s rationality and advantage. Comprehensive evaluations in the MiniGrid, MetaWorld, and DeepMind Control Suite benchmarks demonstrate that SI2E significantly outperforms state-of-the-art exploration baselines regarding final performance and sample efficiency, with maximum improvements of 37.63% and 60.25%, respectively.
Poster
Hongming Zhang · Chenjun Xiao · Chao Gao · Han Wang · bo xu · Martin Müller

[ West Ballroom A-D ]

Abstract
Reinforcement learning (RL) algorithms are typically based on optimizing a Markov Decision Process (MDP) using the optimal Bellman equation. Recent studies have revealed that focusing the optimization of Bellman equations solely on in-sample actions tends to result in more stable optimization, especially in the presence of function approximation. Upon on these findings, in this paper, we propose an Empirical MDP Iteration (EMIT) framework. EMIT constructs a sequence of empirical MDPs using data from the growing replay memory. For each of these empirical MDPs, it learns an estimated Q-function denoted as $\widehat{Q}$. The key strength is that by restricting the Bellman update to in-sample bootstrapping, each empirical MDP converges to a unique optimal $\widehat{Q}$ function. Furthermore, gradually expanding from the empirical MDPs to the original MDP induces a monotonic policy improvement. Instead of creating entirely new algorithms, we demonstrate that EMIT can be seamlessly integrated with existing online RL algorithms, effectively acting as a regularizer for contemporary Q-learning methods. We show this by implementing EMIT for two representative RL algorithms, DQN and TD3. Experimental results on Atari and MuJoCo benchmarks show that EMIT significantly reduces estimation errors and substantially improves the performance of both algorithms.
Poster
Miles Hutson · Isaac Kauvar · Nick Haber

[ West Ballroom A-D ]

Abstract
Model-based reinforcement learning (MBRL) is a promising route to sample-efficient policy optimization. However, a known vulnerability of reconstruction-based MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods ---including DreamerV3 and DreamerPro--- with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through a synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.
Spotlight Poster
Michal Nauman · Mateusz Ostaszewski · Krzysztof Jankowski · Piotr Miłoś · Marek Cygan

[ West Ballroom A-D ]

Abstract
Sample efficiency in Reinforcement Learning (RL) has traditionally been driven by algorithmic enhancements. In this work, we demonstrate that scaling can also lead to substantial improvements. We conduct a thorough investigation into the interplay of scaling model capacity and domain-specific RL enhancements. These empirical findings inform the design choices underlying our proposed BRO (Bigger, Regularized, Optimistic) algorithm. The key innovation behind BRO is that strong regularization allows for effective scaling of the critic networks, which, paired with optimistic exploration, leads to superior performance. BRO achieves state-of-the-art results, significantly outperforming the leading model-based and model-free algorithms across 40 complex tasks from the DeepMind Control, MetaWorld, and MyoSuite benchmarks. BRO is the first model-free algorithm to achieve near-optimal policies in the notoriously challenging Dog and Humanoid tasks.
Poster
Alexander Bukharin · Ilgee Hong · Haoming Jiang · Zichong Li · Qingru Zhang · Zixuan Zhang · Tuo Zhao

[ West Ballroom A-D ]

Abstract
Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data. For various reasons, e.g., personal bias, context ambiguity, lack of training, etc, human annotators may give incorrect or inconsistent preference labels. To tackle this challenge, we propose a robust RLHF approach -- $R^3M$, which models the potentially corrupted preference label as sparse outliers. Accordingly, we formulate the robust reward learning as an $\ell_1$-regularized maximum likelihood estimation problem. Computationally, we develop an efficient alternating optimization algorithm, which only incurs negligible computational overhead compared with the standard RLHF approach. Theoretically, we prove that under proper regularity conditions, $R^3M$ can consistently learn the underlying reward and identify outliers, provided that the number of outlier labels scales sublinearly with the preference sample size. Furthermore, we remark that $R^3M$ is versatile and can be extended to various preference optimization methods, including direct preference optimization (DPO). Our experiments on robotic control and natural language generation with large language models (LLMs) show that $R^3M$ improves robustness of the reward against several types of perturbations to the preference data.
Poster
Wesley Chung · Lynn Cherif · Doina Precup · David Meger

[ West Ballroom A-D ]

Abstract
Plasticity loss, trainability loss, and primacy bias have been identified as issues arising when training deep neural networks on sequences of tasks---referring to the increased difficulty in training on new tasks.We propose to use Parseval regularization, which maintains orthogonality of weight matrices, to preserve useful optimization properties and improve training in a continual reinforcement learning setting.We show that it provides significant benefits to RL agents on a suite of gridworld, CARL and MetaWorld tasks.We conduct comprehensive ablations to identify the source of its benefits and investigate the effect of certain metrics associated to network trainability including weight matrix rank, weight norms and policy entropy.
Poster
Jake Grigsby · Justin Sasek · Samyak Parajuli · Ikechukwu D. Adebi · Amy Zhang · Yuke Zhu

[ West Ballroom A-D ]

Abstract
Language models trained on diverse datasets unlock generalization by in-context learning. Reinforcement Learning (RL) policies can achieve a similar effect by meta-learning within the memory of a sequence model. However, meta-RL research primarily focuses on adapting to minor variations of a single task. It is difficult to scale towards more general behavior without confronting challenges in multi-task optimization, and few solutions are compatible with meta-RL's goal of learning from large training sets of unlabeled tasks. To address this challenge, we revisit the idea that multi-task RL is bottlenecked by imbalanced training losses created by uneven return scales across different tasks. We build upon recent advancements in Transformer-based (in-context) meta-RL and evaluate a simple yet scalable solution where both an agent's actor and critic objectives are converted to classification terms that decouple optimization from the current scale of returns. Large-scale comparisons in Meta-World ML45, Multi-Game Procgen, Multi-Task POPGym, Multi-Game Atari, and BabyAI find that this design unlocks significant progress in online multi-task adaptation and memory problems without explicit task labels.
Spotlight Poster
Eloi Alonso · Adam Jelley · Vincent Micheli · Anssi Kanervisto · Amos Storkey · Tim Pearce · François Fleuret

[ West Ballroom A-D ]

Abstract
World models constitute a promising approach for training reinforcement learning agents in a safe and sample-efficient manner. Recent world models predominantly operate on sequences of discrete latent variables to model environment dynamics. However, this compression into a compact discrete representation may ignore visual details that are important for reinforcement learning. Concurrently, diffusion models have become a dominant approach for image generation, challenging well-established methods modeling discrete latents. Motivated by this paradigm shift, we introduce DIAMOND (DIffusion As a Model Of eNvironment Dreams), a reinforcement learning agent trained in a diffusion world model. We analyze the key design choices that are required to make diffusion suitable for world modeling, and demonstrate how improved visual details can lead to improved agent performance. DIAMOND achieves a mean human normalized score of 1.46 on the competitive Atari 100k benchmark; a new best for agents trained entirely within a world model. We further demonstrate that DIAMOND's diffusion world model can stand alone as an interactive neural game engine by training on static *Counter-Strike: Global Offensive* gameplay. To foster future research on diffusion for world modeling, we release our code, agents, videos and playable world models at https://diamond-wm.github.io.
Spotlight Poster
Weikang Wan · Ziyu Wang · Yufei Wang · Zackory Erickson · David Held

[ West Ballroom A-D ]

Abstract
This paper introduces DiffTORI, which utilizes $\textbf{Diff}$erentiable $\textbf{T}$rajectory $\textbf{O}$ptimization as the policy representation to generate actions for deep $\textbf{R}$einforcement and $\textbf{I}$mitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the “objective mismatch” issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feedforward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains.
Poster
Ilgee Hong · Zichong Li · Alexander Bukharin · Yixiao Li · Haoming Jiang · Tianbao Yang · Tuo Zhao

[ West Ballroom A-D ]

Abstract
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values by learning rewards from human preference data. Due to various reasons, however, such data typically takes the form of rankings over pairs of trajectory segments, which fails to capture the varying strengths of preferences across different pairs. In this paper, we propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO), designed to address this uncertainty in preference strength. By incorporating an adaptive scaling parameter into the loss for each pair, our method increases the flexibility of the reward function. Specifically, it assigns small scaling parameters to pairs with ambiguous preferences, leading to more comparable rewards, and large scaling parameters to those with clear preferences for more distinct rewards. Computationally, our proposed loss function is strictly convex and univariate with respect to each scaling parameter, enabling its efficient optimization through a simple second-order algorithm. Our method is versatile and can be readily adapted to various preference optimization frameworks, including direct preference optimization (DPO). Our experiments with robotic control and natural language generation with large language models (LLMs) show that our method not only improves policy performance but also aligns reward function …
Poster
Yu-An Lin · Chen-Tao Lee · Chih-Han Yang · Guan-Ting Liu · Shao-Hua Sun

[ West Ballroom A-D ]

Abstract
Deep reinforcement learning aims to learn deep neural network policies to solve large-scale decision-making problems. However, approximating policies using deep neural networks makes it difficult to interpret the learned decision-making process. To address this issue, prior works (Trivedi et al., 2021; Liu et al., 2023; Carvalho et al., 2024) proposed to use human-readable programs as policies to increase the interpretability of the decision-making pipeline. Nevertheless, programmatic policies generated by these methods struggle to effectively solve long and repetitive RL tasks and cannot generalize to even longer horizons during testing. To solve these problems, we propose the Hierarchical Programmatic Option framework (HIPO), which aims to solve long and repetitive RL problems with human-readable programs as options (low-level policies). Specifically, we propose a method that retrieves a set of effective, diverse, and compatible programs as options. Then, we learn a high-level policy to effectively reuse these programmatic options to solve reoccurring subtasks. Our proposed framework outperforms programmatic RL and deep RL baselines on various tasks. Ablation studies justify the effectiveness of our proposed search algorithm for retrieving a set of programmatic options.
Poster
Gautham Vasan · Mohamed Elsayed · Seyed Alireza Azimi · Jiamin He · Fahim Shahriar · Colin Bellinger · Martha White · Rupam Mahmood

[ West Ballroom A-D ]

Abstract
Modern deep policy gradient methods achieve effective performance on simulated robotic tasks, but they all require large replay buffers or expensive batch updates, or both, making them incompatible for real systems with resource-limited computers. We show that these methods fail catastrophically when limited to small replay buffers or during *incremental learning*, where updates only use the most recent sample without batch updates or a replay buffer. We propose a novel incremental deep policy gradient method --- *Action Value Gradient (AVG)* and a set of normalization and scaling techniques to address the challenges of instability in incremental learning. On robotic simulation benchmarks, we show that AVG is the only incremental method that learns effectively, often achieving final performance comparable to batch policy gradient methods. This advancement enabled us to show for the first time effective deep reinforcement learning with real robots using only incremental updates, employing a robotic manipulator and a mobile robot.
Poster
Tianjiao Luo · Tim Pearce · Huayu Chen · Jianfei Chen · Jun Zhu

[ West Ballroom A-D ]

Abstract
Generative Adversarial Imitation Learning (GAIL) provides a promising approach to training a generative policy to imitate a demonstrator. It uses on-policy Reinforcement Learning (RL) to optimize a reward signal derived from an adversarial discriminator. However, optimizing GAIL is difficult in practise, with the training loss oscillating during training, slowing convergence. This optimization instability can prevent GAIL from finding a good policy, harming its final performance. In this paper, we study GAIL’s optimization from a control-theoretic perspective. We show that GAIL cannot converge to the desired equilibrium. In response, we analyze the training dynamics of GAIL in function space and design a novel controller that not only pushes GAIL to the desired equilibrium but also achieves asymptotic stability in a simplified “one-step” setting. Going from theory to practice, we propose Controlled-GAIL (C-GAIL), which adds a differentiable regularization term on the GAIL objective to stabilize training. Empirically, the C-GAIL regularizer improves the training of various existing GAIL methods, including the popular GAIL-DAC, by speeding up the convergence, reducing the range of oscillation, and matching the expert distribution more closely.
Poster
Han-Dong Lim · Donghwan Lee

[ West Ballroom A-D ]

Abstract
Q-learning is widely used algorithm in reinforcement learning (RL) community. Under the lookup table setting, its convergence is well established. However, its behavior is known to be unstable with the linear function approximation case. This paper develops a new Q-learning algorithm, called RegQ, that converges when linear function approximation is used. We prove that simply adding an appropriate regularization term ensures convergence of the algorithm. Its stability is established using a recent analysis tool based on switching system models. Moreover, we experimentally show that RegQ converges in environments where Q-learning with linear function approximation has known to diverge. An error bound on the solution where the algorithm converges is also given.
Spotlight Poster
Zak Mhammedi · Dylan J Foster · Alexander Rakhlin

[ West Ballroom A-D ]

Abstract
Simulators are a pervasive tool in reinforcement learning, but most existing algorithms cannot efficiently exploit simulator access -- particularly in high-dimensional domains that require general function approximation. We explore the power of simulators through online reinforcement learning with local simulator access (or, local planning), an RL protocol where the agent is allowed to reset to previously observed states and follow their dynamics during training. We use local simulator access to unlock new statistical guarantees that were previously out of reach:- We show that MDPs with low coverability (Xie et al. 2023) -- a general structural condition that subsumes Block MDPs and Low-Rank MDPs -- can be learned in a sample-efficient fashion with only Q⋆-realizability (realizability of the optimal state-value function); existing online RL algorithms require significantly stronger representation conditions.- As a consequence, we show that the notorious Exogenous Block MDP problem (Efroni et al. 2022) is tractable under local simulator access.The results above are achieved through a computationally inefficient algorithm. We complement them with a more computationally efficient algorithm, RVFS (Recursive Value Function Search), which achieves provable sample complexity guarantees under a strengthened statistical assumption known as pushforward coverability. RVFS can be viewed as a principled, provable counterpart to a …
Poster
Long-Fei Li · Yu-Jie Zhang · Peng Zhao · Zhi-Hua Zhou

[ West Ballroom A-D ]

Abstract
We study a new class of MDPs that employs multinomial logit (MNL) function approximation to ensure valid probability distributions over the state space. Despite its significant benefits, incorporating the non-linear function raises substantial challenges in both *statistical* and *computational* efficiency. The best-known result of Hwang and Oh [2023] has achieved an $\widetilde{\mathcal{O}}(\kappa^{-1}dH^2\sqrt{K})$ regret upper bound, where $\kappa$ is a problem-dependent quantity, $d$ is the feature dimension, $H$ is the episode length, and $K$ is the number of episodes. However, we observe that $\kappa^{-1}$ exhibits polynomial dependence on the number of reachable states, which can be as large as the state space size in the worst case and thus undermines the motivation for function approximation. Additionally, their method requires storing all historical data and the time complexity scales linearly with the episode count, which is computationally expensive. In this work, we propose a statistically efficient algorithm that achieves a regret of $\widetilde{\mathcal{O}}(dH^2\sqrt{K} + \kappa^{-1}d^2H^2)$, eliminating the dependence on $\kappa^{-1}$ in the dominant term for the first time. We then address the computational challenges by introducing an enhanced algorithm that achieves the same regret guarantee but with only constant cost. Finally, we establish the first lower bound for this problem, justifying the …
Poster
Caroline Wang · Muhammad Arrasy Rahman · Ishan Durugkar · Elad Liebman · Peter Stone

[ West Ballroom A-D ]

Abstract
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls *all* agents in the scenario, while in ad hoc teamwork, the learning algorithm usually assumes control over only a *single* agent in the scenario. However, many cooperative settings in the real world are much less restrictive. For example, in an autonomous driving scenario, a company might train its cars with the same learning algorithm, yet once on the road, these cars must cooperate with cars from another company. Towards expanding the class of scenarios that cooperative learning methods may optimally address, we introduce $N$*-agent ad hoc teamwork* (NAHT), where a set of autonomous agents must interact and cooperate with dynamically varying numbers and types of teammates. This paper formalizes the problem, and proposes the *Policy Optimization with Agent Modelling* (POAM) algorithm. POAM is a policy gradient, multi-agent reinforcement learning approach to the NAHT problem, that enables adaptation to diverse teammate behaviors by learning representations of teammate behaviors. Empirical evaluation on tasks from the multi-agent particle environment and StarCraft II shows that POAM improves cooperative task returns compared to baseline approaches, and enables out-of-distribution generalization to unseen teammates.
Poster
Dongsu Lee · Minhae Kwon

[ West Ballroom A-D ]

Abstract
Understanding cognitive processes in multi-agent interactions is a primary goal in cognitive science. It can guide the direction of artificial intelligence (AI) research toward social decision-making in multi-agent systems, which includes uncertainty from character heterogeneity. In this paper, we introduce *episodic future thinking (EFT) mechanism* for a reinforcement learning (RL) agent, inspired by the cognitive processes observed in animals. To enable future thinking functionality, we first develop a *multi-character policy* that captures diverse characters with an ensemble of heterogeneous policies. The *character* of an agent is defined as a different weight combination on reward components, representing distinct behavioral preferences. The future thinking agent collects observation-action trajectories of the target agents and leverages the pre-trained multi-character policy to infer their characters. Once the character is inferred, the agent predicts the upcoming actions of target agents and simulates the potential future scenario. This capability allows the agent to adaptively select the optimal action, considering the predicted future scenario in multi-agent scenarios. To evaluate the proposed mechanism, we consider the multi-agent autonomous driving scenario in which autonomous vehicles with different driving traits are on the road. Simulation results demonstrate that the EFT mechanism with accurate character inference leads to a higher reward than …
Poster
The Viet Bui · Tien Mai · Thanh Nguyen

[ West Ballroom A-D ]

Abstract
This paper concerns imitation learning (IL) in cooperative multi-agent systems.The learning problem under consideration poses several challenges, characterized by high-dimensional state and action spaces and intricate inter-agent dependencies. In a single-agent setting, IL was shown to be done efficiently via an inverse soft-Q learning process. However, extending this framework to a multi-agent context introduces the need to simultaneously learn both local value functions to capture local observations and individual actions, and a joint value function for exploiting centralized learning.In this work, we introduce a new multi-agent IL algorithm designed to address these challenges. Our approach enables thecentralized learning by leveraging mixing networks to aggregate decentralized Q functions.We further establish conditions for the mixing networks under which the multi-agent IL objective function exhibits convexity within the Q function space.We present extensive experiments conducted on some challenging multi-agent game environments, including an advanced version of the Star-Craft multi-agent challenge (SMACv2), which demonstrates the effectiveness of our algorithm.
Poster
Xun Shen · Shuo Jiang · Akifumi Wachi · Kazumune Hashimoto · Sebastien Gros

[ West Ballroom A-D ]

Abstract
Safe reinforcement learning (RL) is a promising approach for many real-world decision-making problems where ensuring safety is a critical necessity. In safe RL research, while expected cumulative safety constraints (ECSCs) are typically the first choices, chance constraints are often more pragmatic for incorporating safety under uncertainties. This paper proposes a \textit{flipping-based policy} for Chance-Constrained Markov Decision Processes (CCMDPs). The flipping-based policy selects the next action by tossing a potentially distorted coin between two action candidates. The probability of the flip and the two action candidates vary depending on the state. We establish a Bellman equation for CCMDPs and further prove the existence of a flipping-based policy within the optimal solution sets. Since solving the problem with joint chance constraints is challenging in practice, we then prove that joint chance constraints can be approximated into Expected Cumulative Safety Constraints (ECSCs) and that there exists a flipping-based policy in the optimal solution sets for constrained MDPs with ECSCs. As a specific instance of practical implementations, we present a framework for adapting constrained policy optimization to train a flipping-based policy. This framework can be applied to other safe RL algorithms. We demonstrate that the flipping-based policy can improve the performance of the existing …
Poster
Honghao Wei · Xiyue Peng · Arnob Ghosh · Xin Liu

[ West Ballroom A-D ]

Abstract
We propose WSAC (Weighted Safe Actor-Critic), a novel algorithm for Safe Offline Reinforcement Learning (RL) under functional approximation, which can robustly optimize policies to improve upon an arbitrary reference policy with limited data coverage. WSAC is designed as a two-player Stackelberg game to optimize a refined objective function. The actor optimizes the policy against two adversarially trained value critics with small importance-weighted Bellman errors, which focus on scenarios where the actor's performance is inferior to the reference policy. In theory, we demonstrate that when the actor employs a no-regret optimization oracle, WSAC achieves a number of guarantees: $(i)$ For the first time in the safe offline RL setting, we establish that WSAC can produce a policy that outperforms {\bf any} reference policy while maintaining the same level of safety, which is critical to designing a safe algorithm for offline RL. $(ii)$ WSAC achieves the optimal statistical convergence rate of $1/\sqrt{N}$ to the reference policy, where $N$ is the size of the offline dataset. $(iii)$ We theoretically show that WSAC guarantees a safe policy improvement across a broad range of hyperparameters that control the degree of pessimism, indicating its practical robustness. Additionally, we offer a practical version of WSAC and compare …
Poster
Ziyi Chen · Yan Wen · Zhengmian Hu · Heng Huang

[ West Ballroom A-D ]

Abstract
Reinforcement Learning (RL) problem with general utility is a powerful decision making framework that covers standard RL with cumulative cost, exploration problems, and demonstration learning. Existing works on RL with general utility do not consider the robustness under environmental perturbation, which is important to adapt RL system in the real-world environment that differs from the training environment. To train a robust policy, we propose a robust RL framework with general utility, which subsumes many existing RL frameworks including RL, robust RL, RL with general utility, constrained RL, robust constrained RL, pure exploration, robust entropy regularized RL, etc. Then we focus on popular convex utility functions, with which our proposed learning framework is a challenging nonconvex-nonconcave minimax optimization problem, and design a two-phase stochastic policy gradient type algorithm and obtain its sample complexity result for gradient convergence. Furthermore, for convex utility on a widely used polyhedral ambiguity set, we design an algorithm and obtain its convergence rate to a global optimal solution.
Poster
Harley Wiltzer · Marc Bellemare · David Meger · Patrick Shafto · Yash Jhaveri

[ West Ballroom A-D ]

Abstract
When decisions are made at high frequency, traditional reinforcement learning (RL) methods struggle to accurately estimate action values. In turn, their performance is inconsistent and often poor. Whether the performance of distributional RL (DRL) agents suffers similarly, however, is unknown. In this work, we establish that DRL agents *are* sensitive to the decision frequency. We prove that action-conditioned return distributions collapse to their underlying policy's return distribution as the decision frequency increases. We quantify the rate of collapse of these return distributions and exhibit that their statistics collapse at different rates. Moreover, we define distributional perspectives on action gaps and advantages. In particular, we introduce the *superiority* as a probabilistic generalization of the advantage---the core object of approaches to mitigating performance issues in high-frequency value-based RL. In addition, we build a superiority-based DRL algorithm. Through simulations in an option-trading domain, we validate that proper modeling of the superiority distribution produces improved controllers at high decision frequencies.
Poster
Jiacheng Miao · Qiongshi Lu

[ West Ballroom A-D ]

Abstract
Machine learning (ML) is playing an increasingly important role in scientific research. In conjunction with classical statistical approaches, ML-assisted analytical strategies have shown great promise in accelerating research findings. This has also opened a whole field of methodological research focusing on integrative approaches that leverage both ML and statistics to tackle data science challenges. One type of study that has quickly gained popularity employs ML to predict unobserved outcomes in massive samples, and then uses predicted outcomes in downstream statistical inference. However, existing methods designed to ensure the validity of this type of post-prediction inference are limited to very basic tasks such as linear regression analysis. This is because any extension of these approaches to new, more sophisticated statistical tasks requires task-specific algebraic derivations and software implementations, which ignores the massive library of existing software tools already developed for the same scientific problem given observed data. This severely constrains the scope of application for post-prediction inference. To address this challenge, we introduce a novel statistical framework named PSPS for task-agnostic ML-assisted inference. It provides a post-prediction inference solution that can be easily plugged into almost any established data analysis routines. It delivers valid and efficient inference that is robust to …
Poster
Sam Hawke · YueEn Ma · Didong Li

[ West Ballroom A-D ]

Abstract
Dimension reduction (DR) is an important and widely studied technique in exploratory data analysis. However, traditional DR methods are not applicable to datasets with with a contrastive structure, where data are split into a foreground group of interest (case or treatment group), and a background group (control group). This type of data, common in biomedical studies, necessitates contrastive dimension reduction (CDR) methods to effectively capture information unique to or enriched in the foreground group relative to the background group. Despite the development of various CDR methods, two critical questions remain underexplored: when should these methods be applied, and how can the information unique to the foreground group be quantified? In this work, we address these gaps by proposing a hypothesis test to determine the existence of contrastive information, and introducing a contrastive dimension estimator (CDE) to quantify the unique components in the foreground group. We provide theoretical support for our methods and validate their effectiveness through extensive simulated, semi-simulated, and real experiments involving images, gene expressions, protein expressions, and medical sensors, demonstrating their ability to identify the unique information in the foreground group.
Poster
Siyuan Xu · Minghui Zhu

[ West Ballroom A-D ]

Abstract
Meta-reinforcement learning (Meta-RL) has attracted attention due to its capability to enhance reinforcement learning (RL) algorithms, in terms of data efficiency and generalizability. In this paper, we develop a bilevel optimization framework for meta-RL (BO-MRL) to learn the meta-prior for task-specific policy adaptation, which implements multiple-step policy optimization on one-time data collection. Beyond existing meta-RL analyses, we provide upper bounds of the expected optimality gap over the task distribution. This metric measures the distance of the policy adaptation from the learned meta-prior to the task-specific optimum, and quantifies the model's generalizability to the task distribution. We empirically validate the correctness of the derived upper bounds and demonstrate the superior effectiveness of the proposed algorithm over benchmarks.
Poster
Rafael Rafailov · Yaswanth Chittepu · Ryan Park · Harshit Sushil Sikchi · Joey Hejna · Brad Knox · Chelsea Finn · Scott Niekum

[ West Ballroom A-D ]

Abstract
Reinforcement Learning from Human Feedback (RLHF)has been crucial to the recent success of Large Language Models (LLMs), however it is often a complex and brittle process. In the classical RLHF framework, a reward model is first trained to represent human preferences, which is in turn used by an online reinforcement learning (RL) algorithm to optimized the LLM. A prominent issue with such methods is reward over-optimization or reward hacking, where the performance as measured by the learned proxy reward model increases, but the true model quality plateaus or even deteriorates. Direct Alignment Algorithms (DDAs), such as Direct Preference Optimization (DPO) have emerged as alternatives to the classical RLHF pipeline. However, despite not training a separate proxy reward model or using RL, they still commonly deteriorate from over-optimization. While the so-called reward hacking phenomenon is not well-defined for DAAs, we still uncover similar trends: at higher KL-budgets, DAA algorithms exhibit similar degradation patters to their classic RLHF counterparts. In particular, we find that DAA methods deteriorate not only across a wide range of KL-budgets, but also often before even a single epoch of the dataset is completed. Through extensive empirical experimentation this work formulates the reward over-optimization or hacking problem for …
Poster
Kyoungseok Jang · Junpei Komiyama · Kazutoshi Yamazaki

[ West Ballroom A-D ]

Abstract
We consider the fixed-confidence best arm identification (FC-BAI) problem in the Bayesian setting. This problem aims to find the arm of the largest mean with a fixed confidence level when the bandit model has been sampled from the known prior. Most studies on the FC-BAI problem have been conducted in the frequentist setting, where the bandit model is predetermined before the game starts. We show that the traditional FC-BAI algorithms studied in the frequentist setting, such as track-and-stop and top-two algorithms, result in arbitrarily suboptimal performances in the Bayesian setting. We also obtain a lower bound of the expected number of samples in the Bayesian setting and introduce a variant of successive elimination that has a matching performance with the lower bound up to a logarithmic factor. Simulations verify the theoretical results.
Poster
Easton Huch · Jieru Shi · Madeline R Abbott · Jessica Golbus · Alexander Moreno · Walter Dempsey

[ West Ballroom A-D ]

Abstract
Mobile health leverages personalized and contextually tailored interventions optimized through bandit and reinforcement learning algorithms. In practice, however, challenges such as participant heterogeneity, nonstationarity, and nonlinear relationships hinder algorithm performance. We propose RoME, a **Ro**bust **M**ixed-**E**ffects contextual bandit algorithm that simultaneously addresses these challenges via (1) modeling the differential reward with user- and time-specific random effects, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential-reward model, enabling us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the RoME algorithm in a simulation and two off-policy evaluation studies.
Poster
Thomas Kleine Buening · Aadirupa Saha · Christos Dimitrakakis · Haifeng Xu

[ West Ballroom A-D ]

Abstract
Motivated by the phenomenon of strategic agents gaming a recommender system to maximize the number of times they are recommended to users, we study a strategic variant of the linear contextual bandit problem, where the arms can strategically misreport privately observed contexts to the learner. We treat the algorithm design problem as one of *mechanism design* under uncertainty and propose the Optimistic Grim Trigger Mechanism (OptGTM) that incentivizes the agents (i.e., arms) to report their contexts truthfully while simultaneously minimizing regret. We also show that failing to account for the strategic nature of the agents results in linear regret. However, a trade-off between mechanism design and regret minimization appears to be unavoidable. More broadly, this work aims to provide insight into the intersection of online learning and mechanism design.
Poster
Filippo Lazzati · Mirco Mutti · Alberto Maria Metelli

[ West Ballroom A-D ]

Abstract
In online Inverse Reinforcement Learning (IRL), the learner can collect samples about the dynamics of the environment to improve itsestimate of the reward function. Since IRL suffers from identifiability issues, many theoretical works on online IRL focus on estimating the entire set of rewards that explain the demonstrations, named the *feasible reward set*. However, none of the algorithms available in literature can scale to problems with large state spaces. In this paper, we focus on the online IRL problem in Linear Markov DecisionProcesses (MDPs). We show that the structure offered by Linear MDPs is not sufficient for efficiently estimating the feasible set when the state space is large. As a consequence, we introduce the novel framework of *rewards compatibility*, which generalizes the notion of feasible set, and we develop CATY-IRL, a sample efficient algorithm whose complexity is independent of the size of the state space in Linear MDPs. When restricted to the tabular setting, we demonstrate that CATY-IRL is minimax optimal up to logarithmic factors. As a by-product, we show that Reward-Free Exploration (RFE) enjoys the same worst-case rate, improving over the state-of-the-art lower bound. Finally, we devise a unifying framework for IRL and RFE that may be of independent …
Poster
Hao Tang · Darren Key · Kevin Ellis

[ West Ballroom A-D ]

Abstract
We give a model-based agent that builds a Python program representing its knowledge of the world based on its interactions with the environment. The world model tries to explain its interactions, while also being optimistic about what reward it can achieve. We define this optimism as a logical constraint between a program and a planner. We study our agent on gridworlds, and on task planning, finding our approach is more sample-efficient compared to deep RL, more compute-efficient compared to ReAct-style agents, and that it can transfer its knowledge across environments by editing its code.
Poster
Xiaoou Cheng · Jonathan Weare

[ West Ballroom A-D ]

Abstract
We quantify the efficiency of temporal difference (TD) learning over the direct, or Monte Carlo (MC), estimator for policy evaluation in reinforcement learning, with an emphasis on estimation of quantities related to rare events. Policy evaluation is complicated in the rare event setting by the long timescale of the event and by the need for \emph{relative accuracy} in estimates of very small values. Specifically, we focus on least-squares TD (LSTD) prediction for finite state Markov chains, and show that LSTD can achieve relative accuracy far more efficiently than MC. We prove a central limit theorem for the LSTD estimator and upper bound the \emph{relative asymptotic variance} by simple quantities characterizing the connectivity of states relative to the transition probabilities between them. Using this bound, we show that, even when both the timescale of the rare event and the relative accuracy of the MC estimator are exponentially large in the number of states, LSTD maintains a fixed level of relative accuracy with a total number of observed transitions of the Markov chain that is only \emph{polynomially} large in the number of states.
Poster
Zirui Yan · Ali Tajer

[ West Ballroom A-D ]

Abstract
Designing causal bandit algorithms depends on two central categories of assumptions: (i) the extent of information about the underlying causal graphs and (ii) the extent of information about interventional statistical models. There have been extensive recent advances in dispensing with assumptions on either category. These include assuming known graphs but unknown interventional distributions, and the converse setting of assuming unknown graphs but access to restrictive hard/$\operatorname{do}$ interventions, which removes the stochasticity and ancestral dependencies. Nevertheless, the problem in its general form, i.e., _unknown_ graph and _unknown_ stochastic intervention models, remains open. This paper addresses this problem and establishes that in a graph with $N$ nodes, maximum in-degree $d$ and maximum causal path length $L$, after $T$ interaction rounds the regret upper bound scales as $\tilde{\mathcal{O}}((cd)^{L-\frac{1}{2}}\sqrt{T} + d + RN)$ where $c>1$ is a constant and $R$ is a measure of intervention power. A universal minimax lower bound is also established, which scales as $\Omega(d^{L-\frac{3}{2}}\sqrt{T})$. Importantly, the graph size $N$ has a diminishing effect on the regret as $T$ grows. These bounds have matching behavior in $T$, exponential dependence on $L$, and polynomial dependence on $d$ (with the gap $d\ $). On the algorithmic aspect, the paper presents a novel …
Poster
Weichao Yang · Hongwei Shi · Xu Guo · Changliang Zou

[ West Ballroom A-D ]

Abstract
The high-dimensional single index model (SIM), which assumes that the response is independent of the predictors given a linear combination of predictors, has drawn attention due to its flexibility and interpretability, but its efficiency is adversely affected by outlying observations and heavy-tailed distributions. This paper introduces a robust procedure by recasting the SIM into a pseudo-linear model with transformed responses. It relaxes the distributional conditions on random errors from sub-Gaussian to more general distributions and thus it is robust with substantial efficiency gain for heavy-tailed random errors. Under this paradigm, we provide asymptotically honest group inference procedures based on the idea of orthogonalization, which enjoys the feature that it does not require the zero and nonzero coefficients to be well-separated. Asymptotic null distribution and bootstrap implementation are both established. Moreover, we develop a multiple testing procedure for determining if the individual coefficients are relevant simultaneously, and show that it is able to control the false discovery rate asymptotically. Numerical results indicate that the new procedures can be highly competitive among existing methods, especially for heavy-tailed errors.
Poster
Shi-ang Qi · Yakun Yu · Russell Greiner

[ West Ballroom A-D ]

Abstract
Survival prediction often involves estimating the time-to-event distribution from censored datasets. Previous approaches have focused on enhancing discrimination and marginal calibration. In this paper, we highlight the significance of *conditional calibration* for real-world applications – especially its role in individual decision-making. We propose a method based on conformal prediction that uses the model’s predicted individual survival probability at that instance’s observed time. This method effectively improves the model’s marginal and conditional calibration, without compromising discrimination. We provide asymptotic theoretical guarantees for both marginal and conditional calibration and test it extensively across 15 diverse real-world datasets, demonstrating the method’s practical effectiveness andversatility in various settings.
Poster
Josh Givens · Henry Reeve · Song Liu · Katarzyna Reluga

[ West Ballroom A-D ]

Abstract
The conditional quantile treatment effect (CQTE) can provide insight into the effect of a treatment beyond the conditional average treatment effect (CATE). This ability to provide information over multiple quantiles of the response makes the CQTE especially valuable in cases where the effect of a treatment is not well-modelled by a location shift, even conditionally on the covariates. Nevertheless, the estimation of the CQTE is challenging and often depends upon the smoothness of the individual quantiles as a function of the covariates rather than smoothness of the CQTE itself. This is in stark contrast to the CATE where it is possible to obtain high-quality estimates which have less dependency upon the smoothness of the nuisance parameters when the CATE itself is smooth. Moreover, relative smoothness of the CQTE lacks the interpretability of smoothness of the CATE making it less clear whether it is a reasonable assumption to make. We combine the desirable properties of the CATE and CQTE by considering a new estimand, the conditional quantile comparator (CQC). The CQC not only retains information about the whole treatment distribution, similar to the CQTE, but also having more natural examples of smoothness and is able to leverage simplicity in an auxiliary …
Poster
Yuanchen Wu · Yubai Yuan

[ West Ballroom A-D ]

Abstract
We consider the problem of active learning on graphs for node-level tasks, which has crucial applications in many real-world networks where labeling node responses is expensive. In this paper, we propose an offline active learning method that selects nodes to query by explicitly incorporating information from both the network structure and node covariates. Building on graph signal recovery theories and the random spectral sparsification technique, the proposed method adopts a two-stage biased sampling strategy that takes both informativeness and representativeness into consideration for node querying. Informativeness refers to the complexity of graph signals that are learnable from the responses of queried nodes, while representativeness refers to the capacity of queried nodes to control generalization errors given noisy node-level information. We establish a theoretical relationship between generalization error and the number of nodes selected by the proposed method. Our theoretical results demonstrate the trade-off between Informativeness and representativeness in active learning. Extensive numerical experiments show that the proposed method is competitive with existing graph-based active learning methods, especially when node covariates and responses contain noises. Additionally, the proposed method is applicable to both regression and classification tasks on graphs.
Poster
Herman Bergström · Emil Carlsson · Devdatt Dubhashi · Fredrik Johansson

[ West Ballroom A-D ]

Abstract
Learning an ordering of items based on pairwise comparisons is useful when items are difficult to rate consistently on an absolute scale, for example, when annotators have to make subjective assessments. When exhaustive comparison is infeasible, actively sampling item pairs can reduce the number of annotations necessary for learning an accurate ordering. However, many algorithms ignore shared structure between items, limiting their sample efficiency and precluding generalization to new items. It is also common to disregard how noise in comparisons varies between item pairs, despite it being informative of item similarity. In this work, we study active preference learning for ordering items with contextual attributes, both in- and out-of-sample. We give an upper bound on the expected ordering error of a logistic preference model as a function of which items have been compared. Next, we propose an active learning strategy that samples items to minimize this bound by accounting for aleatoric and epistemic uncertainty in comparisons. We evaluate the resulting algorithm, and a variant aimed at reducing model misspecification, in multiple realistic ordering tasks with comparisons made by human annotators. Our results demonstrate superior sample efficiency and generalization compared to non-contextual ranking approaches and active preference learning baselines.
Spotlight Poster
Adhyyan Narang · Andrew Wagenmaker · Lillian Ratliff · Kevin Jamieson

[ West Ballroom A-D ]

Abstract
In this paper, we study the non-asymptotic sample complexity for the pure exploration problem in contextual bandits and tabular reinforcement learning (RL): identifying an $\epsilon$-optimal policy from a set of policies $\Pi$ with high probability. Existing work in bandits has shown that it is possible to identify the best policy by estimating only the *difference* between the behaviors of individual policies–which can have substantially lower variance than estimating the behavior of each policy directly—yet the best-known complexities in RL fail to take advantage of this, and instead estimate the behavior of each policy directly. Does it suffice to estimate only the differences in the behaviors of policies in RL? We answer this question positively for contextual bandits, but in the negative for tabular RL, showing a separation between contextual bandits and RL. However, inspired by this, we show that it *almost* suffices to estimate only the differences in RL: if we can estimate the behavior of a *single* reference policy, it suffices to only estimate how any other policy deviates from this reference policy. We develop an algorithm which instantiates this principle and obtains, to the best of our knowledge, the tightest known bound on the sample complexity of tabular …
Poster
Enoch H. Kang · P. R. Kumar

[ West Ballroom A-D ]

Abstract
Interactive decision making, encompassing bandits, contextual bandits, and reinforcement learning, has recently been of interest to theoretical studies of experimentation design and recommender system algorithm research. One recent finding in this area is that the well-known Graves-Lai constant being zero is a necessary and sufficient condition for achieving bounded (or constant) regret in interactive decision-making. As this condition may be a strong requirement for many applications, the practical usefulness of pursuing bounded regret has been questioned. In this paper, we show that the condition of the Graves-Lai constant being zero is also necessary for a consistent algorithm to achieve delay model robustness when reward delays are unknown (i.e., when feedback is anonymous). Here, model robustness is measured in terms of $\epsilon$-robustness, one of the most widely used and one of the least adversarial robustness concepts in the robust statistics literature. In particular, we show that $\epsilon$-robustness cannot be achieved for a consistent (i.e., uniformly sub-polynomial regret) algorithm, however small the nonzero $\epsilon$ value is, when the Grave-Lai constant is not zero. While this is a strongly negative result, we also provide a positive result for linear rewards models (contextual linear bandits, reinforcement learning with linear MDP) that the Grave-Lai constant …
Poster
Hunter Lang · David Sontag · Aravindan Vijayaraghavan

[ West Ballroom A-D ]

Abstract
Strong student models can learn from weaker teachers: when trained on the predictions of a weaker model, a strong pretrained student can learn to correct the weak model’s errors and generalize to examples where the teacher is not confident, even when these examples are excluded from training. This enables learning from cheap, incomplete, and possibly incorrect label information, such as coarse logical rules or the generations of a language model. We show that existing weak supervision theory results fail to account for both of these effects, which we call pseudolabel correction and coverage expansion, respectively. We give a new bound based on expansion properties of the data distribution and student hypothesis class that directly accounts for pseudolabel correction and coverage expansion. Our bound generalizes results from the co-training and self-training literature and captures the intuition that weak-to-strong generalization occurs when the mistakes of the weak model are hard for the strong model to fit without incurring additional error. We show that these expansion properties can be checked from finite data and give empirical evidence that they hold in practice.
Poster
Evelyn Ma · Chao Pan · S. Rasoul Etesami · Han Zhao · Olgica Milenkovic

[ West Ballroom A-D ]

Abstract
The performance of Transfer Learning (TL) significantly depends on effective pretraining, which not only requires extensive amounts of data but also substantial computational resources. As a result, in practice, it is challenging to successfully perform TL at the level of individual model developers. Federated Learning (FL) addresses these challenges by enabling collaboration among individual clients through an indirect expansion of the available dataset, distribution of the computation burden across different entities, and privacy-preserving communication mechanisms. Despite several attempts to devise effective transferable FL approaches, several important issues remain unsolved. First, existing methods in this setting primarily focus on optimizing transferability within their local client domains, thereby ignoring transferability over the global learning domain. Second, most approaches focus on analyzing indirect transferability metrics, which does not allow for accurate assessment of the final target loss and extent of transferability. To address these issues, we introduce two important FL features into the model. The first boosts transferability via an exchange protocol between the clients and the server that includes information about cross-client Jacobian (gradient) norms. The second feature promotes an increase of the average of the Jacobians of the clients at the server side, which is subsequently used as a local regularizer …
Spotlight Poster
Zhaorui Tan · Xi Yang · Qiufeng Wang · Anh Nguyen · Kaizhu Huang

[ West Ballroom A-D ]

Abstract
Vision models excel in image classification but struggle to generalize to unseen data, such as classifying images from unseen domains or discovering novel categories. In this paper, we explore the relationship between logical reasoning and deep learning generalization in visual classification. A logical regularization termed L-Reg is derived which bridges a logical analysis framework to image classification. Our work reveals that L-Reg reduces the complexity of the model in terms of the feature distribution and classifier weights. Specifically, we unveil the interpretability brought by L-Reg, as it enables the model to extract the salient features, such as faces to persons, for classification. Theoretical analysis and experiments demonstrate that L-Reg enhances generalization across various scenarios, including multi-domain generalization and generalized category discovery. In complex real-world scenarios where images span unknown classes and unseen domains, L-Reg consistently improves generalization, highlighting its practical efficacy.
Spotlight Poster
Yao Ni · Shan Zhang · Piotr Koniusz

[ West Ballroom A-D ]

Abstract
Parameter-Efficient Fine-Tuning (PEFT) effectively adapts pre-trained transformers to downstream tasks. However, the optimization of tasks performance often comes at the cost of generalizability in fine-tuned models. To address this issue, we theoretically connect smaller weight gradient norms during training and larger datasets to the improvements in model generalization. Motivated by this connection, we propose reducing gradient norms for enhanced generalization and aligning fine-tuned model with the pre-trained counterpart to retain knowledge from large-scale pre-training data. Yet, naive alignment does not guarantee gradient reduction and can potentially cause gradient explosion, complicating efforts to manage gradients. To address such an issue, we propose PACE, marrying generalization of PArameter-efficient fine-tuning with Consistency rEgularization. We perturb features learned from the adapter with the multiplicative noise and ensure the fine-tuned model remains consistent for same sample under different perturbations. Theoretical analysis shows that PACE not only implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge. Experimental evidence supports our theories. PACE surpasses existing PEFT methods in visual adaptation tasks (VTAB-1k, FGVC, few-shot learning, domain adaptation) showcasing its potential for resource-efficient fine-tuning. It also improves LoRA in text classification (GLUE) and mathematical reasoning (GSM-8K).
Poster
Yilun Zhu · Jianxin Zhang · Aditya Gangrade · Clay Scott

[ West Ballroom A-D ]

Abstract
We establish a new theoretical framework for learning under multi-class, instance-dependent label noise. This framework casts learning with label noise as a form of domain adaptation, in particular, domain adaptation under posterior drift. We introduce the concept of \emph{relative signal strength} (RSS), a pointwise measure that quantifies the transferability from noisy to clean posterior. Using RSS, we establish nearly matching upper and lower bounds on the excess risk. Our theoretical findings support the simple \emph{Noise Ignorant Empirical Risk Minimization (NI-ERM)} principle, which minimizes empirical risk while ignoring label noise. Finally, we translate this theoretical insight into practice: by using NI-ERM to fit a linear classifier on top of a self-supervised feature extractor, we achieve state-of-the-art performance on the CIFAR-N data challenge.
Poster
Jiawei Ge · Debarghya Mukherjee · Jianqing Fan

[ West Ballroom A-D ]

Abstract
As machine learning models are increasingly deployed in dynamic environments, it becomes paramount to assess and quantify uncertainties associated with distribution shifts.A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance. The prediction interval, which captures the range of likely outcomes for a given prediction, serves as a crucial tool for characterizing uncertainties induced by their underlying distribution. In this paper, we propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain under unsupervised domain shift, under which we have labeled samples from a related source domain and unlabeled covariates from the target domain.Our analysis encompasses scenarios where the source and the target domain are related via i) a bounded density ratio, and ii) a measure-preserving transformation.Our proposed methodologies are computationally efficient and easy to implement. Beyond illustrating the performance of our method through real-world datasets, we also delve into the theoretical details. This includes establishing rigorous theoretical guarantees, coupled with finite sample bounds, regarding the coverage and width of our prediction intervals. Our approach excels in practical applications and is underpinned by a solid theoretical framework, ensuring its reliability and effectiveness across …
Poster
Syamantak Kumar · Derek Bean · peter j bickel · Purnamrita Sarkar

[ West Ballroom A-D ]

Abstract
Independent Component Analysis (ICA) was introduced in the 1980's as a model for Blind Source Separation (BSS), which refers to the process of recovering the sources underlying a mixture of signals, with little knowledge about the source signals or the mixing process. While there are many sophisticated algorithms for estimation, different methods have different shortcomings. In this paper, we develop a nonparametric score to adaptively pick the right algorithm for ICA with arbitrary Gaussian noise. The novelty of this score stems from the fact that it just assumes a finite second moment of the data and uses the characteristic function to evaluate the quality of the estimated mixing matrix without any knowledge of the parameters of the noise distribution. In addition, we propose some new contrast functions and algorithms that enjoy the same fast computability as existing algorithms like FASTICA and JADE but work in domains where the former may fail. While these also may have weaknesses, our proposed diagnostic, as shown by our simulations, can remedy them. Finally, we propose a theoretical framework to analyze the local and global convergence properties of our algorithms.
Poster
Roland Stolz · Hanna Krasowski · Jakob Thumm · Michael Eichelbeck · Philipp Gassert · Matthias Althoff

[ West Ballroom A-D ]

Abstract
Continuous action spaces in reinforcement learning (RL) are commonly defined as multidimensional intervals. While intervals usually reflect the action boundaries for tasks well, they can be challenging for learning because the typically large global action space leads to frequent exploration of irrelevant actions. Yet, little task knowledge can be sufficient to identify significantly smaller state-specific sets of relevant actions. Focusing learning on these relevant actions can significantly improve training efficiency and effectiveness. In this paper, we propose to focus learning on the set of relevant actions and introduce three continuous action masking methods for exactly mapping the action space to the state-dependent set of relevant actions. Thus, our methods ensure that only relevant actions are executed, enhancing the predictability of the RL agent and enabling its use in safety-critical applications. We further derive the implications of the proposed methods on the policy gradient. Using proximal policy optimization ( PPO), we evaluate our methods on four control tasks, where the relevant action set is computed based on the system dynamics and a relevant state set. Our experiments show that the three action masking methods achieve higher final rewards and converge faster than the baseline without action masking.
Poster
Frédéric Berdoz · Roger Wattenhofer

[ West Ballroom A-D ]

Abstract
While autonomous agents often surpass humans in their ability to handle vast and complex data, their potential misalignment (i.e., lack of transparency regarding their true objective) has thus far hindered their use in critical applications such as social decision processes. More importantly, existing alignment methods provide no formal guarantees on the safety of such models. Drawing from utility and social choice theory, we provide a novel quantitative definition of alignment in the context of social decision-making. Building on this definition, we introduce probably approximately aligned (i.e., near-optimal) policies, and we derive a sufficient condition for their existence. Lastly, recognizing the practical difficulty of satisfying this condition, we introduce the relaxed concept of safe (i.e., nondestructive) policies, and we propose a simple yet robust method to safeguard the black-box policy of any autonomous agent, ensuring all its actions are verifiably safe for the society.
Poster
Miao Lu · Han Zhong · Tong Zhang · Jose Blanchet

[ West Ballroom A-D ]

Abstract
The sim-to-real gap, which represents the disparity between training and testing environments, poses a significant challenge in reinforcement learning (RL). A promising approach to addressing this challenge is distributionally robust RL, often framed as a robust Markov decision process (RMDP). In this framework, the objective is to find a robust policy that achieves good performance under the worst-case scenario among all environments within a pre-specified uncertainty set centered around the training environment. Unlike previous work, which relies on a generative model or a pre-collected offline dataset enjoying good coverage of the deployment environment, we tackle robust RL via interactive data collection, where the learner interacts with the training environment only and refines the policy through trial and error. In this robust RL paradigm, two main challenges emerge: managing distributional robustness while striking a balance between exploration and exploitation during data collection. Initially, we establish that sample-efficient learning without additional assumptions is unattainable owing to the curse of support shift; i.e., the potential disjointedness of the distributional supports between the training and testing environments. To circumvent such a hardness result, we introduce the vanishing minimal value assumption to RMDPs with a total-variation (TV) distance robust set, postulating that the minimal value …
Poster
Stefan Stojanovic · Yassir Jedra · Alexandre Proutiere

[ West Ballroom A-D ]

Abstract
We consider the problem of learning an $\varepsilon$-optimal policy in controlled dynamical systems with low-rank latent structure. For this problem, we present LoRa-PI (Low-Rank Policy Iteration), a model-free learning algorithm alternating between policy improvement and policy evaluation steps. In the latter, the algorithm estimates the low-rank matrix corresponding to the (state, action) value function of the current policy using the following two-phase procedure. The entries of the matrix are first sampled uniformly at random to estimate, via a spectral method, the *leverage scores* of its rows and columns. These scores are then used to extract a few important rows and columns whose entries are further sampled. The algorithm exploits these new samples to complete the matrix estimation using a CUR-like method. For this leveraged matrix estimation procedure, we establish entry-wise guarantees that remarkably, do not depend on the coherence of the matrix but only on its spikiness. These guarantees imply that LoRa-PI learns an $\varepsilon$-optimal policy using $\tilde{\cal O}({(S+A)\over \mathrm{poly}(1-\gamma)\varepsilon^2})$ samples where $S$ (resp. $A$) denotes the number of states (resp. actions) and $\gamma$ the discount factor. Our algorithm achieves this order-optimal (in $S$, $A$ and $\varepsilon$) sample complexity under milder conditions than those assumed in previously proposed approaches.
Poster
Zeyu Jia · Jian Qian · Alexander Rakhlin · Chen-Yu Wei

[ West Ballroom A-D ]

Abstract
We consider realizable contextual bandits with general function approximation, investigating how small reward variance can lead to better-than-minimax regret bounds. Unlike in minimax regret bounds, we show that the eluder dimension $d_{\text{elu}}$$-$a measure of the complexity of the function class$-$plays a crucial role in variance-dependent bounds. We consider two types of adversary: (1) Weak adversary: The adversary sets the reward variance before observing the learner's action. In this setting, we prove that a regret of $\Omega( \sqrt{ \min (A, d_{\text{elu}}) \Lambda } + d_{\text{elu}} )$ is unavoidable when $d_{\text{elu}} \leq \sqrt{A T}$, where $A$ is the number of actions, $T$ is the total number of rounds, and $\Lambda$ is the total variance over $T$ rounds. For the $A\leq d_{\text{elu}}$ regime, we derive a nearly matching upper bound $\tilde{O}( \sqrt{ A\Lambda } + d_{\text{elu} } )$ for the special case where the variance is revealed at the beginning of each round. (2) Strong adversary: The adversary sets the reward variance after observing the learner's action. We show that a regret of $\Omega( \sqrt{ d_{\text{elu}} \Lambda } + d_{\text{elu}} )$ is unavoidable when $\sqrt{ d_{\text{elu}} \Lambda } + d_{\text{elu}} \leq \sqrt{A T}$. In this setting, we provide an upper bound of order …
Poster
Nunzio Alexandro Letizia · Nicola Novello · Andrea M Tonello

[ West Ballroom A-D ]

Abstract
Estimating mutual information accurately is pivotal across diverse applications, from machine learning to communications and biology, enabling us to gain insights into the inner mechanisms of complex systems. Yet, dealing with high-dimensional data presents a formidable challenge, due to its size and the presence of intricate relationships. Recently proposed neural methods employing variational lower bounds on the mutual information have gained prominence. However, these approaches suffer from either high bias or high variance, as the sample size and the structure of the loss function directly influence the training process. In this paper, we propose a novel class of discriminative mutual information estimators based on the variational representation of the $f$-divergence. We investigate the impact of the permutation function used to obtain the marginal training samples and present a novel architectural solution based on derangements. The proposed estimator is flexible since it exhibits an excellent bias/variance trade-off. The comparison with state-of-the-art neural estimators, through extensive experimentation within established reference scenarios, shows that our approach offers higher accuracy and lower complexity.
Poster
Tao Lin · Kun Jin · Andrew Estornell · Xiaoying Zhang · Yiling Chen · Yang Liu

[ West Ballroom A-D ]

Abstract
Recommender systems serve the dual purpose of presenting relevant content to users and helping content creators reach their target audience. The dual nature of these systems naturally influences both users and creators: users' preferences are affected by the items they are recommended, while creators may be incentivized to alter their content to attract more users. We define a model, called user-creator feature dynamics, to capture the dual influence of recommender systems. We prove that a recommender system with dual influence is guaranteed to polarize, causing diversity loss in the system. We then investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems. Unexpectedly, we find that common diversity-promoting approaches do not work in the presence of dual influence, while relevancy-optimizing methods like top-$k$ truncation can prevent polarization and improve diversity of the system.
Poster
Eden Saig · Ohad Einav · Inbal Talgam-Cohen

[ West Ballroom A-D ]

Abstract
While the success of large language models (LLMs) increases demand for machine-generated text, current pay-per-token pricing schemes create a misalignment of incentives known in economics as moral hazard: Text-generating agents have strong incentive to cut costs by preferring a cheaper model over the cutting-edge one, and this can be done “behind the scenes” since the agent performs inference internally. In this work, we approach this issue from an economic perspective, by proposing a pay-for-performance, contract-based framework for incentivizing quality. We study a principal-agent game where the agent generates text using costly inference, and the contract determines the principal’s payment for the text according to an automated quality evaluation. Since standard contract theory is inapplicable when internal inference costs are unknown, we introduce cost-robust contracts. As our main theoretical contribution, we characterize optimal cost-robust contracts through a direct correspondence to optimal composite hypothesis tests from statistics, generalizing a result of Saig et al. (NeurIPS’23). We evaluate our framework empirically by deriving contracts for a range of objectives and LLM evaluation benchmarks, and find that cost-robust contracts sacrifice only a marginal increase in objective value compared to their cost-aware counterparts.
Poster
Yang Cai · Gabriele Farina · Julien Grand-Clément · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Weiqiang Zheng

[ West Ballroom A-D ]

Abstract
Self play via online learning is one of the premier ways to solve large-scale zero-sum games, both in theory and practice. Particularly popular algorithms include optimistic multiplicative weights update (OMWU) and optimistic gradient-descent-ascent (OGDA). While both algorithms enjoy $O(1/T)$ ergodic convergence to Nash equilibrium in two-player zero-sum games, OMWU offers several advantages, including logarithmic dependence on the size of the payoff matrix and $\tilde{O}(1/T)$ convergence to coarse correlated equilibria even in general-sum games. However, in terms of last-iterate convergence in two-player zero-sum games, an increasingly popular topic in this area, OGDA guarantees that the duality gap shrinks at a rate of $(1/\sqrt{T})$, while the best existing last-iterate convergence for OMWU depends on some game-dependent constant that could be arbitrarily large. This begs the question: is this potentially slow last-iterate convergence an inherent disadvantage of OMWU, or is the current analysis too loose? Somewhat surprisingly, we show that the former is true. More generally, we prove that a broad class of algorithms that do not forget the past quickly all suffer the same issue: for any arbitrarily small $\delta>0$, there exists a $2\times 2$ matrix game such that the algorithm admits a constant duality gap even after $1/\delta$ rounds. This …
Poster
Yiling Chen · Tao Lin · Ariel Procaccia · Aaditya Ramdas · Itai Shapira

[ West Ballroom A-D ]

Abstract
We introduce and study the problem of detecting whether an agent is updating their prior beliefs given new evidence in an optimal way that is Bayesian, or whether they are biased towards their own prior. In our model, biased agents form posterior beliefs that are a convex combination of their prior and the Bayesian posterior, where the more biased an agent is, the closer their posterior is to the prior. Since we often cannot observe the agent's beliefs directly, we take an approach inspired by *information design*. Specifically, we measure an agent's bias by designing a *signaling scheme* and observing the actions they take in response to different signals, assuming that they are maximizing their own expected utility; our goal is to detect bias with a minimum number of signals. Our main results include a characterization of scenarios where a single signal suffices and a computationally efficient algorithm to compute optimal signaling schemes.
Poster
Shuai Liu · Alex Ayoub · Flore Sentenac · Xiaoqi Tan · Csaba Szepesvari

[ West Ballroom A-D ]

Abstract
We prove that single-parameter natural exponential families with subexponential tails are self-concordant with polynomial-sized parameters. For subgaussian natural exponential families we establish an exact characterization of the growth rate of the self-concordance parameter. Applying these findings to bandits allows us to fill gaps in the literature: We show that optimistic algorithms for generalized linear bandits enjoy regret bounds that are both second-order (scale with the variance of the optimal arm's reward distribution) and free of an exponential dependence on the bound of the problem parameter in the leading term. To the best of our knowledge, ours is the first regret bound for generalized linear bandits with subexponential tails, broadening the class of problems to include Poisson, exponential and gamma bandits.
Poster
Lang Liu · Ronak Mehta · Soumik Pal · Zaid Harchaoui

[ West Ballroom A-D ]

Abstract
Data balancing across multiple modalities and sources appears in various forms in foundation models in machine learning and AI, e.g., in CLIP and DINO. We show that data balancing across modalities and sources actually offers an unsuspected benefit: variance reduction. We present a non-asymptotic statistical bound that quantifies this variance reduction effect and relates it to the eigenvalue decay of Markov operators. Furthermore, we describe how various forms of data balancing in contrastive multimodal learning and self-supervised clustering can be better understood, and even improved upon, owing to our variance reduction viewpoint.
Spotlight Poster
Reza Ebrahimi · Jun Chen · Ashish Khisti

[ West Ballroom A-D ]

Abstract
This paper investigates a novel lossy compression framework operating under logarithmic loss, designed to handle situations where the reconstruction distribution diverges from the source distribution. This framework is especially relevant for applications that require joint compression and retrieval, and in scenarios involving distributional shifts due to processing. We show that the proposed formulation extends the classical minimum entropy coupling framework by integrating a bottleneck, allowing for controlled variability in the degree of stochasticity in the coupling.We explore the decomposition of the Minimum Entropy Coupling with Bottleneck (MEC-B) into two distinct optimization problems: Entropy-Bounded Information Maximization (EBIM) for the encoder, and Minimum Entropy Coupling (MEC) for the decoder. Through extensive analysis, we provide a greedy algorithm for EBIM with guaranteed performance, and characterize the optimal solution near functional mappings, yielding significant theoretical insights into the structural complexity of this problem.Furthermore, we illustrated the practical application of MEC-B through experiments in Markov Coding Games (MCGs) under rate limits. These games simulate a communication scenario within a Markov Decision Process, where an agent must transmit a compressed message from a sender to a receiver through its actions. Our experiments highlighted the trade-offs between MDP rewards and receiver accuracy across various compression rates, showcasing …
Spotlight Poster
Yunbum Kook · Santosh Vempala · Matthew Zhang

[ West Ballroom A-D ]

Abstract
We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in Rényi divergence (which implies TV, $\mathcal{W}_2$, KL, $\chi^2$). The proof departs from known approaches for polytime algorithms for the problem - we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the stationary density.
Poster
Yunzhe Hu · Difan Zou · Dong Xu

[ West Ballroom A-D ]

Abstract
Deep neural networks have long been criticized for being black-box. To unveil the inner workings of modern neural architectures, a recent work proposed an information-theoretic objective function called Sparse Rate Reduction (SRR) and interpreted its unrolled optimization as a Transformer-like model called Coding Rate Reduction Transformer (CRATE). However, the focus of the study was primarily on the basic implementation, and whether this objective is optimized in practice and its causal relationship to generalization remain elusive. Going beyond this study, we derive different implementations by analyzing layer-wise behaviors of CRATE, both theoretically and empirically. To reveal the predictive power of SRR on generalization, we collect a set of model variants induced by varied implementations and hyperparameters and evaluate SRR as a complexity measure based on its correlation with generalization. Surprisingly, we find out that SRR has a positive correlation coefficient and outperforms other baseline measures, such as path-norm and sharpness-based ones. Furthermore, we show that generalization can be improved using SRR as regularization on benchmark image classification datasets. We hope this paper can shed light on leveraging SRR to design principled models and study their generalization ability.
Poster
Hao-Yi Lei · Zhi-Hao Tan · Zhi-Hua Zhou

[ West Ballroom A-D ]

Abstract
The learnware paradigm aims to enable users to leverage numerous existing well-trained models instead of building machine learning models from scratch. In this paradigm, developers worldwide can submit their well-trained models spontaneously into a learnware dock system, and the system helps developers generate specification for each model to form a learnware. As the key component, a specification should characterize the capabilities of the model, enabling it to be adequately identified and reused, while preserving the developer's original data. Recently, the RKME (Reduced Kernel Mean Embedding) specification was proposed and most commonly utilized. This paper provides a theoretical analysis of RKME specification about its preservation ability for developer's training data. By modeling it as a geometric problem on manifolds and utilizing tools from geometric analysis, we prove that the RKME specification is able to disclose none of the developer's original data and possesses robust defense against common inference attacks, while preserving sufficient information for effective learnware identification.
Poster
Adela DePavia · Olga Medrano Martin del Campo · Erasmo Tani

[ West Ballroom A-D ]

Abstract
We consider a clustering problem where a learner seeks to partition a finite set by querying a faulty oracle. This models applications where learners crowdsource information from non-expert human workers or conduct noisy experiments to determine group structure. The learner aims to exactly recover a partition by submitting queries of the form ``are $u$ and $v$ in the same group?'' for any pair of elements $u$ and $v$ in the set. Moreover, because the learner only has access to faulty sources of information, they require an error-tolerant algorithm for this task: i.e. they must fully recover the correct partition, even if up to $\ell$ answers are incorrect, for some error-tolerance parameter $\ell$. We study the question: for any given error-tolerance $\ell$, what is the minimum number of queries needed to learn a finite set partition of $n$ elements into $k$ groups? We design algorithms for this task and prove that they achieve optimal query complexity. To analyze our algorithms, we first highlight a connection between this task and correlation clustering. We then use this connection to build a Rényi-Ulam style analytical framework for this problem, which yields matching lower bounds. Our analysis also reveals an inherent asymmetry between the query …
Poster
Paul Pu Liang · Akshay Goindani · Talha Chafekar · Leena Mathur · Haofei Yu · Ruslan Salakhutdinov · Louis-Philippe Morency

[ West Ballroom A-D ]

Abstract
Multimodal foundation models that can holistically process text alongside images, video, audio, and other sensory modalities are increasingly used in a variety of real-world applications. However, it is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal Models (HEMM) to systematically evaluate the capabilities of multimodal foundation models across a set of 3 dimensions: basic skills, information flow, and real-world use cases. Basic multimodal skills are internal abilities required to solve problems, such as learning interactions across modalities, fine-grained alignment, multi-step reasoning, and the ability to handle external knowledge. Information flow studies how multimodal content changes during a task through querying, translation, editing, and fusion. Use cases span domain-specific challenges introduced in real-world multimedia, affective computing, natural sciences, healthcare, and human-computer interaction applications. Through comprehensive experiments across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic skills, information flows, and use cases) that pose challenges to today’s models, and (2) distill performance trends regarding how different modeling dimensions (e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction tuning objectives) influence performance. Our conclusions regarding challenging multimodal …
Poster
Polina Turishcheva · Paul Fahey · Michaela Vystrčilová · Laura Hansel · Rachel Froebe · Kayla Ponder · Yongrong Qiu · Konstantin Willeke · Mohammad Bashiri · Ruslan Baikulov · Yu Zhu · Lei Ma · Shan Yu · Tiejun Huang · Bryan Li · Wolf De Wulf · Nina Kudryashova · Matthias Hennig · Nathalie Rochefort · Arno Onken · Eric Y. Wang · Zhiwei Ding · Andreas Tolias · Fabian Sinz · Alexander Ecker

[ West Ballroom A-D ]

Abstract
Understanding how biological visual systems process information is challenging because of the nonlinear relationship between visual input and neuronal responses. Artificial neural networks allow computational neuroscientists to create predictive models that connect biological and machine vision.Machine learning has benefited tremendously from benchmarks that compare different models on the same task under standardized conditions. However, there was no standardized benchmark to identify state-of-the-art dynamic models of the mouse visual system.To address this gap, we established the SENSORIUM 2023 Benchmark Competition with dynamic input, featuring a new large-scale dataset from the primary visual cortex of ten mice. This dataset includes responses from 78,853 neurons to 2 hours of dynamic stimuli per neuron, together with behavioral measurements such as running speed, pupil dilation, and eye movements.The competition ranked models in two tracks based on predictive performance for neuronal responses on a held-out test set: one focusing on predicting in-domain natural stimuli and another on out-of-distribution (OOD) stimuli to assess model generalization.As part of the NeurIPS 2023 Competition Track, we received more than 160 model submissions from 22 teams. Several new architectures for predictive models were proposed, and the winning teams improved the previous state-of-the-art model by 50\%. Access to the dataset as well …
Poster
Amrith Setlur · Vitaly Feldman · Kunal Talwar

[ West Ballroom A-D ]

Abstract
Motivated by the problem of next word prediction on user devices we introduce and study the problem of personalized frequency histogram estimation in a federated setting. In this problem, over some domain, each user observes a number of samples from a distribution which is specific to that user. The goal is to compute for all users a personalized estimate of the user's distribution with error measured in KL divergence. We focus on addressing two central challenges: statistical heterogeneity and protection of user privacy.Our approach to the problem relies on discovering and exploiting similar subpopulations of users which are often present and latent in real-world data, while minimizing user privacy leakage at the same time. We first present a non-private clustering-based algorithm for the problem, and give a provably joint differentially private version of it with a private data-dependent initialization scheme. Next, we propose a simple data model which is based on a mixture of Dirichlet distributions, to formally motivate our non-private algorithm and demonstrate some properties of its components. Finally, we provide an extensive empirical evaluation of our private and non-private algorithms under varying levels of statistical and size heterogeneity on the Reddit, StackOverflow, and Amazon Reviews datasets. Our results …
Poster
Yonggang Zhang · Jie Lu · Bo Peng · Zhen Fang · Yiu-ming Cheung

[ West Ballroom A-D ]

Abstract
Out-of-distribution (OOD) detection is critical for deploying machine learning models in the open world. To design scoring functions that discern OOD data from the in-distribution (ID) cases from a pre-trained discriminative model, existing methods tend to make rigorous distributional assumptions either explicitly or implicitly due to the lack of knowledge about the learned feature space in advance. The mismatch between the learned and assumed distributions motivates us to raise a fundamental yet under-explored question: \textit{Is it possible to deterministically model the feature distribution while pre-training a discriminative model?}This paper gives an affirmative answer to this question by presenting a Distributional Representation Learning (\texttt{DRL}) framework for OOD detection. In particular, \texttt{DRL} explicitly enforces the underlying feature space to conform to a pre-defined mixture distribution, together with an online approximation of normalization constants to enable end-to-end training. Furthermore, we formulate \texttt{DRL} into a provably convergent Expectation-Maximization algorithm to avoid trivial solutions and rearrange the sequential sampling to guide the training consistency. Extensive evaluations across mainstream OOD detection benchmarks empirically manifest the superiority of the proposed \texttt{DRL} over its advanced counterparts.
Poster
Ruihan Wu · Siddhartha Datta · Yi Su · Dheeraj Baby · Yu-Xiang Wang · Kilian Weinberger

[ West Ballroom A-D ]

Abstract
This paper addresses the prevalent issue of label shift in an online setting with missing labels, where data distributions change over time and obtaining timely labels is challenging. While existing methods primarily focus on adjusting or updating the final layer of a pre-trained classifier, we explore the untapped potential of enhancing feature representations using unlabeled data at test-time. Our novel method, Online Label Shift adaptation with Online Feature Updates (OLS-OFU), leverages self-supervised learning to refine the feature extraction process, thereby improving the prediction model. By carefully designing the algorithm, theoretically OLS-OFU maintains the similar online regret convergence to the results in the literature while taking the improved features into account. Empirically, it achieves substantial improvements over existing methods, which is as significant as the gains existing methods have over the baseline (i.e., without distribution shift adaptations).
Spotlight Poster
Zhe Zhao · HaiBin Wen · Zikang Wang · Pengkun Wang · Fanfu Wang · Song Lai · Qingfu Zhang · Yang Wang

[ West Ballroom A-D ]

Abstract
Traditional long-tailed learning methods often perform poorly when dealing with inconsistencies between training and test data distributions, and they cannot flexibly adapt to different user preferences for trade-offs between head and tail classes. To address this issue, we propose a novel long-tailed learning paradigm that aims to tackle distribution shift in real-world scenarios and accommodate different user preferences for the trade-off between head and tail classes. We generate a set of diverse expert models via hypernetworks to cover all possible distribution scenarios, and optimize the model ensemble to adapt to any test distribution. Crucially, in any distribution scenario, we can flexibly output a dedicated model solution that matches the user's preference. Extensive experiments demonstrate that our method not only achieves higher performance ceilings but also effectively overcomes distribution shift while allowing controllable adjustments according to user preferences. We provide new insights and a paradigm for the long-tailed learning problem, greatly expanding its applicability in practical scenarios. The code can be found here: https://github.com/DataLab-atom/PRL.
Poster
Dmitry Shribak · Chen-Xiao Gao · Yitong Li · Chenjun Xiao · Bo Dai

[ West Ballroom A-D ]

Abstract
Diffusion-based models have achieved notable empirical successes in reinforcement learning (RL) due to their expressiveness in modeling complex distributions. Despite existing methods being promising, the key challenge of extending existing methods for broader real-world applications lies in the computational cost at inference time, i.e., sampling from a diffusion model is considerably slow as it often requires tens to hundreds of iterations to generate even one sample. To circumvent this issue, we propose to leverage the flexibility of diffusion models for RL from a representation learning perspective. In particular, by exploiting the connection between diffusion models and energy-based models, we develop Diffusion Spectral Representation (Diff-SR), a coherent algorithm framework that enables extracting sufficient representations for value functions in Markov decision processes (MDP) and partially observable Markov decision processes (POMDP). We further demonstrate how Diff-SR facilitates efficient policy optimization and practical algorithms while explicitly bypassing the difficulty and inference cost of sampling from the diffusion model. Finally, we provide comprehensive empirical studies to verify the benefits of Diff-SR in delivering robust and advantageous performance across various benchmarks with both fully and partially observable settings.
Poster
Dorian Baudry · Hugo Richard · Maria Cherifa · Vianney Perchet · Clément Calauzènes

[ West Ballroom A-D ]

Abstract
Motivated by online display advertising, this work considers repeated second-price auctions, where agents sample their value from an unknown distribution with cumulative distribution function $F$. In each auction $t$, a decision-maker bound by limited observations selects $n_t$ agents from a coalition of $N$ to compete for a prize with $p$ other agents, aiming to maximize the cumulative reward of the coalition across all auctions.The problem is framed as an $N$-armed structured bandit, each number of player sent being an arm $n$, with expected reward $r(n)$ fully characterized by $F$ and $p+n$. We present two algorithms, Local-Greedy (LG) and Greedy-Grid (GG), both achieving *constant* problem-dependent regret. This relies on three key ingredients: **1.** an estimator of $r(n)$ from feedback collected from any arm $k$, **2.** concentration bounds of these estimates for $k$ within an estimation neighborhood of $n$ and **3.** the unimodality property of $r$ under standard assumptions on $F$. Additionally, GG exhibits problem-independent guarantees on top of best problem-dependent guarantees. However, by avoiding to rely on confidence intervals, LG practically outperforms GG, as well as standard unimodal bandit algorithms such as OSUB or multi-armed bandit algorithms.
Poster
Bingqi Ma · ZHUOFAN ZONG · Guanglu Song · Hongsheng Li · Yu Liu

[ West Ballroom A-D ]

Abstract
Large language models based on decoder-only transformers have demonstrated superior text understanding capabilities compared to CLIP and T5-series models.However, the paradigm for utilizing current advanced LLMs in text-to-image diffusion models remains to be explored.We observed an unusual phenomenon: directly using a large language model as the prompt encoder significantly degrades the prompt-following ability in image generation.We identified two main obstacles behind this issue.One is the misalignment between the next token prediction training in LLM and the requirement for discriminative prompt features in diffusion models.The other is the intrinsic positional bias introduced by the decoder-only architecture.To deal with this issue, we propose a novel framework to fully harness the capabilities of LLMs.Through the carefully designed usage guidance, we effectively enhance the text representation capability of the LLM for prompt encoding and eliminate its inherent positional bias.This allows us to flexibly integrate state-of-the-art LLMs into the text-to-image generation model.Furthermore, we also provide an effective manner to fuse multiple LLMs into our framework.Considering the excellent performance and scaling capabilities demonstrated by the transformer architecture, we further design an LLM-Infused Diffusion Transformer (LI-DIT)based on the framework.We conduct extensive experiments to validate LI-DIT across model size and data size.Benefiting from the inherent ability of the …
Poster
Tianyu Chen · Zhendong Wang · Mingyuan Zhou

[ West Ballroom A-D ]

Abstract
Offline reinforcement learning (RL) leverages pre-collected datasets to train optimal policies. Diffusion Q-Learning (DQL), introducing diffusion models as a powerful and expressive policy class, significantly boosts the performance of offline RL. However, its reliance on iterative denoising sampling to generate actions slows down both training and inference. While several recent attempts have tried to accelerate diffusion-QL, the improvement in training and/or inference speed often results in degraded performance. In this paper, we introduce a dual policy approach, Diffusion Trusted Q-Learning (DTQL), which comprises a diffusion policy for pure behavior cloning and a practical one-step policy. We bridge the two polices by a newly introduced diffusion trust region loss. The diffusion policy maintains expressiveness, while the trust region loss directs the one-step policy to explore freely and seek modes within the region defined by the diffusion policy. DTQL eliminates the need for iterative denoising sampling during both training and inference, making it remarkably computationally efficient. We evaluate its effectiveness and algorithmic characteristics against popular Kullback-Leibler (KL) based distillation methods in 2D bandit scenarios and gym tasks. We then show that DTQL could not only outperform other methods on the majority of the D4RL benchmark tasks but also demonstrate efficiency in training …
Poster
Yang Zhou · Zhuoming Chen · Zhaozhuo Xu · Victoria Lin · Beidi Chen

[ West Ballroom A-D ]

Abstract
With the blossom of large language models (LLM), inference efficiency becomes increasingly important. Various approximate methods are proposed to reduce the cost at inference time. Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without significant performance degradation. However, after a comprehensive evaluation of contextual sparsity methods on various complex generation tasks, we find that although CS succeeds in prompt-understanding tasks, it significantly degrades the model performance for reasoning, deduction, and knowledge-based tasks. Despite the gap in end-to-end accuracy, we observed that sparse models and original models often share the general problem-solving logic and require only a few token corrections to recover the original model performance. This paper introduces SIRIUS, an efficient correction mechanism, which significantly boosts CS models on reasoning tasks while maintaining its efficiency gain. SIRIUS is evaluated on 6 models with 8 difficult generation tasks in reasoning, deduction, and coding and shows consistent effectiveness and efficiency. Also, we carefully develop a system implementation for SIRIUS and show that SIRIUS delivers theoretical latency reduction with roughly a 20% reduction in latency for 8B model on-chip and a 35% reduction in latency for 70B model offloading. We open-source our …
Poster
Yanping Li · Jingshen Wang · Waverly Wei

[ West Ballroom A-D ]

Abstract
Identifying subgroups with differential responses to treatment is pivotal in randomized clinical trials, as tailoring treatments to specific subgroups can advance personalized medicine. Upon trial completion, identifying best-performing subgroups–those with the most beneficial treatment effects–is crucial for optimizing resource allocation or mitigating adverse treatment effects. However, traditional clinical trials are not customized for the goal of identifying best-performing subgroups because they typically pre-define subgroups at the beginning of the trial and adhere to a fixed subgroup treatment allocation rule, leading to inefficient use of experimental efforts. While some adaptive experimental strategies exist for the identification of the single best subgroup, they commonly do not enable the identification of the best set of subgroups. To address these challenges, we propose a dynamic subgroup identification covariate-adjusted response-adaptive randomization (CARA) design strategy with the following key features: (i) Our approach is an adaptive experimental strategy that allows the dynamic identification of the best subgroups and the revision of treatment allocation towards the goal of correctly identifying the best subgroups based on collected experimental data. (ii) Our design handles ties between subgroups effectively, merging those with similar treatment effects to maximize experimental efficiency. In the theoretical investigations, we demonstrate that our design has a …
Poster
Qihao Liu · Zhanpeng Zeng · Ju He · Qihang Yu · Xiaohui Shen · Liang-Chieh Chen

[ West Ballroom A-D ]

Abstract
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization.Diffusion models have gained prominence for their effectiveness in high-fidelity image generation.While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability.However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length.While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions.To address this challenge, we propose augmenting the **Di**ffusion model with the **M**ulti-**R**esolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution.Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance.Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants surpass previous diffusion models, achieving FID scores of 1.70 on ImageNet $256 \times 256$ and 2.89 on ImageNet $512 \times 512$. Our best variant, DiMR-G, further establishes a state-of-the-art 1.63 FID on ImageNet $256 \times 256$.
Poster
WANG JIAWEI · Renhe Jiang · Chuang Yang · Zengqing Wu · makoto onizuka · Ryosuke Shibasaki · Noboru Koshizuka · Chuan Xiao

[ West Ballroom A-D ]

Abstract
This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and effective personal mobility generation. LLMs overcome the limitations of previous models by effectively processing semantic data and offering versatility in modeling various tasks. Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. We evaluate our LLM agent framework and compare it with state-of-the-art personal mobility generation approaches, demonstrating the effectiveness of our approach and its potential applications in urban mobility. Overall, this study marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.
Poster
Yiwei Ma · Jiayi Ji · Ke Ye · Weihuang Lin · Zhibin Wang · Yonghan Zheng · Qiang Zhou · Xiaoshuai Sun · Rongrong Ji

[ West Ballroom A-D ]

Abstract
Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new …
Poster
Xingchen Wan · Ruoxi Sun · Hootan Nakhost · Sercan Arik

[ West Ballroom A-D ]

Abstract
Large language models have demonstrated remarkable capabilities but their performance is heavily reliant on effective prompt engineering. Automatic prompt optimization (APO) methods are designed to automate this and can be broadly categorized into those targeting instructions (instruction optimization, IO) vs. those targeting exemplars (exemplar optimization, EO). Despite their shared objective, these have evolved rather independently, with IO receiving more research attention recently. This paper seeks to bridge this gap by comprehensively comparing the performance of representative IO and EO techniques both isolation and combination on a diverse set of challenging tasks. Our findings reveal that intelligently reusing model-generated input-output pairs obtained from evaluating prompts on the validation set as exemplars, consistently improves performance on top of IO methods but is currently under-investigated. We also find that despite the recent focus on IO, how we select exemplars can outweigh how we optimize instructions, with EO strategies as simple as random search outperforming state-of-the-art IO methods with seed instructions without any optimization. Moreover, we observe a synergy between EO and IO, with optimal combinations surpassing the individual contributions. We conclude that studying exemplar optimization both as a standalone method and its optimal combination with instruction optimization remain a crucial aspect of APO …
Poster
Thomas Fel · Louis Béthune · Andrew Lampinen · Thomas Serre · Katherine Hermann

[ West Ballroom A-D ]

Abstract
Recent studies suggest that deep learning models' inductive bias towards favoring simpler features may be an origin of shortcut learning. Yet, there has been limited focus on understanding the complexities of the myriad features that models learn. In this work, we introduce a new metric for quantifying feature complexity, based on V-information and capturing whether a feature requires complex computational transformations to be extracted. Using this V-information metric, we analyze the complexities of 10,000 features—represented as directions in the penultimate layer—that were extracted from a standard ImageNet-trained vision model. Our study addresses four key questions:First, we ask what features look like as a function of complexity, and find a spectrum of simple-to-complex features present within the model. Second, we ask when features are learned during training. We find that simpler features dominate early in training, and more complex features emerge gradually. Third, we investigate where within the network simple and complex features "flow," and find that simpler features tend to bypass the visual hierarchy via residual connections. Fourth, we explore the connection between features' complexity and their importance for driving the network's decision. We find that complex features tend to be less important. Surprisingly, important features become accessible at earlier …
Poster
Guibin Zhang · Haonan Dong · yuchen zhang · Zhixun Li · Dingshuo Chen · Kai Wang · Tianlong Chen · Yuxuan Liang · Dawei Cheng · Kun Wang

[ West Ballroom A-D ]

Abstract
Training high-quality deep models necessitates vast amounts of data, resulting in overwhelming computational and memory demands. Recently, data pruning, distillation, and coreset selection have been developed to streamline data volume by \textit{retaining}, \textit{synthesizing}, or \textit{selecting} a small yet informative subset from the full set. Among these methods, data pruning incurs the least additional training cost and offers the most practical acceleration benefits. However, it is the most vulnerable, often suffering significant performance degradation with imbalanced or biased data schema, thus raising concerns about its accuracy and reliability in on-device deployment. Therefore, there is a looming need for a new data pruning paradigm that maintains the efficiency of previous practices while ensuring balance and robustness.Unlike the fields of computer vision and natural language processing, where mature solutions have been developed to address these issues, graph neural networks (GNNs) continue to struggle with increasingly large-scale, imbalanced, and noisy datasets, lacking a unified dataset pruning solution. To achieve this, we introduce a novel dynamic soft-pruning method, \ourmethod, designed to update the training ``basket'' during the process using trainable prototypes. \ourmethod first constructs a well-modeled graph embedding hypersphere and then samples \textit{representative, balanced, and unbiased subsets} from this embedding space, which achieves the goal …
Poster
Ashok Vardhan Makkuva · Marco Bondaschi · Adway Girish · Alliot Nagle · Hyeji Kim · Michael Gastpar · Chanakya Ekbote

[ West Ballroom A-D ]

Abstract
In recent years, transformer-based models have revolutionized deep learning, particularly in sequence modeling. To better understand this phenomenon, there is a growing interest in using Markov input processes to study transformers. However, our current understanding in this regard remains limited with many fundamental questions about how transformers learn Markov chains still unanswered. In this paper, we address this by focusing on first-order Markov chains and single-layer transformers, providing a comprehensive characterization of the learning dynamics in this context. Specifically, we prove that transformer parameters trained on next-token prediction loss can either converge to global or local minima, contingent on the initialization and the Markovian data properties, and we characterize the precise conditions under which this occurs. To the best of our knowledge, this is the first result of its kind highlighting the role of initialization. We further demonstrate that our theoretical findings are corroborated by empirical evidence. Based on these insights, we provide guidelines for the initialization of single-layer transformers and demonstrate their effectiveness. Finally, we outline several open problems in this arena. Code is available at: \url{https://github.com/Bond1995/Markov}.
Poster
Zixian Huang · Wenhao Zhu · Gong Cheng · Lei Li · Fei Yuan

[ West Ballroom A-D ]

Abstract
Reasoning capabilities are crucial for Large Language Models~(LLMs), yet a notable gap exists between English and non-English languages. To bridge this disparity, some works fine-tune LLMs to relearn reasoning capabilities in non-English languages, while others replace non-English inputs with an external model's outputs such as English translation text to circumvent the challenge of LLM understanding non-English. Unfortunately, these methods often underutilize the built-in skilled reasoning and useful language understanding capabilities of LLMs. In order to better utilize the minds of reasoning and language understanding in LLMs, we propose a new method, namely MergeMinds, which merges LLMs with the external language understanding capabilities from multilingual models to boost the multilingual reasoning performance. Furthermore, a two-step training scheme is introduced to first train to embeded the external capabilities into LLMs and then train the collaborative utilization of the external capabilities and the built-in capabilities in LLMs. Experiments on three multilingual reasoning datasets and a language understanding dataset demonstrate that MergeMinds consistently outperforms all baselines, especially in low-resource languages. Without updating the parameters of LLMs, the average accuracy improved by 6.7 and 8.0 across all languages and low-resource languages on the MGSM dataset, respectively.
Poster
Yifei Wang · Yuyang Wu · Zeming Wei · Stefanie Jegelka · Yisen Wang

[ West Ballroom A-D ]

Abstract
Going beyond mimicking limited human experiences, recent studies show initial evidence that, like humans, large language models (LLMs) are capable of improving their abilities purely by self-correction, i.e., correcting previous responses through self-examination, as seen in models like OpenAI o1. Nevertheless, little is known about how such capabilities arise. In this work, based on a simplified setup akin to an alignment task, we theoretically analyze self-correction from an in-context learning perspective, showing that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way. Notably, going beyond previous theories on over-simplified linear transformers, our theoretical construction underpins the roles of several key designs of realistic transformers for self-correction: softmax attention, multi-head attention, and the MLP block. We validate these findings extensively on synthetic datasets. Inspired by these findings, we propose a simple self-correction strategy, Checking as Context (CaC), which finds novel applications in alleviating social bias and defending against LLM jailbreaks. We believe that these findings will inspire further research on understanding, exploiting, and enhancing self-correction for building better foundation models. Code is at https://github.com/yifeiwang77/Self-Correction.
Spotlight Poster
Yiming Wang · Kaiyan Zhao · Furui Liu · Leong Hou U

[ West Ballroom A-D ]

Abstract
Enhancing exploration in reinforcement learning (RL) through the incorporation of intrinsic rewards, specifically by leveraging *state discrepancy* measures within various metric spaces as exploration bonuses, has emerged as a prevalent strategy to encourage agents to visit novel states. The critical factor lies in how to quantify the difference between adjacent states as *novelty* for promoting effective exploration.Nonetheless, existing methods that evaluate state discrepancy in the latent space under $L_1$ or $L_2$ norm often depend on count-based episodic terms as scaling factors for exploration bonuses, significantly limiting their scalability. Additionally, methods that utilize the bisimulation metric for evaluating state discrepancies face a theory-practice gap due to improper approximations in metric learning, particularly struggling with *hard exploration* tasks. To overcome these challenges, we introduce the **E**ffective **M**etric-based **E**xploration-bonus (EME). EME critically examines and addresses the inherent limitations and approximation inaccuracies of current metric-based state discrepancy methods for exploration, proposing a robust metric for state discrepancy evaluation backed by comprehensive theoretical analysis. Furthermore, we propose the diversity-enhanced scaling factor integrated into the exploration bonus to be dynamically adjusted by the variance of prediction from an ensemble of reward models, thereby enhancing exploration effectiveness in particularly challenging scenarios. Extensive experiments are conducted on hard …
Oral Poster
Dongxiao He · Lianze Shan · Jitao Zhao · Hengrui Zhang · Zhen Wang · Weixiong Zhang

[ West Ballroom A-D ]

Abstract
Graph Contrastive Learning (GCL) has emerged as a powerful approach for generating graph representations without the need for manual annotation. Most advanced GCL methods fall into three main frameworks: node discrimination, group discrimination, and bootstrapping schemes, all of which achieve comparable performance. However, the underlying mechanisms and factors that contribute to their effectiveness are not yet fully understood. In this paper, we revisit these frameworks and reveal a common mechanism—representation scattering—that significantly enhances their performance. Our discovery highlights an essential feature of GCL and unifies these seemingly disparate methods under the concept of representation scattering. To leverage this insight, we introduce Scattering Graph Representation Learning (SGRL), a novel framework that incorporates a new representation scattering mechanism designed to enhance representation diversity through a center-away strategy. Additionally, consider the interconnected nature of graphs, we develop a topology-based constraint mechanism that integrates graph structural properties with representation scattering to prevent excessive scattering. We extensively evaluate SGRL across various downstream tasks on benchmark datasets, demonstrating its efficacy and superiority over existing GCL methods. Our findings underscore the significance of representation scattering in GCL and provide a structured framework for harnessing this mechanism to advance graph representation learning. The code of SGRL is at …
Poster
Valentyn Melnychuk · Stefan Feuerriegel · Mihaela van der Schaar

[ West Ballroom A-D ]

Abstract
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments. However, to make reliable inferences, medical practitioners require not only estimating averaged causal quantities, such as the conditional average treatment effect, but also understanding the randomness of the treatment effect as a random variable. This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect. Yet, the aleatoric uncertainty of the treatment effect has received surprisingly little attention in the causal machine learning community. To fill this gap, we aim to quantify the aleatoric uncertainty of the treatment effect at the covariate-conditional level, namely, the conditional distribution of the treatment effect (CDTE). Unlike average causal quantities, the CDTE is not point identifiable without strong additional assumptions. As a remedy, we employ partial identification to obtain sharp bounds on the CDTE and thereby quantify the aleatoric uncertainty of the treatment effect. We then develop a novel, orthogonal learner for the bounds on the CDTE, which we call AU-learner. We further show that our AU-learner has several strengths in that it satisfies Neyman-orthogonality and, thus, quasi-oracle efficiency. Finally, we propose a …
Poster
Shuai Li · Zhao Song · Yu Xia · Tong Yu · Tianyi Zhou

[ West Ballroom A-D ]

Abstract
Large language models (LLMs) are known for their exceptional performance in natural language processing, making them highly effective in many human life-related tasks. The attention mechanism in the Transformer architecture is a critical component of LLMs, as it allows the model to selectively focus on specific input parts. The softmax unit, which is a key part of the attention mechanism, normalizes the attention scores. Hence, the performance of LLMs in various NLP tasks depends significantly on the crucial role played by the attention mechanism with the softmax unit.In-context learning is one of the celebrated abilities of recent LLMs. Without further parameter updates, Transformers can learn to predict based on few in-context examples. However, the reason why Transformers becomes in-context learners is not well understood.Recently, in-context learning has been studied from a mathematical perspective with simplified linear self-attention without softmax unit. Based on a linear regression formulation $\min_x\| Ax - b \|_2$, existing works show linear Transformers' capability of learning linear functions in context. The capability of Transformers with softmax unit approaching full Transformers, however, remains unexplored.In this work, we study the in-context learning based on a softmax regression formulation $\min_{x} \| \langle \exp(Ax), {\bf 1}_n \rangle^{-1} \exp(Ax) - b \|_2$. …
Poster
Yufei Wang · Zhihao Li · Lanqing Guo · Wenhan Yang · Alex Kot · Bihan Wen

[ West Ballroom A-D ]

Abstract
Recently, 3D Gaussian Splatting (3DGS) has become a promising framework for novel view synthesis, offering fast rendering speeds and high fidelity. However, the large number of Gaussians and their associated attributes require effective compression techniques. Existing methods primarily compress neural Gaussians individually and independently, i.e., coding all the neural Gaussians at the same time, with little design for their interactions and spatial dependence. Inspired by the effectiveness of the context model in image compression, we propose the first autoregressive model at the anchor level for 3DGS compression in this work. We divide anchors into different levels and the anchors that are not coded yet can be predicted based on the already coded ones in all the coarser levels, leading to more accurate modeling and higher coding efficiency. To further improve the efficiency of entropy coding, e.g., to code the coarsest level with no already coded anchors, we propose to introduce a low-dimensional quantized feature as the hyperprior for each anchor, which can be effectively compressed. Our work pioneers the context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS and 15 times compared to the most recent state-of-the-art …
Poster
Botos Csaba · Wenxuan Zhang · Matthias Müller · Ser Nam Lim · Philip Torr · Adel Bibi

[ West Ballroom A-D ]

Abstract
Online continual learning, the process of training models on streaming data, has gained increasing attention in recent years. However, a critical aspect often overlooked is the label delay, where new data may not be labeled due to slow and costly annotation processes. We introduce a new continual learning framework with explicit modeling of the label delay between data and label streams over time steps. In each step, the framework reveals both unlabeled data from the current time step t and labels delayed with d steps, from the time step t−d. In our extensive experiments amounting to 1060 GPU days, we show that merely augmenting the computational resources is insufficient to tackle this challenge. Our findings underline a notable performance decline when solely relying on labeled data when the label delay becomes significant. More surprisingly, when using state-of-the-art SSL and TTA techniques to utilize the newer, unlabeled data, they fail to surpass the performance of a naïve method that simply trains on the delayed supervised stream. To this end, we introduce a simple, efficient baseline that rehearses from the labeled memory samples that are most similar to the new unlabeled samples. This method bridges the accuracy gap caused by label delay …
Poster
Xinyu Yang · Jixuan Leng · Geyang Guo · Jiawei Zhao · Ryumei Nakada · Linjun Zhang · Huaxiu Yao · Beidi Chen

[ West Ballroom A-D ]

Abstract
Current PEFT methods for LLMs can achieve high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S${^2}$FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S${^2}$FT accomplishes this by "selecting sparsely and computing densely". Based on the coupled structures in LLMs, \model selects a few attention heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes the weight matrices on both sides of all coupled structures to connect the selected subsets in each layer into a dense submatrix. Finally, S${^2}$FT performs in-place gradient updates on all selected submatrices.Through theoretical analyses and empirical results, our method prevents forgetting while simplifying optimization, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial back-propagation algorithm, S${^2}$FT saves training memory up to 3$\times$ and improves latency by 1.5-2.7$\times$ compared to full FT, while achieving an …
Spotlight Poster
Sukwon Yun · Inyoung Choi · Jie Peng · Yangfan Wu · Jingxuan Bao · Qiyiwen Zhang · Jiayi Xin · Qi Long · Tianlong Chen

[ West Ballroom A-D ]

Abstract
Multimodal learning has gained increasing importance across various fields, offering the ability to integrate data from diverse sources such as images, text, and personalized records, which are frequently observed in medical domains. However, in scenarios where some modalities are missing, many existing frameworks struggle to accommodate arbitrary modality combinations, often relying heavily on a single modality or complete data. This oversight of potential modality combinations limits their applicability in real-world situations. To address this challenge, we propose Flex-MoE (Flexible Mixture-of-Experts), a new framework designed to flexibly incorporate arbitrary modality combinations while maintaining robustness to missing data. The core idea of Flex-MoE is to first address missing modalities using a new missing modality bank that integrates observed modality combinations with the corresponding missing ones. This is followed by a uniquely designed Sparse MoE framework. Specifically, Flex-MoE first trains experts using samples with all modalities to inject generalized knowledge through the generalized router ($\mathcal{G}$-Router). The $\mathcal{S}$-Router then specializes in handling fewer modality combinations by assigning the top-1 gate to the expert corresponding to the observed modality combination. We evaluate Flex-MoE on the ADNI dataset, which encompasses four modalities in the Alzheimer's Disease domain, as well as on the MIMIC-IV dataset. The results …
Poster
wang lin · Jingyuan Chen · Jiaxin Shi · Zirun Guo · Yichen Zhu · Zehan Wang · Tao Jin · Zhou Zhao · Fei Wu · Shuicheng Yan · Hanwang Zhang

[ West Ballroom A-D ]

Abstract
We propose a novel method, \textbf{TwinAct}, to tackle the challenge of decoupling actions and actors in order to customize the text-guided diffusion models (TGDMs) for few-shot action image generation. TwinAct addresses the limitations of existing methods that struggle to decouple actions from other semantics (e.g., the actor's appearance) due to the lack of an effective inductive bias with few exemplar images. Our approach introduces a common action space, which is a textual embedding space focused solely on actions, enabling precise customization without actor-related details. Specifically, TwinAct involves three key steps: 1) Building common action space based on a set of representative action phrases; 2) Imitating the customized action within the action space; and 3) Generating highly adaptable customized action images in diverse contexts with action similarity loss. To comprehensively evaluate TwinAct, we construct a novel benchmark, which provides sample images with various forms of actions. Extensive experiments demonstrate TwinAct's superiority in generating accurate, context-independent customized actions while maintaining the identity consistency of different subjects, including animals, humans, and even customized actors.
Spotlight Poster
Zhengxuan Wu · Aryaman Arora · Zheng Wang · Atticus Geiger · Dan Jurafsky · Christopher D Manning · Christopher Potts

[ West Ballroom A-D ]

Abstract
Parameter-efficient finetuning (PEFT) methods seek to adapt large neural models via updates to a small number of *weights*. However, much prior interpretability work has shown that *representations* encode rich semantic information, suggesting that editing representations might be a more powerful alternative. We pursue this hypothesis by developing a family of **Representation Finetuning (ReFT)** methods. ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations. We define a strong instance of the ReFT family, Low-rank Linear Subspace ReFT (LoReFT), and we identify an ablation of this method that trades some performance for increased efficiency. Both are drop-in replacements for existing PEFTs and learn interventions that are 15x--65x more parameter-efficient than LoRA. We showcase LoReFT on eight commonsense reasoning tasks, four arithmetic reasoning tasks, instruction-tuning, and GLUE. In all these evaluations, our ReFTs deliver the best balance of efficiency and performance, and almost always outperform state-of-the-art PEFTs. Upon publication, we will publicly release our generic ReFT training library.
Poster
Yiting Chen · Junchi Yan

[ West Ballroom A-D ]

Abstract
Transformer-based large language models (LLMs) have successfully handled various tasks. As one fundamental module in Transformers, position encoding encodes the positional information of tokens in a sequence. Specifically, rotary position embedding (RoPE), one of the most widely used techniques, encodes the positional information by dividing the query or key value with $d$ elements into $d/2$ pairs and rotating the 2d vectors corresponding to each pair of elements. Therefore, the direction of each pair and the position-related rotation jointly determine the attention score. In this paper, we show that the direction of the 2d pair is largely affected by the angle between the corresponding weight vector pair. We theoretically show that non-orthogonal weight vector pairs lead to great attention on tokens at a certain relative position and are less sensitive to the input which may correspond to basic syntactic information. Meanwhile, the orthogonal weight vector pairs are more flexible regarding the relative position, which may correspond to high-level syntactic information. Empirical evidence supports the hypothesis that shallow layers of LLMs focus more on local syntax and deep layers focus more on high-level semantics. Furthermore, we show that LLMs fine-tuning mainly changes the pairs of weight vectors that are nearly orthogonal, i.e., …
Poster
Dang Nguyen · Paymon Haddad · Eric Gan · Baharan Mirzasoleiman

[ West Ballroom A-D ]

Abstract
Can we modify the training data distribution to encourage the underlying optimization method toward finding solutions with superior generalization performance on in-distribution data? In this work, we approach this question for the first time by comparing the inductive bias of gradient descent (GD) with that of sharpness-aware minimization (SAM). By studying a two-layer CNN, we rigorously prove that SAM learns different features more uniformly, particularly in early epochs. That is, SAM is less susceptible to simplicity bias compared to GD. We also show that examples constraining features that are learned early are separable from the rest based on the model’s output. Based on this observation, we propose a method that (i) clusters examples based on the network output early in training, (ii) identifies a cluster of examples with similar network output, and (iii) upsamples the rest of examples only once to alleviate the simplicity bias. We show empirically that USEFUL effectively improves the generalization performance on the original data distribution when training with various gradient methods, including (S)GD and SAM. Notably, we demonstrate that our method can be combined with SAM variants and existing data augmentation strategies to achieve, to the best of our knowledge, state-of-the-art performance for training ResNet18 …
Spotlight Poster
Rohan Choudhury · Guanglei Zhu · Sihan Liu · Koichiro Niinuma · Kris Kitani · László Jeni

[ West Ballroom A-D ]

Abstract
Video transformers are slow to train due to extremely large numbers of input tokens, even though many video tokens are repeated over time. Existing methods to remove uninformative tokens either have significant overhead, negating any speedup, or require tuning for different datasets and examples. We present Run-Length Tokenization (RLT), a simple approach to speed up video transformers inspired by run-length encoding for data compression. RLT efficiently finds and removes `runs' of patches that are repeated over time before model inference, then replaces them with a single patch and a positional encoding to represent the resulting token's new length. Our method is content-aware, requiring no tuning for different datasets, and fast, incurring negligible overhead. RLT yields a large speedup in training, reducing the wall-clock time to fine-tune a video transformer by 30% while matching baseline model performance. RLT also works without training, increasing model throughput by 35% with only 0.1% drop in accuracy.RLT speeds up training at 30 FPS by more than 100%, and on longer video datasets, can reduce the token count by up to 80\%. Our project page is at rccchoudhury.github.io/projects/rlt.
Poster
Jianke Yang · Wang Rao · Nima Dehmamy · Robin Walters · Rose Yu

[ West Ballroom A-D ]

Abstract
Despite the advancements in learning governing differential equations from observations of dynamical systems, data-driven methods are often unaware of fundamental physical laws, such as frame invariance. As a result, these algorithms may search an unnecessarily large space and discover less accurate or overly complex equations. In this paper, we propose to leverage symmetry in automated equation discovery to compress the equation search space and improve the accuracy and simplicity of the learned equations. Specifically, we derive equivariance constraints from the time-independent symmetries of ODEs. Depending on the types of symmetries, we develop a pipeline for incorporating symmetry constraints into various equation discovery algorithms, including sparse regression and genetic programming. In experiments across diverse dynamical systems, our approach demonstrates better robustness against noise and recovers governing equations with significantly higher probability than baselines without symmetry.
Poster
Michal Klein · Aram-Alexandre Pooladian · Pierre Ablin · Eugene Ndiaye · Jonathan Niles-Weed · Marco Cuturi

[ West Ballroom A-D ]

Abstract
Given a source and a target probability measure, the Monge problem studies efficient ways to map the former onto the latter.This efficiency is quantified by defining a *cost* function between source and target data. Such a cost is often set by default in the machine learning literature to the squared-Euclidean distance, $\ell^2\_2(\mathbf{x},\mathbf{y}):=\tfrac12\|\mathbf{x}-\mathbf{y}\|\_2^2$.The benefits of using *elastic* costs, defined using a regularizer $\tau$ as $c(\mathbf{x},\mathbf{y}):=\ell^2_2(\mathbf{x},\mathbf{y})+\tau(\mathbf{x}-\mathbf{y})$, was recently highlighted in (Cuturi et al. 2023). Such costs shape the *displacements* of Monge maps $T$, namely the difference between a source point and its image $T(\mathbf{x})-\mathbf{x}$, by giving them a structure that matches that of the proximal operator of $\tau$.In this work, we make two important contributions to the study of elastic costs:*(i)* For any elastic cost, we propose a numerical method to compute Monge maps that are provably optimal. This provides a much-needed routine to create synthetic problems where the ground-truth OT map is known, by analogy to the Brenier theorem, which states that the gradient of any convex potential is always a valid Monge map for the $\ell_2^2$ cost; *(ii)* We propose a loss to *learn* the parameter $\theta$ of a parameterized regularizer $\tau_\theta$, and apply it in the case where $\tau_{A}({\bf …
Poster
Leena Chennuru Vankadara · Jin Xu · Moritz Haas · Volkan Cevher

[ West Ballroom A-D ]

Abstract
This paper studies the scaling behavior of state-space models (SSMs) and their structured variants, such as Mamba, that have recently arisen in popularity as alternatives to transformer-based neural network architectures. Specifically, we focus on the capability of SSMs to learn features as their network width approaches infinity. Our findings reveal that established scaling rules, such as the Maximal Update Parameterization, fail to support feature learning as these models cannot be represented in the form of Tensor Programs. Additionally, we demonstrate that spectral scaling conditions, shown to be effective for feature learning in a host of other architectures, do not hold the same implications for SSMs. Through a detailed signal propagation analysis in SSMs, both forward and backward, we identify the appropriate scaling necessary for non-trivial feature evolution in the infinite-width limit. Our proposed scaling shows behavior akin to the Maximal Update Parameterization, such as improved stability, better generalization, and transferability of optimal hyper-parameters from small to large scale SSMs.
Poster
Wei Wu · Kecheng Zheng · Shuailei Ma · Fan Lu · Yuxin Guo · Yifei Zhang · Wei Chen · Qingpei Guo · Yujun Shen · Zheng-Jun Zha

[ West Ballroom A-D ]

Abstract
In this work, we empirically confirm that the key reason causing such an issue is that the training images are usually paired with short captions, leaving certain tokens easily overshadowed by salient tokens. Towards this problem, our initial attempt is to relabel the data with long captions, however, directly learning with which may lead to performance degradation in understanding short text (e.g., in the image classification task). Then, after incorporating corner tokens to aggregate diverse textual information, we manage to help the model catch up to its original level of short text understanding yet greatly enhance its capability of long text understanding. We further look into whether the model can continuously benefit from longer captions and notice a clear trade-off between the performance and the efficiency. Finally, we validate the effectiveness of our approach using a self-constructed large-scale dataset, which consists of 100M long caption oriented text-image pairs. Our method achieves superior performance in long-text-image retrieval tasks. The project page is available at https://wuw2019.github.io/lot-lip.
Poster
Jason Lee · Kazusato Oko · Taiji Suzuki · Denny Wu

[ West Ballroom A-D ]

Abstract
We study the problem of gradient descent learning of a single-index target function $f_*(\boldsymbol{x}) = \textstyle\sigma_*\left(\langle\boldsymbol{x},\boldsymbol{\theta}\rangle\right)$ under isotropic Gaussian data in $\mathbb{R}^d$, where the unknown link function $\sigma_*:\mathbb{R}\to\mathbb{R}$ has information exponent $p$ (defined as the lowest degree in the Hermite expansion). Prior works showed that gradient-based training of neural networks can learn this target with $n\gtrsim d^{\Theta(p)}$ samples, and such complexity is predicted to be necessary by the correlational statistical query lower bound. Surprisingly, we prove that a two-layer neural network optimized by an SGD-based algorithm (on the squared loss) learns $f_*$ with a complexity that is not governed by the information exponent. Specifically, for arbitrary polynomial single-index models, we establish a sample and runtime complexity of $n \simeq T = \Theta(d\cdot\mathrm{polylog} d)$, where $\Theta(\cdot)$ hides a constant only depending on the degree of $\sigma_*$; this dimension dependence matches the information theoretic limit up to polylogarithmic factors. More generally, we show that $n\gtrsim d^{(p_*-1)\vee 1}$ samples are sufficient to achieve low generalization error, where $p_* \le p$ is the \textit{generative exponent} of the link function. Core to our analysis is the reuse of minibatch in the gradient computation, which gives rise to higher-order information beyond correlational queries.
Poster
Leyan Deng · Chenwang Wu · Defu Lian · Enhong Chen

[ West Ballroom A-D ]

Abstract
Incomplete spatio-temporal data in real-world has spawned many research.However, existing methods often utilize iterative message-passing across temporal and spatial dimensions, resulting in substantial information loss and high computational cost.We provide a theoretical analysis revealing that such iterative models are not only susceptible to data sparsity but also to graph sparsity, causing unstable performances on different datasets.To overcome these limitations, we introduce a novel method named One-step Propagation and Confidence-based Refinement (OPCR).In the first stage, OPCR leverages inherent spatial and temporal relationships by employing sparse attention mechanism.These modules propagate limited observations directly to the global context through one-step imputation, which are theoretically effected only by data sparsity.Following this, we assign confidence levels to the initial imputations by correlating missing data with valid data.This confidence-based propagation refines the seperate spatial and temporal imputation results through spatio-temporal dependencies.We evaluate the proposed model across various downstream tasks involving highly sparse spatio-temporal data.Empirical results indicate that our model outperforms state-of-the-art imputation methods, demonstrating its superior effectiveness and robustness.
Poster
Keji He · Kehan Chen · Jiawang Bai · Yan Huang · Qi Wu · Shu-Tao Xia · Liang Wang

[ West Ballroom A-D ]

Abstract
Vision-and-Language Navigation (VLN) requires an agent to dynamically explore environments following natural language.The VLN agent, closely integrated into daily lives, poses a substantial threat to the security of privacy and property upon the occurrence of malicious behavior.However, this serious issue has long been overlooked.In this paper, we pioneer the exploration of an object-aware backdoored VLN, achieved by implanting object-aware backdoors during the training phase. Tailored to the unique VLN nature of cross-modality and continuous decision-making, we propose a novel backdoored VLN paradigm: IPR Backdoor. This enables the agent to act in abnormal behavior once encountering the object triggers during language-guided navigation in unseen environments, thereby executing an attack on the target scene.Experiments demonstrate the effectiveness of our method in both physical and digital spaces across different VLN agents, as well as its robustness to various visual and textual variations. Additionally, our method also well ensures navigation performance in normal scenarios with remarkable stealthiness.
Poster
Chengchang Liu · Chaowen Guan · Jianhao He · John C. S. Lui

[ West Ballroom A-D ]

Abstract
This paper considers the problem for finding the $(\delta,\epsilon)$-Goldstein stationary point of Lipschitz continuous objective, which is a rich function class to cover a great number of important applications. We construct a novel zeroth-order quantum estimator for the gradient of the smoothed surrogate. Based on such estimator, we propose a novel quantum algorithm that achieves a query complexity of $\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-3})$ on the stochastic function value oracle, where $d$ is the dimension of the problem. We also enhance the query complexity to $\tilde{\mathcal{O}}(d^{3/2}\delta^{-1}\epsilon^{-7/3})$ by introducing a variance reduction variant. Our findings demonstrate the clear advantages of utilizing quantum techniques for non-convex non-smooth optimization, as they outperform the optimal classical methods on the dependency of $\epsilon$ by a factor of $\epsilon^{-2/3}$.
Poster
Binghui Xie · Yixuan Wang · Yongqiang Chen · Kaiwen Zhou · Yu Li · Wei Meng · James Cheng

[ West Ballroom A-D ]

Abstract
Subset selection tasks, such as anomaly detection and compound selection in AI-assisted drug discovery, are crucial for a wide range of applications. Learning subset-valued functions with neural networks has achieved great success by incorporating permutation invariance symmetry into the architecture. However, existing neural set architectures often struggle to either capture comprehensive information from the superset or address complex interactions within the input. Additionally, they often fail to perform in scenarios where superset sizes surpass available memory capacity. To address these challenges, we introduce the novel concept of the Identity Property, which requires models to integrate information from the originating set, resulting in the development of neural networks that excel at performing effective subset selection from large supersets. Moreover, we present the Hierarchical Representation of Neural Subset Selection (HORSE), an attention-based method that learns complex interactions and retains information from both the input set and the optimal subset supervision signal. Specifically, HORSE enables the partitioning of the input ground set into manageable chunks that can be processed independently and then aggregated, ensuring consistent outcomes across different partitions. Through extensive experimentation, we demonstrate that HORSE significantly enhances neural subset selection performance by capturing more complex information and surpasses state-of-the-art methods in handling …
Poster
Changcai Li · Zonghua Gu · Gang Chen · Libo Huang · Wei Zhang · Huihui Zhou

[ West Ballroom A-D ]

Abstract
The ability to promptly respond to environmental changes is crucial for the perception system of autonomous driving. Recently, a new task called streaming perception was proposed. It jointly evaluate the latency and accuracy into a single metric for video online perception. In this work, we introduce StreamDSGN, the first real-time stereo-based 3D object detection framework designed for streaming perception. StreamDSGN is an end-to-end framework that directly predicts the 3D properties of objects in the next moment by leveraging historical information, thereby alleviating the accuracy degradation of streaming perception. Further, StreamDSGN applies three strategies to enhance the perception accuracy: (1) A feature-flow-based fusion method, which generates a pseudo-next feature at the current moment to address the misalignment issue between feature and ground truth. (2) An extra regression loss for explicit supervision of object motion consistency in consecutive frames. (3) A large kernel backbone with a large receptive field for effectively capturing long-range spatial contextual features caused by changes in object positions. Experiments on the KITTI Tracking dataset show that, compared with the strong baseline, StreamDSGN significantly improves the streaming average precision by up to 4.33%. Our code is available at https://github.com/weiyangdaren/streamDSGN-pytorch.

Test Of Time Fri 13 Dec 01:45 p.m.  

Ian Goodfellow · David Warde-Farley · Quoc Le

Generative Adversarial Nets Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

Presented by Ian Goodfellow and David Warde-Farley

Paper Abstract: We propose a new framework for estimating generative models via adversarial nets, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitatively evaluation of the generated samples.

Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le

Paper Abstract: Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.


Invited Talk: Rosalind Picard

How to optimize what matters most?

To ask a question remotely, visit Slido and enter #neurips2024?

Anything is optimal given the right criteria: What are the optimal criteria as we invent the future of AI?

This talk explores this question with a series of stories including the development of affective computing,

inspired in part by how the human brain uses emotion to help signal what matters to a person.

One of these types of signals can be measured on the surface of the skin and has contributed to today’s

AI+wearable technology helping save lives. As artificial emotional intelligence abilities grow, what have

we learned about how to build optimal AI to engineer a future for people that is truly better?

Hint: It's unlikely to be achieved with scaling up today's models.




Oral Session 6C: New Data Fri 13 Dec 03:30 p.m.  

Oral
Nikhil Khandekar · Qiao Jin · Guangzhi Xiong · Soren Dunn · Serina Applebaum · Zain Anwar · Maame Sarfo-Gyamfi · Conrad Safranek · Abid Anwar · Andrew Zhang · Aidan Gilson · Maxwell Singer · Amisha Dave · Anrew Taylor · Aidong Zhang · Qingyu Chen · Zhiyong Lu

[ East Meeting Room 1-3 ]

Abstract
Current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks. MedCalc-Bench is publicly available at: https://github.com/ncbi-nlp/MedCalc-Bench.
Oral
Christopher Wang · Adam Yaari · Aaditya Singh · Vighnesh Subramaniam · Dana Rosenfarb · Jan DeWitt · Pranav Misra · Joseph Madsen · Scellig Stone · Gabriel Kreiman · Boris Katz · Ignacio Cases · Andrei Barbu

[ East Meeting Room 1-3 ]

Abstract
We present the Brain Treebank, a large-scale dataset of electrophysiological neural responses, recorded from intracranial probes while 10 subjects watched one or more Hollywood movies. Subjects watched on average 2.6 Hollywood movies, for an average viewing time of 4.3 hours, and a total of 43 hours. The audio track for each movie was transcribed with manual corrections. Word onsets were manually annotated on spectrograms of the audio track for each movie. Each transcript was automatically parsed and manually corrected into the universal dependencies (UD) formalism, assigning a part of speech to every word and a dependency parse to every sentence. In total, subjects heard over 38,000 sentences (223,000 words), while they had on average 168 electrodes implanted. This is the largest dataset of intracranial recordings featuring grounded naturalistic language, one of the largest English UD treebanks in general, and one of only a few UD treebanks aligned to multimodal features. We hope that this dataset serves as a bridge between linguistic concepts, perception, and their neural representations. To that end, we present an analysis of which electrodes are sensitive to language features while also mapping out a rough time course of language processing across these electrodes. The Brain Treebank is …
Oral
Juan Nathaniel · Yongquan Qu · Tung Nguyen · Sungduk Yu · Julius Busecke · Aditya Grover · Pierre Gentine

[ East Meeting Room 1-3 ]

Abstract
Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster preparedness and robust decision making amidst climate change. Yet, forecasting beyond the weather timescale is challenging because it deals with problems other than initial condition, including boundary interaction, butterfly effect, and our inherent lack of physical understanding. At present, existing benchmarks tend to have shorter forecasting range of up-to 15 days, do not include a wide range of operational baselines, and lack physics-based constraints for explainability. Thus, we propose ChaosBench, a challenging benchmark to extend the predictability range of data-driven weather emulators to S2S timescale. First, ChaosBench is comprised of variables beyond the typical surface-atmospheric ERA5 to also include ocean, ice, and land reanalysis products that span over 45 years to allow for full Earth system emulation that respects boundary conditions. We also propose physics-based, in addition to deterministic and probabilistic metrics, to ensure a physically-consistent ensemble that accounts for butterfly effect. Furthermore, we evaluate on a diverse set of physics-based forecasts from four national weather agencies as baselines to our data-driven counterpart such as ViT/ClimaX, PanguWeather, GraphCast, and FourCastNetV2. Overall, we find methods originally developed for weather-scale applications fail on S2S task: their performance simply collapse to …

Session: Overflow for Oral Session 6B: Safety, New Data Fri 13 Dec 03:30 p.m.  


Oral Session 6D: Deep Learning Architecture, Infrastructure Fri 13 Dec 03:30 p.m.  

Oral
Yongzhe Jia · Xuyun Zhang · Hongsheng Hu · Kim-Kwang Raymond Choo · Lianyong Qi · Xiaolong Xu · Amin Beheshti · Wanchun Dou

[ West Exhibition Hall C, B3 ]

Abstract
Federated learning (FL) has emerged as a prominent machine learning paradigm in edge computing environments, enabling edge devices to collaboratively optimize a global model without sharing their private data. However, existing FL frameworks suffer from efficacy deterioration due to the system heterogeneity inherent in edge computing, especially in the presence of domain shifts across local data. In this paper, we propose a heterogeneous FL framework DapperFL, to enhance model performance across multiple domains. In DapperFL, we introduce a dedicated Model Fusion Pruning (MFP) module to produce personalized compact local models for clients to address the system heterogeneity challenges. The MFP module prunes local models with fused knowledge obtained from both local and remaining domains, ensuring robustness to domain shifts. Additionally, we design a Domain Adaptive Regularization (DAR) module to further improve the overall performance of DapperFL. The DAR module employs regularization generated by the pruned model, aiming to learn robust representations across domains. Furthermore, we introduce a specific aggregation algorithm for aggregating heterogeneous local models with tailored architectures and weights. We implement DapperFL on a real-world FL platform with heterogeneous clients. Experimental results on benchmark datasets with multiple domains demonstrate that DapperFL outperforms several state-of-the-art FL frameworks by up to …
Oral
Yutao Sun · Li Dong · Yi Zhu · Shaohan Huang · Wenhui Wang · Shuming Ma · Quanlu Zhang · Jianyong Wang · Furu Wei

[ West Exhibition Hall C, B3 ]

Abstract
We introduce a decoder-decoder architecture, YOCO, for large language models, which only caches key-value pairs once. It consists of two components, i.e., a cross-decoder stacked upon a self-decoder. The self-decoder efficiently encodes global key-value (KV) caches that are reused by the cross-decoder via cross-attention. The overall model behaves like a decoder-only Transformer, although YOCO only caches once. The design substantially reduces GPU memory demands, yet retains global attention capability. Additionally, the computation flow enables prefilling to early exit without changing the final output, thereby significantly speeding up the prefill stage. Experimental results demonstrate that YOCO achieves favorable performance compared to Transformer in various settings of scaling up model size and number of training tokens. We also extend YOCO to 1M context length with near-perfect needle retrieval accuracy. The profiling results show that YOCO improves inference memory, prefill latency, and throughput by orders of magnitude across context lengths and model sizes.
Oral
YUHONG CHOU · Man Yao · Kexin Wang · Yuqi Pan · Rui-Jie Zhu · Jibin Wu · Yiran Zhong · Yu Qiao · Bo Xu · Guoqi Li

[ West Exhibition Hall C, B3 ]

Abstract
Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: (1) Dynamic memory ability; (2) Static approximation ability; (3) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.

Oral Session 6A: Machine Learning and Science, Safety Fri 13 Dec 03:30 p.m.  

Oral
Nicholas Gao · Stephan Günnemann

[ East Ballroom A, B ]

Abstract
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the `gold-standard' CCSD(T) CBS reference energies by 1.9m$E_h$ and reduce energy errors compared to previous generalized neural wave functions by up to an order of magnitude.
Oral
Yubin Kim · Chanwoo Park · Hyewon Jeong · Yik Siu Chan · Xuhai "Orson" Xu · Daniel McDuff · Hyeonhoon Lee · Marzyeh Ghassemi · Cynthia Breazeal · Hae Park

[ East Ballroom A, B ]

Abstract
Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named **M**edical **D**ecision-making **Agents** (**MDAgents**) that helps to address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, a simple emulation inspired by the way real-world medical decision-making processes are adapted to tasks of different complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and clinical diagnosis benchmarks, including a comparison ofLLMs’ medical complexity classification against human physicians. MDAgents achieved the **best performance in seven out of ten** benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant **improvement of up to 4.2\%** ($p$ < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy **improvement of 11.8\%**. Our …
Oral
Gang Liu · Jiaxin Xu · Tengfei Luo · Meng Jiang

[ East Ballroom A, B ]

Abstract
Inverse molecular design with diffusion models holds great potential for advancements in material and drug discovery. Despite success in unconditional molecule generation, integrating multiple properties such as synthetic score and gas permeability as condition constraints into diffusion models remains unexplored. We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation. Graph DiT has a condition encoder to learn the representation of numerical and categorical properties and utilizes a Transformer-based graph denoiser to achieve molecular graph denoising under conditions. Unlike previous graph diffusion models that add noise separately on the atoms and bonds in the forward diffusion process, we propose a graph-dependent noise model for training Graph DiT, designed to accurately estimate graph-related noise in molecules. We extensively validate the Graph DiT for multi-conditional polymer and small molecule generation. Results demonstrate our superiority across metrics from distribution learning to condition control for molecular properties. A polymer inverse design task for gas separation with feedback from domain experts further demonstrates its practical utility. The code is available at https://github.com/liugangcode/Graph-DiT.

Oral Session 6B: Safety, New Data Fri 13 Dec 03:30 p.m.  

Oral
Jiaming Ji · Boyuan Chen · Hantao Lou · Donghai Hong · Borong Zhang · Xuehai Pan · Tianyi (Alex) Qiu · Juntao Dai · Yaodong Yang

[ West Meeting Room 211-214 ]

Abstract
With the rapid development of large language models (LLMs) and ever-evolving practical requirements, finding an efficient and effective alignment method has never been more critical. However, the tension between the complexity of current alignment methods and the need for rapid iteration in deployment scenarios necessitates the development of a model-agnostic alignment approach that can operate under these constraints. In this paper, we introduce Aligner, a novel and simple alignment paradigm that learns the correctional residuals between preferred and dispreferred answers using a small model. Designed as a model-agnostic, plug-and-play module, Aligner can be directly applied to various open-source and API-based models with only one-off training, making it suitable for rapid iteration. Notably, Aligner can be applied to any powerful, large-scale upstream models. Moreover, it can even iteratively bootstrap the upstream models using corrected responses as synthetic human preference data, breaking through the model's performance ceiling. Our experiments demonstrate performance improvements by deploying the same Aligner model across 11 different LLMs, evaluated on the 3H dimensions (helpfulness, harmlessness, and honesty). Specifically, Aligner-7B has achieved an average improvement of 68.9% in helpfulness and 22.8% in harmlessness across the tested LLMs while also effectively reducing hallucination. In the Alpaca-Eval leaderboard, stacking Aligner-2B on …
Oral
Chengyi Cai · Zesheng Ye · Lei Feng · Jianzhong Qi · Feng Liu

[ West Meeting Room 211-214 ]

Abstract
*Visual reprogramming* (VR) leverages the intrinsic capabilities of pretrained vision models by adapting their input or output interfaces to solve downstream tasks whose labels (i.e., downstream labels) might be totally different from the labels associated with the pretrained models (i.e., pretrained labels). When adapting the output interface, label mapping methods transform the pretrained labels to downstream labels by establishing a gradient-free one-to-one correspondence between the two sets of labels.However, in this paper, we reveal that one-to-one mappings may overlook the complex relationship between pretrained and downstream labels. Motivated by this observation, we propose a ***B**ayesian-guided **L**abel **M**apping* (BLM) method. BLM constructs an iteratively-updated probabilistic label mapping matrix, with each element quantifying a pairwise relationship between pretrained and downstream labels.The assignment of values to the constructed matrix is guided by Bayesian conditional probability, considering the joint distribution of the downstream labels and the labels predicted by the pretrained model on downstream samples. Experiments conducted on both pretrained vision models (e.g., ResNeXt) and vision-language models (e.g., CLIP) demonstrate the superior performance of BLM over existing label mapping methods. The success of BLM also offers a probabilistic lens through which to understand and analyze the effectiveness of VR.Our code is available at https://github.com/tmlr-group/BayesianLM.
Oral
Dora Zhao · Morgan Scheuerman · Pooja Chitre · Jerone Andrews · Georgia Panagiotidou · Shawn Walker · Kathleen Pine · Alice Xiang

[ West Meeting Room 211-214 ]

Abstract
Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade-offs encountered throughout the dataset curation lifecycle. Our findings underscore overarching issues within the broader fairness landscape that impact data curation. We conclude with recommendations aimed at fostering systemic changes to better facilitate fair dataset curation practices.

Session: Overflow for Oral Session 6C: New Data Fri 13 Dec 03:30 p.m.  


Poster Session 6 East Fri 13 Dec 04:30 p.m.  

Poster
Saehyung Lee · Jisoo Mok · Sangha Park · Yongho Shin · Dahuin Jung · Sungroh Yoon

[ East Exhibit Hall A-C ]

Abstract
In our study, we explore methods for detecting unwanted content lurking in visual datasets. We provide a theoretical analysis demonstrating that a model capable of successfully partitioning visual data can be obtained using only textual data. Based on the analysis, we propose Hassle-Free Textual Training (HFTT), a streamlined method capable of acquiring detectors for unwanted visual content, using only textual data in conjunction with pre-trained vision-language models. HFTT features an innovative objective function that significantly reduces the necessity for human involvement in data annotation. Furthermore, HFTT employs a clever textual data synthesis method, effectively emulating the integration of unknown visual data distribution into the training process at no extra cost. The unique characteristics of HFTT extend its utility beyond traditional out-of-distribution detection, making it applicable to tasks that address more abstract concepts. We complement our analyses with experiments in hateful image detection and out-of-distribution detection. Our codes are available at https://github.com/HFTT-anonymous/HFTT.
Poster
Yehu Chen · Muchen Xi · Joshua Jackson · Jacob Montgomery · Roman Garnett

[ East Exhibit Hall A-C ]

Abstract
We develop a novel measurement framework based on Gaussian process coregionalization model to address a long-lasting debate in psychometrics: whether psychological features like personality share a common structure across the population or vary uniquely for individuals. We propose idiographic personality Gaussian process (IPGP), an intermediate model that accommodates both shared trait structure across individuals and "idiographic" deviations. IPGP leverages the Gaussian process coregionalization model to conceptualize responses of grouped survey batteries but adjusted to non-Gaussian ordinal data, and exploits stochastic variational inference for latent factor estimation. Using both synthetic data and a novel survey, we show that IPGP improves both prediction of actual responses and estimation of intrapersonal response patterns compared to existing benchmarks. In the survey study, IPGP also identifies unique clusters of personality taxonomies, displaying great potential in advancing individualized approaches to psychological diagnosis.
Poster
Lei Huang · Lei Xiong · Na Sun · Zunpeng Liu · Ka-Chun Wong · Manolis Kellis

[ East Exhibit Hall A-C ]

Abstract
The rapid advancement of single-cell ATAC sequencing (scATAC-seq) technologies holds great promise for investigating the heterogeneity of epigenetic landscapes at the cellular level. The amplification process in scATAC-seq experiments often introduces noise due to dropout events, which results in extreme sparsity that hinders accurate analysis. Consequently, there is a significant demand for the generation of high-quality scATAC-seq data in silico. Furthermore, current methodologies are typically task-specific, lacking a versatile framework capable of handling multiple tasks within a single model. In this work, we propose ATAC-Diff, a versatile framework, which is based on a diffusion model conditioned on the latent auxiliary variables to adapt for various tasks. ATAC-Diff is the first diffusion model for the scATAC-seq data generation and analysis, composed of auxiliary modules encoding the latent high-level variables to enable the model to learn the semantic information to sample high-quality data. Gaussian Mixture Model (GMM) as the latent prior and auxiliary decoder, the yield variables reserve the refined genomic information beneficial for downstream analyses. Another innovation is the incorporation of mutual information between observed and hidden variables as a regularization term to prevent the model from decoupling from latent variables. Through extensive experiments, we demonstrate that ATAC-Diff achieves high performance …
Poster
Adam Sun · Tiange Xiang · Scott Delp · Fei-Fei Li · Ehsan Adeli

[ East Exhibit Hall A-C ]

Abstract
Existing human rendering methods require every part of the human to be fully visible throughout the input video. However, this assumption does not hold in real-life settings where obstructions are common, resulting in only partial visibility of the human. Considering this, we present OccFusion, an approach that utilizes efficient 3D Gaussian splatting supervised by pretrained 2D diffusion models for efficient and high-fidelity human rendering. We propose a pipeline consisting of three stages. In the Initialization stage, complete human masks are generated from partial visibility masks. In the Optimization stage, 3D human Gaussians are optimized with additional supervisions by Score-Distillation Sampling (SDS) to create a complete geometry of the human. Finally, in the Refinement stage, in-context inpainting is designed to further improve rendering quality on the less observed human body parts. We evaluate OccFusion on ZJU-MoCap and challenging OcMotion sequences and found that it achieves state-of-the-art performance in the rendering of occluded humans.
Poster
Shihao Tu · Yupeng Zhang · Jing Zhang · Zhendong Fu · Yin Zhang · YANG YANG

[ East Exhibit Hall A-C ]

Abstract
The proliferation of abundant electricity time series (ETS) data presents numerous opportunities for various applications within power systems, including demand-side management, grid stability, and consumer behavior analysis. Deep learning models have advanced ETS modeling by effectively capturing sequence dependence. However, learning a generic representation of ETS data for various applications is challenging due to the inherently complex hierarchical structure of ETS data. Moreover, ETS data exhibits intricate temporal dependencies and is susceptible to the influence of exogenous variables. Furthermore, different instances exhibit diverse electricity consumption behavior. In this paper, we propose a foundation model PowerPM for ETS data, providing a large-scale, off-the-shelf model for power systems. PowerPM consists of a temporal encoder and a hierarchical encoder. The temporal encoder captures temporal dependencies within ETS data, taking into account exogenous variables. The hierarchical encoder models correlations between different levels of hierarchy. Furthermore, PowerPM leverages a novel self-supervised pre-training framework consisting of masked ETS modeling and dual-view contrastive learning. This framework enables PowerPM to capture temporal dependency within ETS windows and aware the discrepancy across ETS windows, providing two different perspectives to learn generic representation. Our experiments span five real-world scenario datasets, including both private and public data. Through pre-training on massive …
Poster
Hao Tang · Keya Hu · Jin Zhou · Si Cheng Zhong · Wei-Long Zheng · Xujie Si · Kevin Ellis

[ East Exhibit Hall A-C ]

Abstract
Iteratively improving and repairing source code with large language models (LLMs), known as refinement, has emerged as a popular way of generating programs that would be too complex to construct in one shot. Given a bank of test cases, together with a candidate program, an LLM can improve that program by being prompted with failed test cases. But it remains an open question how to best iteratively refine code, with prior work employing simple greedy or breadth-first strategies. We show here that refinement exposes an explore-exploit tradeoff: exploit by refining the program that passes the most test cases, or explore by refining a lesser considered program. We frame this as an arm-acquiring bandit problem, which we solve with Thompson Sampling. The resulting LLM-based program synthesis algorithm is broadly applicable: Across loop invariant synthesis, visual reasoning puzzles, and competition programming problems, we find that our new method can solve more problems using fewer language model calls.
Poster
Yidong Wang · Qi Guo · Wenjin Yao · Hongbo Zhang · Xin Zhang · Zhen Wu · Meishan Zhang · Xinyu Dai · Min zhang · Qingsong Wen · Wei Ye · Shikun Zhang · Yue Zhang

[ East Exhibit Hall A-C ]

Abstract
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.
Oral Poster
Yubin Kim · Chanwoo Park · Hyewon Jeong · Yik Siu Chan · Xuhai "Orson" Xu · Daniel McDuff · Hyeonhoon Lee · Marzyeh Ghassemi · Cynthia Breazeal · Hae Park

[ East Exhibit Hall A-C ]

Abstract
Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named **M**edical **D**ecision-making **Agents** (**MDAgents**) that helps to address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, a simple emulation inspired by the way real-world medical decision-making processes are adapted to tasks of different complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and clinical diagnosis benchmarks, including a comparison ofLLMs’ medical complexity classification against human physicians. MDAgents achieved the **best performance in seven out of ten** benchmarks on tasks requiring an understanding of medical knowledge and multi-modal reasoning, showing a significant **improvement of up to 4.2\%** ($p$ < 0.05) compared to previous methods' best performances. Ablation studies reveal that MDAgents effectively determines medical complexity to optimize for efficiency and accuracy across diverse medical tasks. Notably, the combination of moderator review and external medical knowledge in group collaboration resulted in an average accuracy **improvement of 11.8\%**. Our …
Poster
Heewoong Noh · Namkyeong Lee · Gyoung S. Na · Chanyoung Park

[ East Exhibit Hall A-C ]

Abstract
While inorganic retrosynthesis planning is essential in the field of chemical science, the application of machine learning in this area has been notably less explored compared to organic retrosynthesis planning. In this paper, we propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials that are retrieved from the knowledge base regarding domain expertise in the field. Specifically, instead of directly employing the precursor information of reference materials, we propose implicitly extracting it with various attention layers, which enables the model to learn novel synthesis recipes more effectively.Moreover, during retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise in identifying the most probable precursor set among various options. Extensive experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes, which is crucial for materials discovery.The source code for Retrieval-Retro is available at https://github.com/HeewoongNoh/Retrieval-Retro.
Poster
Ezra Edelman · Nikolaos Tsilivis · Benjamin Edelman · Eran Malach · Surbhi Goel

[ East Exhibit Hall A-C ]

Abstract
Large language models have the ability to generate text that mimics patterns in their inputs. We introduce a simple Markov Chain sequence modeling task in order to study how this in-context learning capability emerges. In our setting, each example is sampled from a Markov chain drawn from a prior distribution over Markov chains. Transformers trained on this task form \emph{statistical induction heads} which compute accurate next-token probabilities given the bigram statistics of the context. During the course of training, models pass through multiple phases: after an initial stage in which predictions are uniform, they learn to sub-optimally predict using in-context single-token statistics (unigrams); then, there is a rapid phase transition to the correct in-context bigram solution. We conduct an empirical and theoretical investigation of this multi-phase process, showing how successful learning results from the interaction between the transformer's layers, and uncovering evidence that the presence of the simpler unigram solution may delay formation of the final bigram solution. We examine how learning is affected by varying the prior distribution over Markov chains, and consider the generalization of our in-context learning of Markov chains (ICL-MC) task to $n$-grams for $n > 2$.
Poster
Bowen Ping · Shuo Wang · Hanqing Wang · Xu Han · Yuzhuang Xu · Yukun Yan · Yun Chen · Baobao Chang · Zhiyuan Liu · Maosong Sun

[ East Exhibit Hall A-C ]

Abstract
Fine-tuning is a crucial process for adapting large language models (LLMs) to diverse applications. In certain scenarios, such as multi-tenant serving, deploying multiple LLMs becomes necessary to meet complex demands. Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs. In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs (e.g., WizardMath for math problems). Motivated by the long-tail distribution of singular values in the delta weights, we propose a delta quantization approach using mixed-precision. This method employs higher-bit representation for singular vectors corresponding to larger singular values. We evaluate our approach on various fine-tuned LLMs, including math LLMs, code LLMs, chat LLMs, and even VLMs. Experimental results demonstrate that our approach performs comparably to full fine-tuned LLMs, surpassing both low-rank and low-bit baselines by a considerable margin. Additionally, we show that our method is compatible with various backbone LLMs, such as Llama-2, Llama-3, and Mistral, highlighting its generalizability.
Poster
Suhan Cui · Prasenjit Mitra

[ East Exhibit Hall A-C ]

Abstract
In the realm of big data and digital healthcare, Electronic Health Records (EHR) have become a rich source of information with the potential to improve patient care and medical research. In recent years, machine learning models have proliferated for analyzing EHR data to predict patients' future health conditions. Among them, some studies advocate for multi-task learning (MTL) to jointly predict multiple target diseases for improving the prediction performance over single task learning. Nevertheless, current MTL frameworks for EHR data have significant limitations due to their heavy reliance on human experts to identify task groups for joint training and design model architectures. To reduce human intervention and improve the framework design, we propose an automated approach named AutoDP, which can search for the optimal configuration of task grouping and architectures simultaneously. To tackle the vast joint search space encompassing task combinations and architectures, we employ surrogate model-based optimization, enabling us to efficiently discover the optimal solution. Experimental results on real-world EHR data demonstrate the efficacy of the proposed AutoDP framework. It achieves significant performance improvements over both hand-crafted and automated state-of-the-art methods, also maintains a feasible search cost at the same time.
Poster
Shihao Tu · Linfeng Cao · Daoze Zhang · Junru Chen · Lvbin Ma · Yin Zhang · YANG YANG

[ East Exhibit Hall A-C ]

Abstract
Automated seizure detection (ASD) using intracranial electroencephalography (iEEG) is critical for effective epilepsy treatment. However, the significant domain shift of iEEG signals across subjects poses a major challenge, limiting their applicability in real-world clinical scenarios. In this paper, we address this issue by analyzing the primary cause behind the failure of existing iEEG models for subject-independent seizure detection, and identify a critical universal seizure pattern: seizure events consistently exhibit higher average amplitude compared to adjacent normal events. To mitigate the domain shifts and preserve the universal seizure patterns, we propose a novel self-comparison mechanism. This mechanism effectively aligns iEEG signals across subjects and time intervals. Building upon these findings, we propose Difference Matrix-based Neural Network (DMNet), a subject-independent seizure detection model, which leverages self-comparison based on two constructed (contextual, channel-level) references to mitigate shifts of iEEG, and utilize a simple yet effective difference matrix to encode the universal seizure patterns. Extensive experiments show that DMNet significantly outperforms previous SOTAs while maintaining high efficiency on a real-world clinical dataset collected by us and two public datasets for subject-independent seizure detection. Moreover, the visualization results demonstrate that the generated difference matrix can effectively capture the seizure activity changes during the seizure evolution …
Poster
Guangzhao Cheng · Chengbo Fu · Lu Cheng

[ East Exhibit Hall A-C ]

Abstract
Nanopore sequencing is the third-generation sequencing technology with capabilities of generating long-read sequences and directly measuring modifications on DNA/RNA molecules, which makes it ideal for biological applications such as human Telomere-to-Telomere (T2T) genome assembly, Ebola virus surveillance and COVID-19 mRNA vaccine development. However, accuracies of computational methods in various tasks of Nanopore sequencing data analysis are far from satisfactory. For instance, the base calling accuracy of Nanopore RNA sequencing is $\sim$90\%, while the aim is $\sim$99.9\%. This highlights an urgent need of contributions from the machine learning community. A bottleneck that prevents machine learning researchers from entering this field is the lack of a large integrated benchmark dataset. To this end, we present NanoBaseLib, a comprehensive multi-task benchmark dataset. It integrates 16 public datasets with over 30 million reads for four critical tasks in Nanopore data analysis. To facilitate method development, we have preprocessed all the raw data using a uniform workflow, stored all the intermediate results in uniform formats, analysed test datasets with various baseline methods for four benchmark tasks, and developed a software package to easily access these results. NanoBaseLib is available at https://nanobaselib.github.io.
Poster
Hirofumi Tsuruta · Hiroyuki Yamazaki · Ryota Maeda · Ryotaro Tamura · Akihiro Imura

[ East Exhibit Hall A-C ]

Abstract
Antibodies are crucial proteins produced by the immune system to eliminate harmful foreign substances and have become pivotal therapeutic agents for treating human diseases.To accelerate the discovery of antibody therapeutics, there is growing interest in constructing language models using antibody sequences.However, the applicability of pre-trained language models for antibody discovery has not been thoroughly evaluated due to the scarcity of labeled datasets.To overcome these limitations, we introduce AVIDa-SARS-CoV-2, a dataset featuring the antigen-variable domain of heavy chain of heavy chain antibody (VHH) interactions obtained from two alpacas immunized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins.AVIDa-SARS-CoV-2 includes binary labels indicating the binding or non-binding of diverse VHH sequences to 12 SARS-CoV-2 mutants, such as the Delta and Omicron variants.Furthermore, we release VHHCorpus-2M, a pre-training dataset for antibody language models, containing over two million VHH sequences.We report benchmark results for predicting SARS-CoV-2-VHH binding using VHHBERT pre-trained on VHHCorpus-2M and existing general protein and antibody-specific pre-trained language models.These results confirm that AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction, thereby facilitating the development of AI-driven antibody discovery.The datasets are available at https://datasets.cognanous.com.
Poster
Lifeng Qiao · Peng Ye · Yuchen Ren · Weiqiang Bai · Chaoqi Liang · Xinzhu Ma · Nanqing Dong · Wanli Ouyang

[ East Exhibit Hall A-C ]

Abstract
Foundation models have made significant strides in understanding the genomic language of DNA sequences. However, previous models typically adopt the tokenization methods designed for natural language, which are unsuitable for DNA sequences due to their unique characteristics. In addition, the optimal approach to tokenize DNA remains largely under-explored, and may not be intuitively understood by humans even if discovered. To address these challenges, we introduce MxDNA, a novel framework where the model autonomously learns an effective DNA tokenization strategy through gradient decent. MxDNA employs a sparse Mixture of Convolution Experts coupled with a deformable convolution to model the tokenization process, with the discontinuous, overlapping, and ambiguous nature of meaningful genomic segments explicitly considered. On Nucleotide Transformer Benchmarks and Genomic Benchmarks, MxDNA demonstrates superior performance to existing methods with less pretraining data and time, highlighting its effectiveness. Finally, we show that MxDNA learns unique tokenization strategy distinct to those of previous methods and captures genomic functionalities at a token level during self-supervised pretraining. Our MxDNA aims to provide a new perspective on DNA tokenization, potentially offering broad applications in various domains and yielding profound insights. Code is available at https://github.com/qiaoqiaoLF/MxDNA.
Poster
Leon Klein · Frank Noe

[ East Exhibit Hall A-C ]

Abstract
The generation of equilibrium samples of molecular systems has been a long-standing problem in statistical physics. Boltzmann Generators are a generative machine learning method that addresses this issue by learning a transformation via a normalizing flow from a simple prior distribution to the target Boltzmann distribution of interest. Recently, flow matching has been employed to train Boltzmann Generators for small molecular systems in Cartesian coordinates. We extend this work and propose a first framework for Boltzmann Generators that are transferable across chemical space, such that they predict zero-shot Boltzmann distributions for test molecules without being retraining for these systems. These transferable Boltzmann Generators allow approximate sampling from the target distribution of unseen systems, as well as efficient reweighting to the target Boltzmann distribution. The transferability of the proposed framework is evaluated on dipeptides, where we show that it generalizes efficiently to unseen systems.Furthermore, we demonstrate that our proposed architecture enhances the efficiency of Boltzmann Generators trained on single molecular systems.
Spotlight Poster
Abdulkadir Celikkanat · Andres Masegosa · Thomas Nielsen

[ East Exhibit Hall A-C ]

Abstract
Obtaining effective representations of DNA sequences is crucial for genome analysis. Metagenomic binning, for instance, relies on genome representations to cluster complex mixtures of DNA fragments from biological samples with the aim of determining their microbial compositions. In this paper, we revisit k-mer-based representations of genomes and provide a theoretical analysis of their use in representation learning. Based on the analysis, we propose a lightweight and scalable model for performing metagenomic binning at the genome read level, relying only on the k-mer compositions of the DNA fragments. We compare the model to recent genome foundation models and demonstrate that while the models are comparable in performance, the proposed model is significantly more effective in terms of scalability, a crucial aspect for performing metagenomic binning of real-world data sets.
Poster
Axel Levy · Rishwanth Raghu · David Shustin · Adele Peng · Huan Li · Oliver Clarke · Gordon Wetzstein · Ellen Zhong

[ East Exhibit Hall A-C ]

Abstract
Cryo-electron microscopy (cryo-EM) is an experimental technique for protein structure determination that images an ensemble of macromolecules in near-physiological contexts. While recent advances enable the reconstruction of dynamic conformations of a single biomolecular complex, current methods do not adequately model samples with mixed conformational and compositional heterogeneity. In particular, datasets containing mixtures of multiple proteins require the joint inference of structure, pose, compositional class, and conformational states for 3D reconstruction. Here, we present Hydra, an approach that models both conformational and compositional heterogeneity fully ab initio by parameterizing structures as arising from one of K neural fields. We employ a hybrid optimization strategy and demonstrate the effectiveness of our approach on synthetic datasets composed of mixtures of proteins with large degrees of conformational variability. We additionally demonstrate Hydra on an experimental dataset imaged of a cellular lysate containing a mixture of different protein complexes. Hydra expands the expressivity of heterogeneous reconstruction methods and thus broadens the scope of cryo-EM to increasingly complex samples.
Poster
Kiran Lekkala · Henghui Bao · Peixu Cai · Wei Lim · Chen Liu · Laurent Itti

[ East Exhibit Hall A-C ]

Abstract
In this paper, we introduce the \textbf{USCILab3D dataset}, a large-scale, annotated outdoor dataset designed for versatile applications across multiple domains, including computer vision, robotics, and machine learning. The dataset was acquired using a mobile robot equipped with 5 cameras and a 32-beam, $360^{\circ}$ scanning LIDAR. The robot was teleoperated, over the course of a year and under a variety of weather and lighting conditions, through a rich variety of paths within the USC campus (229 acres = $\sim 92.7$ hectares). The raw data was annotated using state-of-the-art large foundation models, and processed to provide multi-view imagery, 3D reconstructions, semantically-annotated images and point clouds (267 semantic categories), and text descriptions of images and objects within. The dataset also offers a diverse array of complex analyses using pose-stamping and trajectory data. In sum, the dataset offers 1.4M point clouds and 10M images ($\sim 6$TB of data). Despite covering a narrower geographical scope compared to a whole-city dataset, our dataset prioritizes intricate intersections along with denser multi-view scene images and semantic point clouds, enabling more precise 3D labelling and facilitating a broader spectrum of 3D vision tasks. For data, code and more details, please visit our website.
Poster
Jiakai Zhang · Qihe Chen · Yan Zeng · Wenyuan Gao · Xuming He · Zhijie Liu · Jingyi Yu

[ East Exhibit Hall A-C ]

Abstract
In the past decade, deep conditional generative models have revolutionized the generation of realistic images, extending their application from entertainment to scientific domains. Single-particle cryo-electron microscopy (cryo-EM) is crucial in resolving near-atomic resolution 3D structures of proteins, such as the SARS-COV-2 spike protein. To achieve high-resolution reconstruction, a comprehensive data processing pipeline has been adopted. However, its performance is still limited as it lacks high-quality annotated datasets for training. To address this, we introduce physics-informed generative cryo-electron microscopy (CryoGEM), which for the first time integrates physics-based cryo-EM simulation with a generative unpaired noise translation to generate physically correct synthetic cryo-EM datasets with realistic noises. Initially, CryoGEM simulates the cryo-EM imaging process based on a virtual specimen. To generate realistic noises, we leverage an unpaired noise translation via contrastive learning with a novel mask-guided sampling scheme. Extensive experiments show that CryoGEM is capable of generating authentic cryo-EM images. The generated dataset can be used as training data for particle picking and pose estimation models, eventually improving the reconstruction resolution.
Poster
Chenrui Wei · Mengzhou Sun · Wei Wang

[ East Exhibit Hall A-C ]

Abstract
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose *AIPS*, an *Algebraic Inequality Proving System* capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city's 2024 Mathematical Olympiad.All the materials are available at [sites.google.com/view/aips2](https://sites.google.com/view/aips2)
Poster
Thanh-Dat Truong · Utsav Prabhu · Dongyi Wang · Bhiksha Raj · Susan Gauch · Jeyamkondan Subbiah · Khoa Luu

[ East Exhibit Hall A-C ]

Abstract
Unsupervised Domain Adaptation has been an efficient approach to transferring the semantic segmentation model across data distributions. Meanwhile, the recent Open-vocabulary Semantic Scene understanding based on large-scale vision language models is effective in open-set settings because it can learn diverse concepts and categories. However, these prior methods fail to generalize across different camera views due to the lack of cross-view geometric modeling. At present, there are limited studies analyzing cross-view learning. To address this problem, we introduce a novel Unsupervised Cross-view Adaptation Learning approach to modeling the geometric structural change across views in Semantic Scene Understanding. First, we introduce a novel Cross-view Geometric Constraint on Unpaired Data to model structural changes in images and segmentation masks across cameras. Second, we present a new Geodesic Flow-based Correlation Metric to efficiently measure the geometric structural changes across camera views. Third, we introduce a novel view-condition prompting mechanism to enhance the view-information modeling of the open-vocabulary segmentation network in cross-view adaptation learning. The experiments on different cross-view adaptation benchmarks have shown the effectiveness of our approach in cross-view modeling, demonstrating that we achieve State-of-the-Art (SOTA) performance compared to prior unsupervised domain adaptation and open-vocabulary semantic segmentation methods.
Poster
Sharath Girish · Tianye Li · Amrita Mazumdar · Abhinav Shrivastava · david luebke · Shalini De Mello

[ East Exhibit Hall A-C ]

Abstract
Online free-viewpoint video (FVV) streaming is a challenging problem, which is relatively under-explored. It requires incremental on-the-fly updates to a volumetric representation, fast training and rendering to satisfy realtime constraints and a small memory footprint for efficient transmission. If acheived, it can enhance user experience by enabling novel applications, e.g., 3D video conferencing and live volumetric video broadcast, among others. In this work, we propose a novel framework for QUantized and Efficient ENcoding (QUEEN) for streaming FVV using 3D Gaussian Splatting (3D-GS). QUEEN directly learns Gaussian attribute residuals between consecutive frames at each time-step without imposing any structural constraints on them, allowing for high quality reconstruction and generalizability. To efficiently store the residuals, we further propose a quantization-sparsity framework, which contains a learned latent-decoder for effectively quantizing attribute residuals other than Gaussian positions and a learned gating module to sparsify position residuals. We propose to use the Gaussian viewspace gradient difference vector as a signal to separate the static and dynamic content of the scene. It acts as a guide for effective sparsity learning and speeds up training. On diverse FVV benchmarks, QUEEN outperforms the state-of-the-art online FVV methods on all metrics. Notably, for several highly dynamic scenes, it reduces …
Poster
Yuxuan Xue · Xianghui Xie · Riccardo Marin · Gerard Pons-Moll

[ East Exhibit Hall A-C ]

Abstract
Creating realistic avatars from a single RGB image is an attractive yet challenging problem. To deal with challenging loose clothing or occlusion by interaction objects, we leverage powerful shape prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion models demonstrate strong generalization capability, they cannot provide multi-view shape priors with guaranteed 3D consistency. We propose Human-3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion. Our key insight is that 2D multi-view diffusion and 3D reconstruction models provide complementary information for each other. By coupling them in a tight manner, we can fully leverage the potential of both models. We introduce a novel image-conditioned generative 3D Gaussian Splats reconstruction model that leverages the prior from 2D multi-view diffusion models, and provides an explicit 3D representation, which further guides the 2D reverse sampling processto have better 3D consistency. Experiments show that our proposed framework outperforms state-of-the-art methods and enables the creation of realistic avatars from a single RGB image, achieving high-fidelity in both geometry and appearance. Extensive ablations also validate the efficacy of our design, (1) multi-view 2D priors conditioning in generative 3D reconstruction and (2) consistency refinement of sampling trajectory via the explicit 3D representation. Our code and …
Poster
Guozhen Zhang · Chuxnu Liu · Yutao Cui · Xiaotong Zhao · Kai Ma · Limin Wang

[ East Exhibit Hall A-C ]

Abstract
Inter-frame modeling is pivotal in generating intermediate frames for video frame interpolation (VFI). Current approaches predominantly rely on convolution or attention-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, Selective State Space Models (S6) have emerged, tailored specifically for long sequence modeling, offering both linear complexity and data-dependent modeling capabilities. In this paper, we propose VFIMamba, a novel frame interpolation method for efficient and dynamic inter-frame modeling by harnessing the S6 model. Our approach introduces the Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames in an interleaved fashion and subsequently applies multi-directional S6 modeling. This design facilitates the efficient transmission of information across frames while upholding linear complexity. Furthermore, we introduce a novel curriculum learning strategy that progressively cultivates proficiency in modeling inter-frame dynamics across varying motion magnitudes, fully unleashing the potential of the S6 model. Experimental findings showcase that our method attains state-of-the-art performance across diverse benchmarks, particularly excelling in high-resolution scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a noteworthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.
Poster
Tao MA · Hongbin Zhou · Qiusheng Huang · Xuemeng Yang · Jianfei Guo · Bo Zhang · Min Dou · Yu Qiao · Botian Shi · Hongsheng Li

[ East Exhibit Hall A-C ]

Abstract
Offboard perception aims to automatically generate high-quality 3D labels for autonomous driving (AD) scenes. Existing offboard methods focus on 3D object detection with closed-set taxonomy and fail to match human-level recognition capability on the rapidly evolving perception tasks. Due to heavy reliance on human labels and the prevalence of data imbalance and sparsity, a unified framework for offboard auto-labeling various elements in AD scenes that meets the distinct needs of perception tasks is not being fully explored. In this paper, we propose a novel multi-modal Zero-shot Offboard Panoptic Perception (ZOPP) framework for autonomous driving scenes. ZOPP integrates the powerful zero-shot recognition capabilities of vision foundation models and 3D representations derived from point clouds. To the best of our knowledge, ZOPP represents a pioneering effort in the domain of multi-modal panoptic perception and auto labeling for autonomous driving scenes. We conduct comprehensive empirical studies and evaluations on Waymo open dataset to validate the proposed ZOPP on various perception tasks. To further explore the usability and extensibility of our proposed ZOPP, we also conduct experiments in downstream applications. The results further demonstrate the great potential of our ZOPP for real-world scenarios. The source code will be released at \url{https://github.com/PJLab-ADG/ZOPP}.
Poster
Zhihai Wang · Jie Wang · Qingyue Yang · Yinqi Bai · Xing Li · Lei Chen · Jianye Hao · Mingxuan Yuan · Bin Li · Yongdong Zhang · Feng Wu

[ East Exhibit Hall A-C ]

Abstract
Logic Synthesis (LS) aims to generate an optimized logic circuit satisfying a given functionality, which generally consists of circuit translation and optimization. It is a challenging and fundamental combinatorial optimization problem in integrated circuit design. Traditional LS approaches rely on manually designed heuristics to tackle the LS task, while machine learning recently offers a promising approach towards next-generation logic synthesis by neural circuit generation and optimization. In this paper, we first revisit the application of differentiable neural architecture search (DNAS) methods to circuit generation and found from extensive experiments that existing DNAS methods struggle to exactly generate circuits, scale poorly to large circuits, and exhibit high sensitivity to hyper-parameters. Then we provide three major insights for these challenges from extensive empirical analysis: 1) DNAS tends to overfit to too many skip-connections, consequently wasting a significant portion of the network's expressive capabilities; 2) DNAS suffers from the structure bias between the network architecture and the circuit inherent structure, leading to inefficient search; 3) the learning difficulty of different input-output examples varies significantly, leading to severely imbalanced learning. To address these challenges in a systematic way, we propose a novel regularized triangle-shaped circuit network generation framework, which leverages our key insights for …
Poster
man zhou

[ East Exhibit Hall A-C ]

Abstract
State-of-the-art image restoration methods currently face challenges in terms of computational requirements and performance, making them impractical for deployment on edge devices such as phones and resource-limited devices. As a result, there is a need to develop alternative solutions with efficient designs that can achieve comparable performance to transformer or large-kernel methods. This motivates our research to explore techniques for improving the capability of small-size image restoration standing on the success secret of large receptive filed.Targeting at expanding receptive filed, spatial-shift operator tailored for efficient spatial communication and has achieved remarkable advances in high-level image classification tasks, like $S^2$-MLP and ShiftVit. However, its potential has rarely been explored in low-level image restoration tasks. The underlying reason behind this obstacle is that image restoration is sensitive to the spatial shift that occurs due to severe region-aware information loss, which exhibits a different behavior from high-level tasks. To address this challenge and unleash the potential of spatial shift for image restoration, we propose an information-lossless shifting operator, i.e., Deep Fourier Shifting, that is customized for image restoration. To develop our proposed operator, we first revisit the principle of shift operator and apply it to the Fourier domain, where the shift operator can …
Poster
Mijeong Kim · Jongwoo Lim · Bohyung Han

[ East Exhibit Hall A-C ]

Abstract
Novel view synthesis of dynamic scenes is becoming important in various applications, including augmented and virtual reality.We propose a novel 4D Gaussian Splatting (4DGS) algorithm for dynamic scenes from casually recorded monocular videos. To overcome the overfitting problem of existing work for these real-world videos, we introduce an uncertainty-aware regularization that identifies uncertain regions with few observations and selectively imposes additional priors based on diffusion models and depth smoothness on such regions.This approach improves both the performance of novel view synthesis and the quality of training image reconstruction. We also identify the initialization problem of 4DGS in fast-moving dynamic regions, where the Structure from Motion (SfM) algorithm fails to provide reliable 3D landmarks. To initialize Gaussian primitives in such regions, we present a dynamic region densification method using the estimated depth maps and scene flow. Our experiments show that the proposed method improves the performance of 4DGS reconstruction from a video captured by a handheld monocular camera and also exhibits promising results in few-shot static scene reconstruction.
Poster
Guanqi Zhan · Chuanxia Zheng · Weidi Xie · Andrew Zisserman

[ East Exhibit Hall A-C ]

Abstract
Our objective in this paper is to probe large vision models to determine to what extent they ‘understand’ different physical properties of the 3D scene depicted in an image. To this end, we make the following contributions: (i) We introduce a general and lightweight protocol to evaluate whether features of an off-the-shelf large vision model encode a number of physical ‘properties’ of the 3D scene, by training discriminative classifiers on the features for these properties. The probes are applied on datasets of real images with annotations for the property. (ii) We apply this protocol to properties covering scene geometry, scene material, support relations, lighting, and view-dependent measures, and large vision models including CLIP, DINOv1, DINOv2, VQGAN, Stable Diffusion. (iii) We find that features from Stable Diffusion and DINOv2 are good for discriminative learning of a number of properties, including scene geometry, support relations, shadows and depth, but less performant for occlusion and material, while outperforming DINOv1, CLIP and VQGAN for all properties. (iv) It is observed that different time steps of Stable Diffusion features, as well as different transformer layers of DINO/CLIP/VQGAN, are good at different properties, unlocking potential applications of 3D physical understanding.
Poster
Lubo Wang · Di Lin · Kairui Yang · Ruonan Liu · Qing Guo · Wuyuan Xie · Miaohui Wang · Lingyu Liang · Yi Wang · Ping Li

[ East Exhibit Hall A-C ]

Abstract
Semantic scene completion is a difficult task that involves completing the geometry and semantics of a scene from point clouds in a large-scale environment. Many current methods use 3D/2D convolutions or attention mechanisms, but these have limitations in directly constructing geometry and accurately propagating features from related voxels, the completion likely fails while propagating features in a single pass without considering multiple potential pathways. And they are generally only suitable for static scenes and struggle to handle dynamic aspects. This paper introduces Voxel Proposal Network (VPNet) that completes scenes from 3D and Bird's-Eye-View (BEV) perspectives. It includes Confident Voxel Proposal based on voxel-wise coordinates to propose confident voxels with high reliability for completion. This method reconstructs the scene geometry and implicitly models the uncertainty of voxel-wise semantic labels by presenting multiple possibilities for voxels. VPNet employs Multi-Frame Knowledge Distillation based on the point clouds of multiple adjacent frames to accurately predict the voxel-wise labels by condensing various possibilities of voxel relationships. VPNet has shown superior performance and achieved state-of-the-art results on the SemanticKITTI and SemanticPOSS datasets.
Poster
Tyler Bonnen · Stephanie Fu · Yutong Bai · Thomas O&#x27;Connell · Yoni Friedman · Nancy Kanwisher · Josh Tenenbaum · Alexei Efros

[ East Exhibit Hall A-C ]

Abstract
We introduce a benchmark to directly evaluate the alignment between human observers and vision models on a 3D shape inference task. We leverage an experimental design from the cognitive sciences: given a set of images, participants identify which contain the same/different objects, despite considerable viewpoint variation. We draw from a diverse range of images that include common objects (e.g., chairs) as well as abstract shapes (i.e., procedurally generated 'nonsense' objects). After constructing over 2000 unique image sets, we administer these tasks to human participants, collecting 35K trials of behavioral data from over 500 participants. This includes explicit choice behaviors as well as intermediate measures, such as reaction time and gaze data. We then evaluate the performance of common vision models (e.g., DINOv2, MAE, CLIP). We find that humans outperform all models by a wide margin. Using a multi-scale evaluation approach, we identify underlying similarities and differences between models and humans: while human-model performance is correlated, humans allocate more time/processing on challenging trials. All images, data, and code can be accessed via our project page.
Poster
David Brookes · Jakub Otwinowski · Sam Sinai

[ East Exhibit Hall A-C ]

Abstract
Fitness functions map large combinatorial spaces of biological sequences to properties of interest. Inferring these multimodal functions from experimental data is a central task in modern protein engineering. Global epistasis models are an effective and physically-grounded class of models for estimating fitness functions from observed data. These models assume that a sparse latent function is transformed by a monotonic nonlinearity to emit measurable fitness. Here we demonstrate that minimizing supervised contrastive loss functions, such as the Bradley-Terry loss, is a simple and flexible technique for extracting the sparse latent function implied by global epistasis. We argue by way of a fitness-epistasis uncertainty principle that the nonlinearities in global epistasis models can produce observed fitness functions that do not admit sparse representations, and thus may be inefficient to learn from observations when using a Mean Squared Error (MSE) loss (a common practice). We show that contrastive losses are able to accurately estimate a ranking function from limited data even in regimes where MSE is ineffective and validate the practical utility of this insight by demonstrating that contrastive loss functions result in consistently improved performance on empirical benchmark tasks.
Poster
Kuzma Khrabrov · Anton Ber · Artem Tsypin · Konstantin Ushenin · Egor Rumiantsev · Alexander Telepov · Dmitry Protasov · Ilya Shenbin · Anton Alekseev · Mikhail Shirokikh · Sergey Nikolenko · Elena Tutubalina · Artur Kadurin

[ East Exhibit Hall A-C ]

Abstract
Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications.Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training.This work presents a new dataset and benchmark called $\nabla^2$DFT that is based on the nablaDFT.It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models.The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object.All calculations were performed at the DFT level ($\omega$B97X-D/def2-SVP) for each conformation. Moreover, $\nabla^2$DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.
Poster
Zhuo Zheng · Yanfei Zhong · Liangpei Zhang · Stefano Ermon

[ East Exhibit Hall A-C ]

Abstract
Visual foundation models have achieved remarkable results in zero-shot image classification and segmentation, but zero-shot change detection remains an open problem. In this paper, we propose the segment any change models (AnyChange), a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions.AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching.By revealing and exploiting intra-image and inter-image semantic similarities in SAM's latent space, bitemporal latent matching endows SAM with zero-shot change detection capabilities in a training-free way. We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability.We perform extensive experiments to confirm the effectiveness of AnyChange for zero-shot change detection.AnyChange sets a new record on the SECOND benchmark for unsupervised change detection, exceeding the previous SOTA by up to 4.4\% F$_1$ score, and achieving comparable accuracy with negligible manual annotations (1 pixel per image) for supervised change detection. Code is available at https://github.com/Z-Zheng/pytorch-change-models.
Poster
Zinan Lv · Dong Han · Wenzhe Wang · Danny Z Chen

[ East Exhibit Hall A-C ]

Abstract
Lane detection is an important yet challenging task in autonomous driving systems. Existing lane detection methods mainly rely on finer-scale information to identify key points of lane lines. Since local information in realistic road environments is frequently obscured by other vehicles or affected by poor outdoor lighting conditions, these methods struggle with the regression of such key points. In this paper, we propose a novel Siamese Transformer with hierarchical refinement for lane detection to improve the detection accuracy in complex road environments. Specifically, we propose a high-to-low hierarchical refinement Transformer structure, called LAne TRansformer (LATR), to refine the key points of lane lines, which integrates global semantics information and finer-scale features. Moreover, exploiting the thin and long characteristics of lane lines, we propose a novel Curve-IoU loss to supervise the fit of lane lines. Extensive experiments on three benchmark datasets of lane detection demonstrate that our proposed new method achieves state-of-the-art results with high accuracy and efficiency. Specifically, our method achieves improved F1 scores on the OpenLane dataset, surpassing the current best-performing method by 5.0 points.
Poster
Kai Chen · Yiyao Ma · Xingyu Lin · Stephen James · Jianshu Zhou · Yun-Hui Liu · Pieter Abbeel · DOU QI

[ East Exhibit Hall A-C ]

Abstract
Object pose estimation plays a crucial role in robotic manipulation, however, its practical applicability still suffers from limited generalizability. This paper addresses the challenge of generalizable object pose estimation, particularly focusing on category-level object pose estimation for unseen object categories. Current methods either require impractical instance-level training or are confined to predefined categories, limiting their applicability. We propose VFM-6D, a novel framework that explores harnessing existing vision and language models, to elaborate object pose estimation into two stages: category-level object viewpoint estimation and object coordinate map estimation. Based on the two-stage framework, we introduce a 2D-to-3D feature lifting module and a shape-matching module, both of which leverage pre-trained vision foundation models to improve object representation and matching accuracy. VFM-6D is trained on cost-effective synthetic data and exhibits superior generalization capabilities. It can be applied to both instance-level unseen object pose estimation and category-level object pose estimation for novel categories. Evaluations on benchmark datasets demonstrate the effectiveness and versatility of VFM-6D in various real-world scenarios.
Poster
Yu Chen · Gim Hee Lee

[ East Exhibit Hall A-C ]

Abstract
The recent advances in 3D Gaussian Splatting (3DGS) show promising results on the novel view synthesis (NVS) task. With its superior rendering performance and high-fidelity rendering quality, 3DGS is excelling at its previous NeRF counterparts. The most recent 3DGS method focuses either on improving the instability of rendering efficiency or reducing the model size. On the other hand, the training efficiency of 3DGS on large-scale scenes has not gained much attention. In this work, we propose DoGaussian, a method that trains 3DGS distributedly. Our method first decomposes a scene into $K$ blocks and then introduces the Alternating Direction Method of Multipliers (ADMM) into the training procedure of 3DGS. During training, our DoGaussian maintains one global 3DGS model on the master node and $K$ local 3DGS models on the slave nodes. The $K$ local 3DGS models are dropped after training and we only query the global 3DGS model during inference. The training time is reduced by scene decomposition, and the training convergence and stability are guaranteed through the consensus on the shared 3D Gaussians. Our method accelerates the training of 3DGS by $6+$ times when evaluated on large-scale scenes while concurrently achieving state-of-the-art rendering quality. Our code is publicly available at …
Poster
Xiangyu Chen · Zhenzhen Liu · Katie Luo · Siddhartha Datta · Adhitya Polavaram · Yan Wang · Yurong You · Boyi Li · Marco Pavone · Wei-Lun (Harry) Chao · Mark Campbell · Bharath Hariharan · Kilian Weinberger

[ East Exhibit Hall A-C ]

Abstract
Ensuring robust 3D object detection and localization is crucial for many applications in robotics and autonomous driving. Recent models, however, face difficulties in maintaining high performance when applied to domains with differing sensor setups or geographic locations, often resulting in poor localization accuracy due to domain shift. To overcome this challenge, we introduce a novel diffusion-based box refinement approach. This method employs a domain-agnostic diffusion model, conditioned on the LiDAR points surrounding a coarse bounding box, to simultaneously refine the box's location, size, and orientation. We evaluate this approach under various domain adaptation settings, and our results reveal significant improvements across different datasets, object classes and detectors. Our PyTorch implementation is available at https://github.com/cxy1997/DiffuBox.
Poster
Dailing Zhang · Shiyu Hu · Xiaokun Feng · Xuchen Li · wu meiqi · Jing Zhang · Kaiqi Huang

[ East Exhibit Hall A-C ]

Abstract
Human visual search ability enables efficient and accurate tracking of an arbitrary moving target, which is a significant research interest in cognitive neuroscience. The recently proposed Central-Peripheral Dichotomy (CPD) theory sheds light on how humans effectively process visual information and track moving targets in complex environments. However, existing visual object tracking algorithms still fall short of matching human performance in maintaining tracking over time, particularly in complex scenarios requiring robust visual search skills. These scenarios often involve Spatio-Temporal Discontinuities (i.e., STDChallenge), prevalent in long-term tracking and global instance tracking. To address this issue, we conduct research from a human-like modeling perspective: (1) Inspired by the CPD, we pro- pose a new tracker named CPDTrack to achieve human-like visual search ability. The central vision of CPDTrack leverages the spatio-temporal continuity of videos to introduce priors and enhance localization precision, while the peripheral vision improves global awareness and detects object movements. (2) To further evaluate and analyze STDChallenge, we create the STDChallenge Benchmark. Besides, by incorporating human subjects, we establish a human baseline, creating a high- quality environment specifically designed to assess trackers’ visual search abilities in videos across STDChallenge. (3) Our extensive experiments demonstrate that the proposed CPDTrack not only achieves …
Poster
Chende Zheng · Chenhao Lin · Zhengyu Zhao · Hang Wang · Xu Guo · Shuai Liu · Chao Shen

[ East Exhibit Hall A-C ]

Abstract
With the continuous evolution of AI-generated images, the generalized detection of them has become a crucial aspect of AI security. Existing detectors have focused on cross-generator generalization, while it remains unexplored whether these detectors can generalize across different image scenes, e.g., images from different datasets with different semantics. In this paper, we reveal that existing detectors suffer from substantial Accuracy drops in such cross-scene generalization. In particular, we attribute their failures to ''semantic artifacts'' in both real and generated images, to which detectors may overfit. To break such ''semantic artifacts'', we propose a simple yet effective approach based on conducting an image patch shuffle and then training an end-to-end patch-based classifier. We conduct a comprehensive open-world evaluation on 31 test sets, covering 7 Generative Adversarial Networks, 18 (variants of) Diffusion Models, and another 6 CNN-based generative models. The results demonstrate that our approach outperforms previous approaches by 2.08\% (absolute) on average regarding cross-scene detection Accuracy. We also notice the superiority of our approach in open-world generalization, with an average Accuracy improvement of 10.59\% (absolute) across all test sets. Our code is available at *https://github.com/Zig-HS/FakeImageDetection*.
Poster
Wu Shuang · Youtian Lin · Yifei Zeng · Feihu Zhang · Jingxi Xu · Philip Torr · Xun Cao · Yao Yao

[ East Exhibit Hall A-C ]

Abstract
Generating high-quality 3D assets from text and images has long been challenging, primarily due to the absence of scalable 3D representations capable of capturing intricate geometry distributions. In this work, we introduce Direct3D, a native 3D generative model scalable to in-the-wild input images, without requiring a multi-view diffusion model or SDS optimization. Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution 3D shapes into a compact and continuous latent triplane space. Notably, our method directly supervises the decoded geometry using a semi-continuous surface sampling strategy, diverging from previous methods relying on rendered images as supervision signals. D3D-DiT models the distribution of encoded 3D latents and is specifically designed to fuse positional information from the three feature maps of the triplane latent, enabling a native 3D generative model scalable to large-scale 3D datasets. Additionally, we introduce an innovative image-to-3D generation pipeline incorporating semantic and pixel-level image conditions, allowing the model to produce 3D shapes consistent with the provided conditional image input. Extensive experiments demonstrate the superiority of our large-scale pre-trained Direct3D over previous image-to-3D approaches, achieving significantly better generation quality and generalization ability, thus establishing a new …
Poster
Fangjinhua Wang · Marie-Julie Rakotosaona · Michael Niemeyer · Richard Szeliski · Marc Pollefeys · Federico Tombari

[ East Exhibit Hall A-C ]

Abstract
Neural 3D scene representations have shown great potential for 3D reconstruction from 2D images. However, reconstructing real-world captures of complex scenes still remains a challenge. Existing generic 3D reconstruction methods often struggle to represent fine geometric details and do not adequately model reflective surfaces of large-scale scenes. Techniques that explicitly focus on reflective surfaces can model complex and detailed reflections by exploiting better reflection parameterizations. However, we observe that these methods are often not robust in real scenarios where non-reflective as well as reflective components are present. In this work, we propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections. We investigate both camera view as well as reflected view-based color parameterization techniques and find that explicitly blending these representations in 3D space enables reconstruction of surfaces that are more geometrically accurate, especially for reflective surfaces. We further combine this representation with a multi-resolution grid backbone that is trained in a coarse-to-fine manner, enabling faster reconstructions than prior methods. Extensive experiments on object-level datasets DTU, Shiny Blender as well as unbounded datasets Mip-NeRF 360 and Ref-NeRF real demonstrate that our method is able to robustly reconstruct complex large-scale scenes with fine details and …
Poster
Sandika Biswas · Qianyi Wu · Biplab Banerjee · Hamid Rezatofighi

[ East Exhibit Hall A-C ]

Abstract
Despite advancements in Neural Implicit models for 3D surface reconstruction, handling dynamic environments with interactions between arbitrary rigid, non-rigid, or deformable entities remains challenging. The generic reconstruction methods adaptable to such dynamic scenes often require additional inputs like depth or optical flow or rely on pre-trained image features for reasonable outcomes. These methods typically use latent codes to capture frame-by-frame deformations. Another set of dynamic scene reconstruction methods, are entity-specific, mostly focusing on humans, and relies on template models. In contrast, some template-free methods bypass these requirements and adopt traditional LBS (Linear Blend Skinning) weights for a detailed representation of deformable object motions,although they involve complex optimizations leading to lengthy training times. To this end, as a remedy, this paper introduces TFS-NeRF, a template-free 3D semantic NeRF for dynamic scenes captured from sparse or single-view RGB videos, featuring interactions among two entities and more time-efficient than other LBS-based approaches. Our framework uses an Invertible Neural Network (INN) for LBS prediction, simplifying the training process. By disentangling the motions of interacting entities and optimizing per-entity skinning weights, our method efficiently generates accurate, semantically separable geometries. Extensive experiments demonstrate that our approach produces high-quality reconstructions of both deformable and non-deformable objects in …
Poster
Jingyi Zhang · Jiaxing Huang · Xiaoqin Zhang · Ling Shao · Shijian Lu

[ East Exhibit Hall A-C ]

Abstract
Test-time prompt tuning, which learns prompts online with unlabelled test samples during the inference stage, has demonstrated great potential by learning effective prompts on-the-fly without requiring any task-specific annotations. However, its performance often degrades clearly along the tuning process when the prompts are continuously updated with the test data flow, and the degradation becomes more severe when the domain of test samples changes continuously. We propose HisTPT, a Historical Test-time Prompt Tuning technique that memorizes the useful knowledge of the learnt test samples and enables robust test-time prompt tuning with the memorized knowledge. HisTPT introduces three types of knowledge banks, namely, local knowledge bank, hard-sample knowledge bank, and global knowledge bank, each of which works with different mechanisms for effective knowledge memorization and test-time prompt optimization. In addition, HisTPT features an adaptive knowledge retrieval mechanism that regularizes the prediction of each test sample by adaptively retrieving the memorized knowledge. Extensive experiments show that HisTPT achieves superior prompt tuning performance consistently while handling different visual recognition tasks (e.g., image classification, semantic segmentation, and object detection) and test samples from continuously changing domains.
Poster
Jianqiao Zhang · Caifeng Shan · Jungong Han

[ East Exhibit Hall A-C ]

Abstract
Federated Learning (FL) faces significant challenges due to data heterogeneity across distributed clients. To address this, we propose FedGMKD, a novel framework that combines knowledge distillation and differential aggregation for efficient prototype-based personalized FL without the need for public datasets or server-side generative models. FedGMKD introduces Cluster Knowledge Fusion, utilizing Gaussian Mixture Models to generate prototype features and soft predictions on the client side, enabling effective knowledge distillation while preserving data privacy. Additionally, we implement a Discrepancy-Aware Aggregation Technique that weights client contributions based on data quality and quantity, enhancing the global model's generalization across diverse client distributions. Theoretical analysis confirms the convergence of FedGMKD. Extensive experiments on benchmark datasets, including SVHN, CIFAR-10, and CIFAR-100, demonstrate that FedGMKD outperforms state-of-the-art methods, significantly improving both local and global accuracy in non-IID data settings.
Poster
Chengxing Xie · Canyu Chen · Feiran Jia · Ziyu Ye · Shiyang Lai · Kai Shu · Jindong Gu · Adel Bibi · Ziniu Hu · David Jurgens · James Evans · Philip Torr · Bernard Ghanem · Guohao Li

[ East Exhibit Hall A-C ]

Abstract
Large Language Model (LLM) agents have been increasingly adopted as simulation tools to model humans in social science and role-playing applications. However, one fundamental question remains: can LLM agents really simulate human behavior? In this paper, we focus on one critical and elemental behavior in human interactions, trust, and investigate whether LLM agents can simulate human trust behavior. We first find that LLM agents generally exhibit trust behavior, referred to as agent trust, under the framework of Trust Games, which are widely recognized in behavioral economics. Then, we discover that GPT-4 agents manifest high behavioral alignment with humans in terms of trust behavior, indicating the feasibility of simulating human trust behavior with LLM agents. In addition, we probe the biases of agent trust and differences in agent trust towards other LLM agents and humans. We also explore the intrinsic properties of agent trust under conditions including external manipulations and advanced reasoning strategies. Our study provides new insights into the behaviors of LLM agents and the fundamental analogy between LLMs and humans beyond value alignment. We further illustrate broader implications of our discoveries for applications where trust is paramount.
Poster
Song Wu · Zhiyu Zhu · Junhui Hou · GUANGMING Shi · Jinjian Wu

[ East Exhibit Hall A-C ]

Abstract
Forecasting a typical object's future motion is a critical task for interpreting and interacting with dynamic environments in computer vision. Event-based sensors, which could capture changes in the scene with exceptional temporal granularity, may potentially offer a unique opportunity to predict future motion with a level of detail and precision previously unachievable. Inspired by that, we propose to integrate the strong learning capacity of the video diffusion model with the rich motion information of an event camera as a motion simulation framework. Specifically, we initially employ pre-trained stable video diffusion models to adapt the event sequence dataset. This process facilitates the transfer of extensive knowledge from RGB videos to an event-centric domain. Moreover, we introduce an alignment mechanism that utilizes reinforcement learning techniques to enhance the reverse generation trajectory of the diffusion model, ensuring improved performance and accuracy. Through extensive testing and validation, we demonstrate the effectiveness of our method in various complex scenarios, showcasing its potential to revolutionize motion flow prediction in computer vision applications such as autonomous vehicle guidance, robotic navigation, and interactive media. Our findings suggest a promising direction for future research in enhancing the interpretative power and predictive accuracy of computer vision systems. The source code …
Poster
Yabing Wang · Zhuotao Tian · Qingpei Guo · Zheng Qin · Sanping Zhou · Ming Yang · Le Wang

[ East Exhibit Hall A-C ]

Abstract
Visual Grounding aims to localize the referring object in an image given a natural language expression. Recent advancements in DETR-based visual grounding methods have attracted considerable attention, as they directly predict the coordinates of the target object without relying on additional efforts, such as pre-generated proposal candidates or pre-defined anchor boxes. However, existing research primarily focuses on designing stronger multi-modal decoder, which typically generates learnable queries by random initialization or by using linguistic embeddings. This vanilla query generation approach inevitably increases the learning difficulty for the model, as it does not involve any target-related information at the beginning of decoding. Furthermore, they only use the deepest image feature during the query learning process, overlooking the importance of features from other levels. To address these issues, we propose a novel approach, called RefFormer. It consists of the query adaption module that can be seamlessly integrated into CLIP and generate the referential query to provide the prior context for decoder, along with a task-specific decoder. By incorporating the referential query into the decoder, we can effectively mitigate the learning difficulty of the decoder, and accurately concentrate on the target object. Additionally, our proposed query adaption module can also act as an adapter, …
Poster
Xiaoxiao Ma · Zhixiang Wei · Yi Jin · Pengyang Ling · Tianle Liu · Ben Wang · Junkang Dai · Huaian Chen

[ East Exhibit Hall A-C ]

Abstract
In this work, we observe that model trained on vast general images via masking strategy, has been naturally embedded with their distribution knowledge, thus spontaneously attains the underlying potential for strong image denoising.Based on this observation, we propose a novel zero-shot denoising paradigm, i.e., $\textbf{M}$asked $\textbf{P}$re-train then $\textbf{I}$terative fill ($\textbf{MPI}$).MPI first trains model via masking and then employs pre-trained weight for high-quality zero-shot image denoising on a single noisy image.Concretely, MPI comprises two key procedures:$\textbf{1) Masked Pre-training}$ involves training model to reconstruct massive natural images with random masking for generalizable representations, gathering the potential for valid zero-shot denoising on images with varying noise degradation and even in distinct image types.$\textbf{2) Iterative filling}$ exploits pre-trained knowledge for effective zero-shot denoising. It iteratively optimizes the image by leveraging pre-trained weights, focusing on alternate reconstruction of different image parts, and gradually assembles fully denoised image within limited number of iterations.Comprehensive experiments across various noisy scenarios underscore the notable advances of MPI over previous approaches with a marked reduction in inference time.
Poster
Jiahe Chen · Jinkun Cao · Dahua Lin · Kris Kitani · Jiangmiao Pang

[ East Exhibit Hall A-C ]

Abstract
To predict future trajectories, the normalizing flow with a standard Gaussian prior suffers from weak diversity. The ineffectiveness comes from the conflict between the fact of asymmetric and multi-modal distribution of likely outcomes and symmetric and single-modal original distribution and supervision losses.Instead, we propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction.The prior is constructed by analyzing the trajectory patterns in the training samples without requiring extra annotations while showing better expressiveness and being multi-modal and asymmetric.Besides diversity, it also provides better controllability for probabilistic trajectory generation.We name our method Mixed Gaussian Flow (MGF). It achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets. Code is available at https://github.com/mulplue/MGF.
Poster
Wei Dong · Han Zhou · Yulun Zhang · Xiaohong Liu · Jun Chen

[ East Exhibit Hall A-C ]

Abstract
Exposure Correction (EC) aims to recover proper exposure conditions for images captured under over-exposure or under-exposure scenarios. While existing deep learning models have shown promising results, few have fully embedded Retinex theory into their architecture, highlighting a gap in current methodologies. Additionally, the balance between high performance and efficiency remains an under-explored problem for exposure correction task. Inspired by Mamba which demonstrates powerful and highly efficient sequence modeling, we introduce a novel framework based on \textbf{Mamba} for \textbf{E}xposure \textbf{C}orrection (\textbf{ECMamba}) with dual pathways, each dedicated to the restoration of reflectance and illumination map, respectively. Specifically, we firstly derive the Retinex theory and we train a Retinex estimator capable of mapping inputs into two intermediary spaces, each approximating the target reflectance and illumination map, respectively. This setup facilitates the refined restoration process of the subsequent \textbf{E}xposure \textbf{C}orrection \textbf{M}amba \textbf{M}odule (\textbf{ECMM}). Moreover, we develop a novel \textbf{2D S}elective \textbf{S}tate-space layer guided by \textbf{Retinex} information (\textbf{Retinex-SS2D}) as the core operator of \textbf{ECMM}. This architecture incorporates an innovative 2D scanning strategy based on deformable feature aggregation, thereby enhancing both efficiency and effectiveness. Extensive experiment results and comprehensive ablation studies demonstrate the outstanding performance and the importance of each component of our proposed ECMamba. Code …
Poster
MeiJun Wang · Yu Meng · Zhongwei Qiu · Chao Zheng · Yan Xu · Pengxiaorui · Jian Gao

[ East Exhibit Hall A-C ]

Abstract
Pedestrian pre-collision pose is one of the key factors to determine the degree of pedestrian-vehicle injury in collision. Human pose estimation algorithm is an effective method to estimate pedestrian emergency pose from accident video. However, the pose estimation model trained by the existing daily human pose datasets has poor robustness under specific poses such as pedestrian pre-collision pose, and it is difficult to obtain human pose datasets in the wild scenes, especially lacking scarce data such as pedestrian pre-collision pose in traffic scenes. In this paper, we collect pedestrian-vehicle collision pose from the dashcam perspective of dashcam and construct the first Pedestrian-Vehicle Collision Pose dataset (PVCP) in a semi-automatic way, including 40k+ accident frames and 20K+ pedestrian pre-collision pose annotation (2D, 3D, Mesh). Further, we construct a Pedestrian Pre-collision Pose Estimation Network (PPSENet) to estimate the collision pose and shape sequence of pedestrians from pedestrian-vehicle accident videos. The PPSENet first estimates the 2D pose from the image (Image to Pose, ITP) and then lifts the 2D pose to 3D mesh (Pose to Mesh, PTM). Due to the small size of the dataset, we introduce a pre-training model that learns the human pose prior on a large number of pose datasets, …
Poster
Linhan Wang · Kai Cheng · Shuo Lei · Shengkun Wang · Wei Yin · Chenyang Lei · Xiaoxiao Long · Chang-Tien Lu

[ East Exhibit Hall A-C ]

Abstract
We present DC-Gaussian, a new method for generating novel views from in-vehicle dash cam videos. While neural rendering techniques have made significant strides in driving scenarios, existing methods are primarily designed for videos collected by autonomous vehicles. However, these videos are limited in both quantity and diversity compared to dash cam videos, which are more widely used across various types of vehicles and capture a broader range of scenarios. Dash cam videos often suffer from severe obstructions such as reflections and occlusions on the windshields, which significantly impede the application of neural rendering techniques. To address this challenge, we develop DC-Gaussian based on the recent real-time neural rendering technique 3D Gaussian Splatting (3DGS). Our approach includes an adaptive image decomposition module to model reflections and occlusions in a unified manner. Additionally, we introduce illumination-aware obstruction modeling to manage reflections and occlusions under varying lighting conditions. Lastly, we employ a geometry-guided Gaussian enhancement strategy to improve rendering details by incorporating additional geometry priors. Experiments on self-captured and public dash cam videos show that our method not only achieves state-of-the-art performance in novel view synthesis, but also accurately reconstructing captured scenes getting rid of obstructions.
Poster
Yoonki Cho · Jaeyoon Kim · Woo Jae Kim · Junsik Jung · Sung-eui Yoon

[ East Exhibit Hall A-C ]

Abstract
Domain generalizable person re-identification (DG re-ID) aims to learn discriminative representations that are robust to distributional shifts. While data augmentation is a straightforward solution to improve generalization, certain augmentations exhibit a polarized effect in this task, enhancing in-distribution performance while deteriorating out-of-distribution performance. In this paper, we investigate this phenomenon and reveal that it leads to sparse representation spaces with reduced uniformity. To address this issue, we propose a novel framework, Balancing Alignment and Uniformity (BAU), which effectively mitigates this effect by maintaining a balance between alignment and uniformity. Specifically, BAU incorporates alignment and uniformity losses applied to both original and augmented images and integrates a weighting strategy to assess the reliability of augmented samples, further improving the alignment loss. Additionally, we introduce a domain-specific uniformity loss that promotes uniformity within each source domain, thereby enhancing the learning of domain-invariant features. Extensive experimental results demonstrate that BAU effectively exploits the advantages of data augmentation, which previous studies could not fully utilize, and achieves state-of-the-art performance without requiring complex training procedures. The code is available at https://github.com/yoonkicho/BAU.
Poster
Yifan Wang · Di Huang · Weicai Ye · Guofeng Zhang · Wanli Ouyang · Tong He

[ East Exhibit Hall A-C ]

Abstract
Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction. Although promising, SDF-based methods often fail to capture detailed geometric structures, resulting in visible defects. By comparing SDF-based volume rendering to density-based volume rendering, we identify two main factors within the SDF-based approach that degrade surface quality: SDF-to-density representation and geometric regularization. These factors introduce challenges that hinder the optimization of the SDF field. To address these issues, we introduce NeuRodin, a novel two-stage neural surface reconstruction framework that not only achieves high-fidelity surface reconstruction but also retains the flexible optimization characteristics of density-based methods. NeuRodin incorporates innovative strategies that facilitate transformation of arbitrary topologies and reduce artifacts associated with density bias. Extensive evaluations on the Tanks and Temples and ScanNet++ datasets demonstrate the superiority of NeuRodin, showing strong reconstruction capabilities for both indoor and outdoor environments using solely posed RGB captures. Project website:https://open3dvlab.github.io/NeuRodin/
Poster
Lingchen Meng · Jianwei Yang · Rui Tian · Xiyang Dai · Zuxuan Wu · Jianfeng Gao · Yu-Gang Jiang

[ East Exhibit Hall A-C ]

Abstract
Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computation and memory costs, as it has to handle a large number of additional tokens in its input layer. This paper presents a new architecture *DeepStack* for LMMs. Considering $N$ layers in the language and vision transformer of LMMs, we stack the visual tokens into $N$ groups and feed each group to its aligned transformer layer from bottom to top. Surprisingly, this simple method greatly enhances the power of LMMs to model interactions among visual tokens across layers but with minimal additional cost. We apply *DeepStack* to both language and vision transformer in LMMs, and validate the effectiveness of *DeepStack* LMMs with extensive empirical results. Using the same context length, our DeepStack 7B and 13B parameters surpass their counterparts by 2.7 and 2.9 on average across 9 benchmarks, respectively. Using only one-fifth of the context length, DeepStack rivals closely to the counterparts that use the full context length. These gains are particularly pronounced on high-resolution tasks, *e.g.*, 4.2, 11.0, and 4.0 improvements on TextVQA, DocVQA, and InfoVQA compared …
Poster
Dingrong Wang · Hitesh Sapkota · Qi Yu

[ East Exhibit Hall A-C ]

Abstract
Existing state-of-the-art dense object detection techniques tend to produce a large number of false positive detections on difficult images with complex scenes because they focus on ensuring a high recall. To improve the detection accuracy, we propose an Adaptive Important Region Selection (AIRS) framework guided by Evidential Q-learning coupled with a uniquely designed reward function. Inspired by human visual attention, our detection model conducts object search in a top-down, hierarchical fashion. It starts from the top of the hierarchy with the coarsest granularity and then identifies the potential patches likely to contain objects of interest. It then discards non-informative patches and progressively moves downward on the selected ones for a fine-grained search. The proposed evidential Q-learning systematically encodes epistemic uncertainty in its evidential-Q value to encourage the exploration of unknown patches, especially in the early phase of model training. In this way, the proposed model dynamically balances exploration-exploitation to cover both highly valuable and informative patches. Theoretical analysis and extensive experiments on multiple datasets demonstrate that our proposed framework outperforms the SOTA models.
Poster
Yanyan Huang · Weiqin Zhao · Yihang Chen · Yu Fu · Lequan Yu

[ East Exhibit Hall A-C ]

Abstract
Whole slide image (WSI) analysis is gaining prominence within the medical imaging field. Recent advances in pathology foundation models have shown the potential to extract powerful feature representations from WSIs for downstream tasks. However, these foundation models are usually designed for general-purpose pathology image analysis and may not be optimal for specific downstream tasks or cancer types. In this work, we present Concept Anchor-guided Task-specific Feature Enhancement (CATE), an adaptable paradigm that can boost the expressivity and discriminativeness of pathology foundation models for specific downstream tasks. Based on a set of task-specific concepts derived from the pathology vision-language model with expert-designed prompts, we introduce two interconnected modules to dynamically calibrate the generic image features extracted by foundation models for certain tasks or cancer types. Specifically, we design a Concept-guided Information Bottleneck module to enhance task-relevant characteristics by maximizing the mutual information between image features and concept anchors while suppressing superfluous information. Moreover, a Concept-Feature Interference module is proposed to utilize the similarity between calibrated features and concept anchors to further generate discriminative task-specific features. The extensive experiments on public WSI datasets demonstrate that CATE significantly enhances the performance and generalizability of MIL models. Additionally, heatmap and umap visualization results also …
Poster
Wenyuan Zhang · Yu-Shen Liu · Zhizhong Han

[ East Exhibit Hall A-C ]

Abstract
It is vital to infer a signed distance function (SDF) for multi-view based surface reconstruction. 3D Gaussian splatting (3DGS) provides a novel perspective for volume rendering, and shows advantages in rendering efficiency and quality. Although 3DGS provides a promising neural rendering option, it is still hard to infer SDFs for surface reconstruction with 3DGS due to the discreteness, the sparseness, and the off-surface drift of 3D Gaussians. To resolve these issues, we propose a method that seamlessly merge 3DGS with the learning of neural SDFs. Our key idea is to more effectively constrain the SDF inference with the multi-view consistency. To this end, we dynamically align 3D Gaussians on the zero-level set of the neural SDF, and then render the aligned 3D Gaussians through the differentiable rasterization. Meanwhile, we update the neural SDF by pulling neighboring space to the pulled 3D Gaussians, which progressively refine the signed distance field near the surface. With both differentiable pulling and splatting, we jointly optimize 3D Gaussians and the neural SDF with both RGB and geometry constraints, which recovers more accurate, smooth, and complete surfaces with more geometry details. Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely …
Poster
Linhui Xiao · Xiaoshan Yang · Fang Peng · Yaowei Wang · Changsheng Xu

[ East Exhibit Hall A-C ]

Abstract
Constrained by the separate encoding of vision and language, existing grounding and referring segmentation works heavily rely on bulky Transformer-based fusion en-/decoders and a variety of early-stage interaction technologies. Simultaneously, the current mask visual language modeling (MVLM) fails to capture the nuanced referential relationship between image-text in referring tasks. In this paper, we propose **OneRef**, a minimalist referring framework built on the modality-shared one-tower transformer that unifies the visual and linguistic feature spaces. To modeling the referential relationship, we introduce a novel MVLM paradigm called Mask Referring Modeling (**MRefM**), which encompasses both referring-aware mask image modeling and referring-aware mask language modeling. Both modules not only reconstruct modality-related content but also cross-modal referring content. Within MRefM, we propose a referring-aware dynamic image masking strategy that is aware of the referred region rather than relying on fixed ratios or generic random masking schemes. By leveraging the unified visual language feature space and incorporating MRefM's ability to model the referential relations, our approach enables direct regression of the referring results without resorting to various complex techniques. Our method consistently surpasses existing approaches and achieves SoTA performance on both grounding and segmentation tasks, providing valuable insights for future research. Our code and models are …
Poster
Yiwei Guo · Shaobin Zhuang · Kunchang Li · Yu Qiao · Yali Wang

[ East Exhibit Hall A-C ]

Abstract
Vision-language foundation models (such as CLIP) have recently shown their power in transfer learning, owing to large-scale image-text pre-training. However, target domain data in the downstream tasks can be highly different from the pre-training phase, which makes it hard for such a single model to generalize well. Alternatively, there exists a wide range of expert models that contain diversified vision and/or language knowledge pre-trained on different modalities, tasks, networks, and datasets. Unfortunately, these models are "isolated agents" with heterogeneous structures, and how to integrate their knowledge for generalizing CLIP-like models has not been fully explored. To bridge this gap, we propose a general and concise TransAgent framework, which transports the knowledge of the isolated agents in a unified manner, and effectively guides CLIP to generalize with multi-source knowledge distillation. With such a distinct framework, we flexibly collaborate with 11 heterogeneous agents to empower vision-language foundation models, without further cost in the inference phase. Finally, our TransAgent achieves state-of-the-art performance on 11 visual recognition datasets. Under the same low-shot setting, it outperforms the popular CoOp with around 10\% on average, and 20\% on EuroSAT which contains large domain shifts.
Poster
Haoyang Liu · Jie Wang · Wanbo Zhang · Zijie Geng · Yufei Kuang · Xijun Li · Bin Li · Yongdong Zhang · Feng Wu

[ East Exhibit Hall A-C ]

Abstract
Mixed-integer linear programming (MILP) is one of the most popular mathematical formulations with numerous applications. In practice, improving the performance of MILP solvers often requires a large amount of high-quality data, which can be challenging to collect. Researchers thus turn to generation techniques to generate additional MILP instances. However, existing approaches do not take into account specific block structures—which are closely related to the problem formulations—in the constraint coefficient matrices (CCMs) of MILPs. Consequently, they are prone to generate computationally trivial or infeasible instances due to the disruptions of block structures and thus problem formulations. To address this challenge, we propose a novel MILP generation framework, called Block Structure Decomposition (MILP-StuDio), to generate high-quality instances by preserving the block structures. Specifically, MILP-StuDio begins by identifying the blocks in CCMs and decomposing the instances into block units, which serve as the building blocks of MILP instances. We then design three operators to construct new instances by removing, substituting, and appending block units in the original instances, enabling us to generate instances with flexible sizes. An appealing feature of MILP-StuDio is its strong ability to preserve the feasibility and computational hardness of the generated instances. Experiments on the commonly-used benchmarks demonstrate that …
Poster
Weiyi Xue · Zehan Zheng · Fan Lu · Haiyun Wei · Guang Chen · changjun jiang

[ East Exhibit Hall A-C ]

Abstract
Although recent efforts have extended Neural Radiance Field (NeRF) into LiDAR point cloud synthesis, the majority of existing works exhibit a strong dependence on precomputed poses. However, point cloud registration methods struggle to achieve precise global pose estimation, whereas previous pose-free NeRFs overlook geometric consistency in global reconstruction. In light of this, we explore the geometric insights of point clouds, which provide explicit registration priors for reconstruction. Based on this, we propose Geometry guided Neural LiDAR Fields (GeoNLF), a hybrid framework performing alternately global neural reconstruction and pure geometric pose optimization. Furthermore, NeRFs tend to overfit individual frames and easily get stuck in local minima under sparse-view inputs. To tackle this issue, we develop a selective-reweighting strategy and introduce geometric constraints for robust optimization. Extensive experiments on NuScenes and KITTI-360 datasets demonstrate the superiority of GeoNLF in both novel view synthesis and multi-view registration of low-frequency large-scale point clouds.
Spotlight Poster
Tobias Fischer · Jonas Kulhanek · Samuel Rota Bulò · Lorenzo Porzi · Marc Pollefeys · Peter Kontschieder

[ East Exhibit Hall A-C ]

Abstract
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas. Existing works are not well suited for applications like mixed-reality or closed-loop simulation due to their limited visual quality and non-interactive rendering speeds. Recently, rasterization-based approaches have achieved high-quality NVS at impressive speeds. However, these methods are limited to small-scale, homogeneous data, i.e. they cannot handle severe appearance and geometry variations due to weather, season, and lighting and do not scale to larger, dynamic areas with thousands of images. We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas, handles heterogeneous input data, and substantially improves rendering speeds. We use 3D Gaussians as an efficient geometry scaffold while relying on neural fields as a compact and flexible appearance model. We integrate scene dynamics via a scene graph at global scale while modeling articulated motions on a local level via deformations. This decomposed approach enables flexible scene composition suitable for real-world applications. In experiments, we surpass the state-of-the-art by over 3 dB in PSNR and more than 200x in rendering speed.
Poster
Yinshuang Xu · Dian Chen · Katherine Liu · Sergey Zakharov · Rareș Ambruș · Kostas Daniilidis · Vitor Guizilini

[ East Exhibit Hall A-C ]

Abstract
Incorporating inductive bias by embedding geometric entities (such as rays) as input has proven successful in multi-view learning. However, the methods adopting this technique typically lack equivariance, which is crucial for effective 3D learning. Equivariance serves as a valuable inductive prior, aiding in the generation of robust multi-view features for 3D scene understanding. In this paper, we explore the application of equivariant multi-view learning to depth estimation, not only recognizing its significance for computer vision and robotics but also addressing the limitations of previous research. Most prior studies have either overlooked equivariance in this setting or achieved only approximate equivariance through data augmentation, which often leads to inconsistencies across different reference frames. To address this issue, we propose to embed $SE(3)$ equivariance into the Perceiver IO architecture. We employ Spherical Harmonics for positional encoding to ensure 3D rotation equivariance, and develop a specialized equivariant encoder and decoder within the Perceiver IO architecture. To validate our model, we applied it to the task of stereo depth estimation, achieving state of the art results on real-world datasets without explicit geometric constraints or extensive data augmentation.
Poster
Chaoda Zheng · Feng Wang · Naiyan Wang · Shuguang Cui · Zhen Li

[ East Exhibit Hall A-C ]

Abstract
While 3D object bounding box (bbox) representation has been widely used in autonomous driving perception, it lacks the ability to capture the precise details of an object's intrinsic geometry. Recently, occupancy has emerged as a promising alternative for 3D scene perception. However, constructing a high-resolution occupancy map remains infeasible for large scenes due to computational constraints. Recognizing that foreground objects only occupy a small portion of the scene, we introduce object-centric occupancy as a supplement to object bboxes. This representation not only provides intricate details for detected objects but also enables higher voxel resolution in practical applications. We advance the development of object-centric occupancy perception from both data and algorithm perspectives. On the data side, we construct the first object-centric occupancy dataset from scratch using an automated pipeline. From the algorithmic standpoint, we introduce a novel object-centric occupancy completion network equipped with an implicit shape decoder that manages dynamic-size occupancy generation. This network accurately predicts the complete object-centric occupancy volume for inaccurate object proposals by leveraging temporal information from long sequences. Our method demonstrates robust performance in completing object shapes under noisy detection and tracking conditions. Additionally, we show that our occupancy features significantly enhance the detection results of state-of-the-art …
Spotlight Poster
Jeremias Traub · Till Bungert · Carsten Lüth · Michael Baumgartner · Klaus Maier-Hein · Lena Maier-Hein · Paul Jaeger

[ East Exhibit Hall A-C ]

Abstract
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the $\mathrm{AUROC}$ in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve ($\mathrm{AUGRC}$), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of $\mathrm{AUGRC}$ on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
Poster
Haiyang Zheng · Nan Pu · Wenjing Li · Nicu Sebe · Zhun Zhong

[ East Exhibit Hall A-C ]

Abstract
In this paper, we study a practical yet challenging task, On-the-fly Category Discovery (OCD), aiming to online discover the newly-coming stream data that belong to both known and unknown classes, by leveraging only known category knowledge contained in labeled data. Previous OCD methods employ the hash-based technique to represent old/new categories by hash codes for instance-wise inference. However, directly mapping features into low-dimensional hash space not only inevitably damages the ability to distinguish classes and but also causes ``high sensitivity'' issue, especially for fine-grained classes, leading to inferior performance. To address these drawbacks, we propose a novel Prototypical Hash Encoding (PHE) framework consisting of Category-aware Prototype Generation (CPG) and Discriminative Category Encoding (DCE) to mitigate the sensitivity of hash code while preserving rich discriminative information contained in high-dimension feature space, in a two-stage projection fashion. CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes. DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes and the constraint of minimum separation distance. By jointly optimizing CPG and DCE, we demonstrate that these two components are mutually beneficial towards an effective OCD. Extensive experiments show the significant superiority …
Poster
Jiaqi Li · Yiran Wang · Jinghong Zheng · Zihao Huang · Ke Xian · Zhiguo Cao · Jianming Zhang

[ East Exhibit Hall A-C ]

Abstract
Depth refinement aims to infer high-resolution depth with fine-grained edges and details, refining low-resolution results of depth estimation models. The prevailing methods adopt tile-based manners by merging numerous patches, which lacks efficiency and produces inconsistency. Besides, prior arts suffer from fuzzy depth boundaries and limited generalizability. Analyzing the fundamental reasons for these limitations, we model depth refinement as a noisy Poisson fusion problem with local inconsistency and edge deformation noises. We propose the Self-distilled Depth Refinement (SDDR) framework to enforce robustness against the noises, which mainly consists of depth edge representation and edge-based guidance. With noisy depth predictions as input, SDDR generates low-noise depth edge representations as pseudo-labels by coarse-to-fine self-distillation. Edge-based guidance with edge-guided gradient loss and edge-based fusion loss serves as the optimization objective equivalent to Poisson fusion. When depth maps are better refined, the labels also become more noise-free. Our model can acquire strong robustness to the noises, achieving significant improvements in accuracy, edge quality, efficiency, and generalizability on five different benchmarks. Moreover, directly training another model with edge labels produced by SDDR brings improvements, suggesting that our method could help with training robust refinement models in future works.
Poster
Yitian Zhang · n n · Xu Ma · Huan Wang · Ke Ma · Stephen Chen · Derek Hu · Yun Fu

[ East Exhibit Hall A-C ]

Abstract
Vision Transformers (ViT) is known for its scalability. In this work, we target to scale down a ViT to fit in an environment with dynamic-changing resource constraints. We observe that smaller ViTs are intrinsically the sub-networks of a larger ViT with different widths. Thus, we propose a general framework, named Scala, to enable a single network to represent multiple smaller ViTs with flexible inference capability, which aligns with the inherent design of ViT to vary from widths. Concretely, Scala activates several subnets during training, introduces Isolated Activation to disentangle the smallest sub-network from other subnets, and leverages Scale Coordination to ensure each sub-network receives simplified, steady, and accurate learning objectives. Comprehensive empirical validations on different tasks demonstrate that with only one-shot training, Scala learns slimmable representation without modifying the original ViT structure and matches the performance of Separate Training. Compared with the prior art, Scala achieves an average improvement of 1.6% on ImageNet-1K with fewer parameters.
Poster
Jingjing Ren · Wenbo Li · Haoyu Chen · Renjing Pei · Bin Shao · Yong Guo · Long Peng · Fenglong Song · Lei Zhu

[ East Exhibit Hall A-C ]

Abstract
Ultra-high-resolution image generation poses great challenges, such as increased semantic planning complexity and detail synthesis difficulties, alongside substantial training resource demands. We present UltraPixel, a novel architecture utilizing cascade diffusion models to generate high-quality images at multiple resolutions (\textit{e.g.}, 1K, 2K, and 4K) within a single model, while maintaining computational efficiency. UltraPixel leverages semantics-rich representations of lower-resolution images in a later denoising stage to guide the whole generation of highly detailed high-resolution images, significantly reducing complexity. Specifically, we introduce implicit neural representations for continuous upsampling and scale-aware normalization layers adaptable to various resolutions. Notably, both low- and high-resolution processes are performed in the most compact space, sharing the majority of parameters with less than 3$\%$ additional parameters for high-resolution outputs, largely enhancing training and inference efficiency. Our model achieves fast training with reduced data requirements, producing photo-realistic high-resolution images and demonstrating state-of-the-art performance in extensive experiments.
Poster
Taihang Hu · Linxuan Li · Joost van de Weijer · Hongcheng Gao · Fahad Shahbaz Khan · Jian Yang · Ming-Ming Cheng · KAI WANG · Yaxing Wang

[ East Exhibit Hall A-C ]

Abstract
Although text-to-image (T2I) models exhibit remarkable generation capabilities,they frequently fail to accurately bind semantically related objects or attributesin the input prompts; a challenge termed semantic binding. Previous approacheseither involve intensive fine-tuning of the entire T2I model or require users orlarge language models to specify generation layouts, adding complexity. In thispaper, we define semantic binding as the task of associating a given object with itsattribute, termed attribute binding, or linking it to other related sub-objects, referredto as object binding. We introduce a novel method called Token Merging (ToMe),which enhances semantic binding by aggregating relevant tokens into a singlecomposite token. This ensures that the object, its attributes and sub-objects all sharethe same cross-attention map. Additionally, to address potential confusion amongmain objects with complex textual prompts, we propose end token substitution asa complementary strategy. To further refine our approach in the initial stages ofT2I generation, where layouts are determined, we incorporate two auxiliary losses,an entropy loss and a semantic binding loss, to iteratively update the compositetoken to improve the generation integrity. We conducted extensive experiments tovalidate the effectiveness of ToMe, comparing it against various existing methodson the T2I-CompBench and our proposed GPT-4o object binding benchmark. Ourmethod is particularly effective in complex scenarios that …
Poster
Shubhankar Borse · Shreya Kadambi · Nilesh Pandey · Kartikeya Bhardwaj · Viswanath Ganapathy · Sweta Priyadarshi · Risheek Garrepalli · Rafael Esteves · Munawar Hayat · Fatih Porikli

[ East Exhibit Hall A-C ]

Abstract
While Low-Rank Adaptation (LoRA) has proven beneficial for efficiently fine-tuning large models, LoRA fine-tuned text-to-image diffusion models lack diversity in the generated images, as the model tends to copy data from the observed training samples. This effect becomes more pronounced at higher values of adapter strength and for adapters with higher ranks which are fine-tuned on smaller datasets. To address these challenges, we present FouRA, a novel low-rank method that learns projections in the Fourier domain along with learning a flexible input-dependent adapter rank selection strategy. Through extensive experiments and analysis, we show that FouRA successfully solves the problems related to data copying and distribution collapse while significantly improving the generated image quality. We demonstrate that FouRA enhances the generalization of fine-tuned models thanks to its adaptive rank selection. We further show that the learned projections in the frequency domain are decorrelated and prove effective when merging multiple adapters. While FouRA is motivated for vision tasks, we also demonstrate its merits for language tasks on commonsense reasoning and GLUE benchmarks.
Oral Poster
Tianhong Li · Dina Katabi · Kaiming He

[ East Exhibit Hall A-C ]

Abstract
Unconditional generation -- the problem of modeling data distribution without relying on human-annotated labels -- is a long-standing and fundamental challenge in generative models, creating a potential of learning from large-scale unlabeled data. In the literature, the generation quality of an unconditional method has been much worse than that of its conditional counterpart. This gap can be attributed to the lack of semantic information provided by labels. In this work, we show that one can close this gap by generating semantic representations in the representation space produced by a self-supervised encoder. These representations can be used to condition the image generator. This framework, called Representation-Conditioned Generation (RCG), provides an effective solution to the unconditional generation problem without using labels. Through comprehensive experiments, we observe that RCG significantly improves unconditional generation quality: e.g., it achieves a new state-of-the-art FID of 2.15 on ImageNet 256x256, largely reducing the previous best of 5.91 by a relative 64%. Our unconditional results are situated in the same tier as the leading class-conditional ones. We hope these encouraging observations will attract the community's attention to the fundamental problem of unconditional generation. Code is available at [https://github.com/LTH14/rcg](https://github.com/LTH14/rcg).
Poster
Mingzhen Huang · Jialing Cai · Shan Jia · Vishnu Lokhande · Siwei Lyu

[ East Exhibit Hall A-C ]

Abstract
Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-attribute edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of ParallelEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, ParallelEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through innovative attention distribution mechanism and multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios.
Spotlight Poster
zheng yu · Yaohua Wang · Siying Cui · Aixi Zhang · Wei-Long Zheng · Senzhang Wang

[ East Exhibit Hall A-C ]

Abstract
Facial parts swapping aims to selectively transfer regions of interest from the source image onto the target image while maintaining the rest of the target image unchanged.Most studies on face swapping designed specifically for full-face swapping, are either unable or significantly limited when it comes to swapping individual facial parts, which hinders fine-grained and customized character designs.However, designing such an approach specifically for facial parts swapping is challenged by a reasonable multiple reference feature fusion, which needs to be both efficient and effective.To overcome this challenge, FuseAnyPart is proposed to facilitate the seamless "fuse-any-part" customization of the face.In FuseAnyPart, facial parts from different people are assembled into a complete face in latent space within the Mask-based Fusion Module.Subsequently, the consolidated feature is dispatched to the Addition-based Injection Module forfusion within the UNet of the diffusion model to create novel characters.Extensive experiments qualitatively and quantitatively validate the superiority and robustness of FuseAnyPart.Source codes are available at https://github.com/Thomas-wyh/FuseAnyPart.
Spotlight Poster
Michael Saxon · Fatima Jahara · Mahsa Khoshnoodi · Yujie Lu · Aditya Sharma · William Yang Wang

[ East Exhibit Hall A-C ]

Abstract
With advances in the quality of text-to-image (T2I) models has come interest in benchmarking their prompt faithfulness---the semantic coherence of generated images to the prompts they were conditioned on. A variety of T2I faithfulness metrics have been proposed, leveraging advances in cross-modal embeddings and vision-language models (VLMs). However, these metrics are not rigorously compared and benchmarked, instead presented with correlation to human Likert scores over a set of easy-to-discriminate images against seemingly weak baselines. We introduce T2IScoreScore, a curated set of semantic error graphs containing a prompt and a set of increasingly erroneous images. These allow us to rigorously judge whether a given prompt faithfulness metric can correctly order images with respect to their objective error count and significantly discriminate between different error nodes, using meta-metric scores derived from established statistical tests. Surprisingly, we find that the state-of-the-art VLM-based metrics (e.g., TIFA, DSG, LLMScore, VIEScore) we tested fail to significantly outperform simple (and supposedly worse) feature-based metrics like CLIPScore, particularly on a hard subset of naturally-occurring T2I model errors. TS2 will enable the development of better T2I prompt faithfulness metrics through more rigorous comparison of their conformity to expected orderings and separations under objective criteria.
Poster
Hang Guo · Tao Dai · Yuanchao Bai · Bin Chen · Xudong Ren · Zexuan Zhu · Shu-Tao Xia

[ East Exhibit Hall A-C ]

Abstract
Designing single-task image restoration models for specific degradation has seen great success in recent years. To achieve generalized image restoration, all-in-one methods have recently been proposed and shown potential for multiple restoration tasks using one single model. Despite the promising results, the existing all-in-one paradigm still suffers from high computational costs as well as limited generalization on unseen degradations. In this work, we introduce an alternative solution to improve the generalization of image restoration models. Drawing inspiration from recent advancements in Parameter Efficient Transfer Learning (PETL), we aim to tune only a small number of parameters to adapt pre-trained restoration models to various tasks. However, current PETL methods fail to generalize across varied restoration tasks due to their homogeneous representation nature. To this end, we propose AdaptIR, a Mixture-of-Experts (MoE) with orthogonal multi-branch design to capture local spatial, global spatial, and channel representation bases, followed by adaptive base combination to obtain heterogeneous representation for different degradations. Extensive experiments demonstrate that our AdaptIR achieves stable performance on single-degradation tasks, and excels in hybrid-degradation tasks, with training only 0.6% parameters for 8 hours.
Poster
Chenyi Zhuang · Ying Hu · Pan Gao

[ East Exhibit Hall A-C ]

Abstract
Text-to-image diffusion models particularly Stable Diffusion, have revolutionized the field of computer vision. However, the synthesis quality often deteriorates when asked to generate images that faithfully represent complex prompts involving multiple attributes and objects. While previous studies suggest that blended text embeddings lead to improper attribute binding, few have explored this in depth. In this work, we critically examine the limitations of the CLIP text encoder in understanding attributes and investigate how this affects diffusion models. We discern a phenomenon of attribute bias in the text space and highlight a contextual issue in padding embeddings that entangle different concepts. We propose Magnet, a novel training-free approach to tackle the attribute binding problem. We introduce positive and negative binding vectors to enhance disentanglement, further with a neighbor strategy to increase accuracy. Extensive experiments show that Magnet significantly improves synthesis quality and binding accuracy with negligible computational cost, enabling the generation of unconventional and unnatural concepts.
Poster
Yuchen Fu · Zhiwei Jiang · Yuliang Liu · Cong Wang · Zexuan Deng · Zhaoling Chen · Qing Gu

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in Automatic Prompt Optimization (APO) for text-to-image generation have streamlined user input while ensuring high-quality image output. However, most APO methods are trained assuming a fixed text-to-image model, which is impractical given the emergence of new models. To address this, we propose a novel task, model-generalized automatic prompt optimization (MGAPO), which trains APO methods on a set of known models to enable generalization to unseen models during testing. MGAPO presents significant challenges. First, we experimentally confirm the suboptimal performance of existing APO methods on unseen models. We then introduce a two-stage prompt optimization method, AP-Adapter. In the first stage, a large language model is used to rewrite the prompts. In the second stage, we propose a novel method to construct an enhanced representation space by leveraging inter-model differences. This space captures the characteristics of multiple domain models, storing them as domain prototypes. These prototypes serve as anchors to adjust prompt representations, enabling generalization to unseen models. The optimized prompt representations are subsequently used to generate conditional representations for controllable image generation. We curate a multi-modal, multi-model dataset that includes multiple diffusion models and their corresponding text-image data, and conduct experiments under a model generalization setting. The experimental results …
Poster
Jiahao Lu · Jiacheng Deng · Ruijie Zhu · Yanzhe Liang · Wenfei Yang · Xu Zhou · Tianzhu Zhang

[ East Exhibit Hall A-C ]

Abstract
Dynamic scenes rendering is an intriguing yet challenging problem. Although current methods based on NeRF have achieved satisfactory performance, they still can not reach real-time levels. Recently, 3D Gaussian Splatting (3DGS) has garnered researchers' attention due to their outstanding rendering quality and real-time speed. Therefore, a new paradigm has been proposed: defining a canonical 3D gaussians and deforming it to individual frames in deformable fields. However, since the coordinates of canonical 3D gaussians are filled with noise, which can transfer noise into the deformable fields, and there is currently no method that adequately considers the aggregation of 4D information. Therefore, we propose Denoised Deformable Network with Temporal-Spatial Aggregation for Dynamic Scene Rendering (DN-4DGS). Specifically, a Noise Suppression Strategy is introduced to change the distribution of the coordinates of the canonical 3D gaussians and suppress noise. Additionally, a Decoupled Temporal-Spatial Aggregation Module is designed to aggregate information from adjacent points and frames. Extensive experiments on various real-world datasets demonstrate that our method achieves state-of-the-art rendering quality under a real-time level. Code is available at https://github.com/peoplelu/DN-4DGS.
Spotlight Poster
Xi Yang · Xu Gu · Xingyilang Yin · Xinbo Gao

[ East Exhibit Hall A-C ]

Abstract
The proliferation of 2D foundation models has sparked research into adapting them for open-world 3D instance segmentation. Recent methods introduce a paradigm that leverages superpoints as geometric primitives and incorporates 2D multi-view masks from Segment Anything model (SAM) as merging guidance, achieving outstanding zero-shot instance segmentation results. However, the limited use of 3D priors restricts the segmentation performance. Previous methods calculate the 3D superpoints solely based on estimated normal from spatial coordinates, resulting in under-segmentation for instances with similar geometry. Besides, the heavy reliance on SAM and hand-crafted algorithms in 2D space suffers from over-segmentation due to SAM's inherent part-level segmentation tendency. To address these issues, we propose SA3DIP, a novel method for Segmenting Any 3D Instances via exploiting potential 3D Priors. Specifically, on one hand, we generate complementary 3D primitives based on both geometric and textural priors, which reduces the initial errors that accumulate in subsequent procedures. On the other hand, we introduce supplemental constraints from the 3D space by using a 3D detector to guide a further merging process. Furthermore, we notice a considerable portion of low-quality ground truth annotations in ScanNetV2 benchmark, which affect the fair evaluations. Thus, we present ScanNetV2-INS with complete ground truth labels and …
Poster
Bin-Bin Gao

[ East Exhibit Hall A-C ]

Abstract
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation.We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our …
Poster
Zhiyi Pan · Wei Gao · Shan Liu · Ge Li

[ East Exhibit Hall A-C ]

Abstract
Despite alleviating the dependence on dense annotations inherent to fully supervised methods, weakly supervised point cloud semantic segmentation suffers from inadequate supervision signals. In response to this challenge, we introduce a novel perspective that imparts auxiliary constraints by regulating the feature space under weak supervision. Our initial investigation identifies which distributions accurately characterize the feature space, subsequently leveraging this priori to guide the alignment of the weakly supervised embeddings. Specifically, we analyze the superiority of the mixture of von Mises-Fisher distributions (moVMF) among several common distribution candidates. Accordingly, we develop a Distribution Guidance Network (DGNet), which comprises a weakly supervised learning branch and a distribution alignment branch. Leveraging reliable clustering initialization derived from the weakly supervised learning branch, the distribution alignment branch alternately updates the parameters of the moVMF and the network, ensuring alignment with the moVMF-defined latent space. Extensive experiments validate the rationality and effectiveness of our distribution choice and network design. Consequently, DGNet achieves state-of-the-art performance under multiple datasets and various weakly supervised settings.
Poster
Yu Zheng · Guangming Wang · Jiuming Liu · Marc Pollefeys · Hesheng Wang

[ East Exhibit Hall A-C ]

Abstract
LiDAR point cloud semantic segmentation enables the robots to obtain fine-grained semantic information of the surrounding environment. Recently, many works project the point cloud onto the 2D image and adopt the 2D Convolutional Neural Networks (CNNs) or vision transformer for LiDAR point cloud semantic segmentation. However, since more than one point can be projected onto the same 2D position but only one point can be preserved, the previous 2D projection-based segmentation methods suffer from inevitable quantized information loss, which results in incomplete geometric structure, especially for small objects. To avoid quantized information loss, in this paper, we propose a novel spherical frustum structure, which preserves all points projected onto the same 2D position. Additionally, a hash-based representation is proposed for memory-efficient spherical frustum storage. Based on the spherical frustum structure, the Spherical Frustum sparse Convolution (SFC) and Frustum Farthest Point Sampling (F2PS) are proposed to convolve and sample the points stored in spherical frustums respectively. Finally, we present the Spherical Frustum sparse Convolution Network (SFCNet) to adopt 2D CNNs for LiDAR point cloud semantic segmentation without quantized information loss. Extensive experiments on the SemanticKITTI and nuScenes datasets demonstrate that our SFCNet outperforms previous 2D projection-based semantic segmentation methods based on …
Poster
Yash Mehta · Danil Tyulmankov · Adithya Rajagopalan · Glenn Turner · James Fitzgerald · Jan Funke

[ East Exhibit Hall A-C ]

Abstract
Inferring the synaptic plasticity rules that govern learning in the brain is a key challenge in neuroscience. We present a novel computational method to infer these rules from experimental data, applicable to both neural and behavioral data. Our approach approximates plasticity rules using a parameterized function, employing either truncated Taylor series for theoretical interpretability or multilayer perceptrons. These plasticity parameters are optimized via gradient descent over entire trajectories to align closely with observed neural activity or behavioral learning dynamics. This method can uncover complex rules that induce long nonlinear time dependencies, particularly involving factors like postsynaptic activity and current synaptic weights. We validate our approach through simulations, successfully recovering established rules such as Oja's, as well as more intricate plasticity rules with reward-modulated terms. We assess the robustness of our technique to noise and apply it to behavioral data from \textit{Drosophila} in a probabilistic reward-learning experiment. Notably, our findings reveal an active forgetting component in reward learning in flies, improving predictive accuracy over previous models. This modeling framework offers a promising new avenue for elucidating the computational principles of synaptic plasticity and learning in the brain.
Poster
Yuanhao Cai · Zihao Xiao · Yixun Liang · Minghan Qin · Yulun Zhang · Xiaokang Yang · Yaoyao Liu · Alan Yuille

[ East Exhibit Hall A-C ]

Abstract
High dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed. In this paper, we propose a new framework, High Dynamic Range Gaussian Splatting (HDR-GS), which can efficiently render novel HDR views and reconstruct LDR images with a user input exposure time. Specifically, we design a Dual Dynamic Range (DDR) Gaussian point cloud model that uses spherical harmonics to fit HDR color and employs an MLP-based tone-mapper to render LDR color. The HDR and LDR colors are then fed into two Parallel Differentiable Rasterization (PDR) processes to reconstruct HDR and LDR views. To establish the data foundation for the research of 3D Gaussian splatting-based methods in HDR NVS, we recalibrate the camera parameters and compute the initial positions for Gaussian point clouds. Comprehensive experiments show that HDR-GS surpasses the state-of-the-art NeRF-based method by 3.84 and 1.91 dB on LDR and HDR NVS while enjoying 1000$\times$ inference speed and …
Poster
Rui Peng · Wangze Xu · Luyang Tang · levio leo · Jianbo Jiao · Ronggang Wang

[ East Exhibit Hall A-C ]

Abstract
Despite the substantial progress of novel view synthesis, existing methods, either based on the Neural Radiance Fields (NeRF) or more recently 3D Gaussian Splatting (3DGS), suffer significant degradation when the input becomes sparse. Numerous efforts have been introduced to alleviate this problem, but they still struggle to synthesize satisfactory results efficiently, especially in the large scene. In this paper, we propose SCGaussian, a Structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure. Considering the high interdependence of Gaussian attributes, we optimize the scene structure in two folds: rendering geometry and, more importantly, the position of Gaussian primitives, which is hard to be directly constrained in the vanilla 3DGS due to the non-structure property. To achieve this, we present a hybrid Gaussian representation. Besides the ordinary non-structure Gaussian primitives, our model also consists of ray-based Gaussian primitives that are bound to matching rays and whose optimization of their positions is restricted along the ray. Thus, we can utilize the matching correspondence to directly enforce the position of these Gaussian primitives to converge to the surface points where rays intersect. Extensive experiments on forward-facing, surrounding, and complex large scenes show the effectiveness of our approach with state-of-the-art …
Poster
Zhiwen Fan · Jian Zhang · Wenyan Cong · Peihao Wang · Renjie Li · Kairun Wen · Shijie Zhou · Achuta Kadambi · Zhangyang &quot;Atlas&quot; Wang · Danfei Xu · Boris Ivanovic · Marco Pavone · Yue Wang

[ East Exhibit Hall A-C ]

Abstract
Reconstructing and understanding 3D structures from a limited number of images is a classical problem in computer vision. Traditional approaches typically decompose this task into multiple subtasks, involving several stages of complex mappings between different data representations. For example, dense reconstruction using Structure-from-Motion (SfM) requires transforming images into key points, optimizing camera parameters, and estimating structures. Following this, accurate sparse reconstructions are necessary for further dense modeling, which is then input into task-specific neural networks. This multi-stage paradigm leads to significant processing times and engineering complexity.In this work, we introduce the Large Spatial Model (LSM), which directly processes unposed RGB images into semantic radiance fields. LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward pass and can synthesize versatile label maps by interacting through language at novel views. Built on a general Transformer-based framework, LSM predicts global geometry via pixel-aligned point maps. To improve spatial attribute regression, we adopt local context aggregation with multi-scale fusion, enhancing the accuracy of fine local details. To address the scarcity of labeled 3D semantic data and enable natural language-driven scene manipulation, we incorporate a pre-trained 2D language-based segmentation model into a 3D-consistent semantic feature field. An efficient decoder parameterizes a set of …
Poster
Chieh-Yun Chen · Chiang Tseng · Li-Wu Tsao · Hong-Han Shuai

[ East Exhibit Hall A-C ]

Abstract
This paper analyzes the impact of causal manner in the text encoder of text-to-image (T2I) diffusion models, which can lead to information bias and loss. Previous works have focused on addressing the issues through the denoising process. However, there is no research discussing how text embedding contributes to T2I models, especially when generating more than one object. In this paper, we share a comprehensive analysis of text embedding: i) how text embedding contributes to the generated images and ii) why information gets lost and biases towards the first-mentioned object. Accordingly, we propose a simple but effective text embedding balance optimization method, which is training-free, with an improvement of 125.42\% on information balance in stable diffusion. Furthermore, we propose a new automatic evaluation metric that quantifies information loss more accurately than existing methods, achieving 81\% concordance with human assessments. This metric effectively measures the presence and accuracy of objects, addressing the limitations of current distribution scores like CLIP's text-image similarities.
Poster
Sunjae Yoon · Gwanhyeong Koo · Younghwan Lee · Chang Yoo

[ East Exhibit Hall A-C ]

Abstract
Human image animation aims to generate a human motion video from the inputs of a reference human image and a target motion video. Current diffusion-based image animation systems exhibit high precision in transferring human identity into targeted motion, yet they still exhibit irregular quality in their outputs. Their optimal precision is achieved only when the physical compositions (i.e., scale and rotation) of the human shapes in the reference image and target pose frame are aligned. In the absence of such alignment, there is a noticeable decline in fidelity and consistency. Especially, in real-world environments, this compositional misalignment commonly occurs, posing significant challenges to the practical usage of current systems. To this end, we propose Test-time Procrustes Calibration (TPC), which enhances the robustness of diffusion-based image animation systems by maintaining optimal performance even when faced with compositional misalignment, effectively addressing real-world scenarios. The TPC provides a calibrated reference image for the diffusion model, enhancing its capability to understand the correspondence between human shapes in the reference and target images. Our method is simple and can be applied to any diffusion-based image animation system in a model-agnostic manner, improving the effectiveness at test time without additional training.
Poster
Tianwei Xiong · Yuqing Wang · Daquan Zhou · Zhijie Lin · Jiashi Feng · Xihui Liu

[ East Exhibit Hall A-C ]

Abstract
The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for filtering high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level scores, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We …
Poster
Anshul Gupta · Samy Tafasca · Arya Farkhondeh · Pierre Vuillecard · Jean-marc Odobez

[ East Exhibit Hall A-C ]

Abstract
Gaze following and social gaze prediction are fundamental tasks providing insights into human communication behaviors, intent, and social interactions. Most previous approaches addressed these tasks separately, either by designing highly specialized social gaze models that do not generalize to other social gaze tasks or by considering social gaze inference as an ad-hoc post-processing of the gaze following task. Furthermore, the vast majority of gaze following approaches have proposed models that can handle only one person at a time and are static, therefore failing to take advantage of social interactions and temporal dynamics. In this paper, we address these limitations and introduce a novel framework to jointly predict the gaze target and social gaze label for all people in the scene. It comprises (i) a temporal, transformer-based architecture that, in addition to frame tokens, handles person-specific tokens capturing the gaze information related to each individual; (ii) a new dataset, VSGaze, built from multiple gaze following and social gaze datasets by extending and validating head detections and tracks, and unifying annotation types. We demonstrate that our model can address and benefit from training on all tasks jointly, achieving state-of-the-art results for multi-person gaze following and social gaze prediction. Our annotations and code …
Poster
Boya Zeng · Yida Yin · Zhuang Liu

[ East Exhibit Hall A-C ]

Abstract
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at boyazeng.github.io/understand_bias.
Poster
Geelon So · Sanjoy Dasgupta

[ East Exhibit Hall A-C ]

Abstract
In the realizable online setting, a learner is tasked with making predictions for a stream of instances, where the correct answer is revealed after each prediction. A learning rule is online consistent if its mistake rate eventually vanishes. The nearest neighbor rule is fundamental prediction strategy, but it is only known to be consistent under strong statistical or geometric assumptions: the instances come i.i.d. or the label classes are well-separated. We prove online consistency for all measurable functions in doubling metric spaces under the mild assumption that instances are generated by a process that is uniformly absolutely continuous with respect to an underlying finite, upper doubling measure.
Poster
Zichun Yu · Spandan Das · Chenyan Xiong

[ East Exhibit Hall A-C ]

Abstract
Pretraining data selection has the potential to improve language model pretraining efficiency by utilizing higher-quality data from massive web data corpora. Current data selection methods, which rely on either hand-crafted rules or larger reference models, are conducted statically and do not capture the evolving data preferences during pretraining. In this paper, we introduce *model-aware data selection with data influence models (MATES)*, where a data influence model continuously adapts to the evolving data preferences of the pretraining model and then selects the data most effective for the current pretraining progress. Specifically, we collect oracle data influence by locally probing the pretraining model and fine-tune a small data influence model to approximate it accurately. The data influence model then predicts data influence over the whole pretraining corpus and selects the most influential data for the next pretraining stage. Experiments of pretraining 410M and 1B models on the C4 dataset demonstrate that MATES significantly outperforms random data selection on extensive downstream tasks. It doubles the gains achieved by the state-of-the-art data selection approach that leverages larger reference models and reduces the total FLOPs required to reach certain performances by half. Further analyses validate the effectiveness of the locally probed oracle data influence and …
Poster
Katherine Tieu · Dongqi Fu · Yada Zhu · Hendrik Hamann · Jingrui He

[ East Exhibit Hall A-C ]

Abstract
_Graph Neural Tangent Kernel_ (GNTK) fuses graph neural networks and graph kernels, simplifies the process of graph representation learning, interprets the training dynamics of graph neural networks, and serves various applications like protein identification, image segmentation, and social network analysis. In practice, graph data carries complex information among entities that inevitably evolves over time, and previous static graph neural tangent kernel methods may be stuck in the sub-optimal solution in terms of both effectiveness and efficiency. As a result, extending the advantage of GNTK to temporal graphs becomes a critical problem. To this end, we propose the temporal graph neural tangent kernel, which not only extends the simplicity and interpretation ability of GNTK to the temporal setting but also leads to rigorous temporal graph classification error bounds. Furthermore, we prove that when the input temporal graph grows over time in the number of nodes, our temporal graph neural tangent kernel will converge in the limit to the _graphon_ NTK value, which implies the transferability and robustness of the proposed kernel method, named **Temp**oral **G**raph **N**eural **T**angent **K**ernel with **G**raphon-**G**uaranteed or **Temp-G$^3$NTK**. In addition to the theoretical analysis, we also perform extensive experiments, not only demonstrating the superiority of Temp-G$^3$NTK in …
Poster
Yunan Lu · Xiuyi Jia

[ East Exhibit Hall A-C ]

Abstract
Label distribution learning is a powerful learning paradigm to deal with label polysemy and has been widely applied in many practical tasks. A significant obstacle to the effective utilization of label distribution is the substantial expenses of accurate quantifying the label distributions. To tackle this challenge, label enhancement methods automatically infer label distributions from more easily accessible multi-label data based on binary annotations. However, the binary annotation of multi-label data requires experts to accurately assess whether each label can describe the instance, which may diminish the annotating efficiency and heighten the risk of erroneous annotation since the relationship between the label and the instance is unclear in many practical scenarios. Therefore, we propose to predict label distribution from ternary labels, allowing experts to annotate labels in a three-way annotation scheme. They can annotate the label as "$0$" indicating "uncertain relevant" if it is difficult to definitively determine whether the label can describe the instance, in addition to the binary annotation of "$1$" indicating "definitely relevant" and "$-1$" indicating "definitely irrelevant". Both the theoretical and methodological studies are conducted for the proposed learning paradigm. In the theoretical part, we conduct a quantitative comparison of approximation error between ternary and binary labels …
Poster
Rwiddhi Chakraborty · Yinong O Wang · Jialu Gao · Runkai Zheng · Cheng Zhang · Fernando D De la Torre

[ East Exhibit Hall A-C ]

Abstract
The widespread success of deep learning models today is owed to the curation of extensive datasets significant in size and complexity. However, such models frequently pick up inherent biases in the data during the training process, leading to unreliable predictions. Diagnosing and debiasing datasets is thus a necessity to ensure reliable model performance. In this paper, we present ConBias, a novel framework for diagnosing and mitigating Concept co-occurrence Biases in visual datasets. ConBias represents visual datasets as knowledge graphs of concepts, enabling meticulous analysis of spurious concept co-occurrences to uncover concept imbalances across the whole dataset. Moreover, we show that by employing a novel clique-based concept balancing strategy, we can mitigate these imbalances, leading to enhanced performance on downstream tasks. Extensive experiments show that data augmentation based on a balanced concept distribution augmented by ConBias improves generalization performance across multiple datasets compared to state-of-the-art methods.
Poster
Ju-Sheng Hong · Junwen Yao · Jonas Mueller · Jane-Ling Wang

[ East Exhibit Hall A-C ]

Abstract
Although the transformer architecture has come to dominate other models for text and image data, its application to irregularly-spaced longitudinal data has been limited. We introduce a variant of the transformer that enables it to more smoothly impute such functional data. We augment the vanilla transformer with a simple module we call SAND (self-attention on derivatives), which naturally encourages smoothness by modeling the sub-derivative of the imputed curve. On the theoretical front, we prove the number of hidden nodes required by a network with SAND to achieve an $\epsilon$ prediction error bound for functional imputation. Extensive experiments over various types of functional data demonstrate that transformers with SAND produce better imputations than both their standard counterparts as well as transformers augmented with alternative approaches to encode the inductive bias of smoothness. SAND also outperforms standard statistical methods for functional imputation like kernel smoothing and PACE.
Poster
Minghao Zhu · Zhengpu Wang · Mengxian Hu · Ronghao Dang · Xiao Lin · Xun Zhou · Chengju Liu · Qijun Chen

[ East Exhibit Hall A-C ]

Abstract
Transferring visual-language knowledge from large-scale foundation models for video recognition has proved to be effective. To bridge the domain gap, additional parametric modules are added to capture the temporal information. However, zero-shot generalization diminishes with the increase in the number of specialized parameters, making existing works a trade-off between zero-shot and close-set performance. In this paper, we present MoTE, a novel framework that enables generalization and specialization to be balanced in one unified model. Our approach tunes a mixture of temporal experts to learn multiple task views with various degrees of data fitting. To maximally preserve the knowledge of each expert, we propose Weight Merging Regularization, which regularizes the merging process of experts in weight space. Additionally with temporal feature modulation to regularize the contribution of temporal feature during test. We achieve a sound balance between zero-shot and close-set video recognition tasks and obtain state-of-the-art or competitive results on various datasets, including Kinetics-400 \& 600, UCF, and HMDB. Code is available at https://github.com/ZMHH-H/MoTE.
Poster
Pha Nguyen · Ngan Le · Jackson Cothren · Alper Yilmaz · Khoa Luu

[ East Exhibit Hall A-C ]

Abstract
Object tracking is a fundamental task in computer vision, requiring the localization of objects of interest across video frames. Diffusion models have shown remarkable capabilities in visual generation, making them well-suited for addressing several requirements of the tracking problem. This work proposes a novel diffusion-based methodology to formulate the tracking task. Firstly, their conditional process allows for injecting indications of the target object into the generation process. Secondly, diffusion mechanics can be developed to inherently model temporal correspondences, enabling the reconstruction of actual frames in video. However, existing diffusion models rely on extensive and unnecessary mapping to a Gaussian noise domain, which can be replaced by a more efficient and stable interpolation process. Our proposed interpolation mechanism draws inspiration from classic image-processing techniques, offering a more interpretable, stable, and faster approach tailored specifically for the object tracking task. By leveraging the strengths of diffusion models while circumventing their limitations, our Diffusion-based INterpolation TrackeR (DINTR) presents a promising new paradigm and achieves a superior multiplicity on seven benchmarks across five indicator representations.
Poster
Trong-Thuan Nguyen · Pha Nguyen · Xin Li · Jackson Cothren · Alper Yilmaz · Khoa Luu

[ East Exhibit Hall A-C ]

Abstract
Video scene graph generation (VidSGG) has emerged as a transformative approach to capturing and interpreting the intricate relationships among objects and their temporal dynamics in video sequences. In this paper, we introduce the new AeroEye dataset that focuses on multi-object relationship modeling in aerial videos. Our AeroEye dataset features various drone scenes and includes a visually comprehensive and precise collection of predicates that capture the intricate relationships and spatial arrangements among objects. To this end, we propose the novel Cyclic Graph Transformer (CYCLO) approach that allows the model to capture both direct and long-range temporal dependencies by continuously updating the history of interactions in a circular manner. The proposed approach also allows one to handle sequences with inherent cyclical patterns and process object relationships in the correct sequential order. Therefore, it can effectively capture periodic and overlapping relationships while minimizing information loss. The extensive experiments on the AeroEye dataset demonstrate the effectiveness of the proposed CYCLO model, demonstrating its potential to perform scene understanding on drone videos. Finally, the CYCLO method consistently achieves State-of-the-Art (SOTA) results on two in-the-wild scene graph generation benchmarks, i.e., PVSG and ASPIRe.
Poster
Dayoung Gong · Suha Kwak · Minsu Cho

[ East Exhibit Hall A-C ]

Abstract
Temporal action segmentation and long-term action anticipation are two popular vision tasks for the temporal analysis of actions in videos. Despite apparent relevance and potential complementarity, these two problems have been investigated as separate and distinct tasks. In this work, we tackle these two problems, action segmentation, and action anticipation, jointly using a unified diffusion model dubbed ActFusion. The key idea to unification is to train the model to effectively handle both visible and invisible parts of the sequence in an integrated manner;the visible part is for temporal segmentation, and the invisible part is for future anticipation. To this end, we introduce a new anticipative masking strategy during training in which a late part of the video frames is masked as invisible, and learnable tokens replace these frames to learn to predict the invisible future.Experimental results demonstrate the bi-directional benefits between action segmentation and anticipation.ActFusion achieves the state-of-the-art performance across the standard benchmarks of 50 Salads, Breakfast, and GTEA, outperforming task-specific models in both of the two tasks with a single unified model through joint learning.
Poster
Jindong Jiang · Fei Deng · Gautam Singh · Minseung Lee · Sungjin Ahn

[ East Exhibit Hall A-C ]

Abstract
Recent State Space Models (SSMs) such as S4, S5, and Mamba have shown remarkable computational benefits in long-range temporal dependency modeling. However, in many sequence modeling problems, the underlying process is inherently modular and it is of interest to have inductive biases that mimic this modular structure. In this paper, we introduce SlotSSMs, a novel framework for incorporating independent mechanisms into SSMs to preserve or encourage separation of information. Unlike conventional SSMs that maintain a monolithic state vector, SlotSSMs maintains the state as a collection of multiple vectors called slots. Crucially, the state transitions are performed independently per slot with sparse interactions across slots implemented via the bottleneck of self-attention. In experiments, we evaluate our model in object-centric learning, 3D visual reasoning, and long-context video understanding tasks, which involve modeling multiple objects and their long-range temporal dependencies. We find that our proposed design offers substantial performance gains over existing sequence modeling methods. Project page is available at \url{https://slotssms.github.io/}
Poster
Hanjun Dai · Bethany Wang · Xingchen Wan · Bo Dai · Sherry Yang · Azade Nova · Pengcheng Yin · Mangpo Phothilimthana · Charles Sutton · Dale Schuurmans

[ East Exhibit Hall A-C ]

Abstract
Analytics on structured data is a mature field with many successful methods.However, most real world data exists in unstructured form, such as images and conversations.We investigate the potential of Large Language Models (LLMs) to enable unstructured data analytics.In particular, we propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.This engine accepts queries in a Universal Query Language (UQL), a dialect of SQL that provides full natural language flexibility in specifying conditions and operators.The new engine leverages the ability of LLMs to conduct analysis of unstructured data, while also allowing us to exploit advances in sampling and optimization techniques to achieve efficient and accurate query execution.In addition, we borrow techniques from classical compiler theory to better orchestrate the workflow between sampling methods and foundation model calls.We demonstrate the efficiency of UQE on data analytics across different modalities, including images, dialogs and reviews, across a range of useful query types, including conditional aggregation, semantic retrieval and abstraction aggregation.
Oral Poster
Chengyi Cai · Zesheng Ye · Lei Feng · Jianzhong Qi · Feng Liu

[ East Exhibit Hall A-C ]

Abstract
*Visual reprogramming* (VR) leverages the intrinsic capabilities of pretrained vision models by adapting their input or output interfaces to solve downstream tasks whose labels (i.e., downstream labels) might be totally different from the labels associated with the pretrained models (i.e., pretrained labels). When adapting the output interface, label mapping methods transform the pretrained labels to downstream labels by establishing a gradient-free one-to-one correspondence between the two sets of labels.However, in this paper, we reveal that one-to-one mappings may overlook the complex relationship between pretrained and downstream labels. Motivated by this observation, we propose a ***B**ayesian-guided **L**abel **M**apping* (BLM) method. BLM constructs an iteratively-updated probabilistic label mapping matrix, with each element quantifying a pairwise relationship between pretrained and downstream labels.The assignment of values to the constructed matrix is guided by Bayesian conditional probability, considering the joint distribution of the downstream labels and the labels predicted by the pretrained model on downstream samples. Experiments conducted on both pretrained vision models (e.g., ResNeXt) and vision-language models (e.g., CLIP) demonstrate the superior performance of BLM over existing label mapping methods. The success of BLM also offers a probabilistic lens through which to understand and analyze the effectiveness of VR.Our code is available at https://github.com/tmlr-group/BayesianLM.
Oral Poster
Yutao Sun · Li Dong · Yi Zhu · Shaohan Huang · Wenhui Wang · Shuming Ma · Quanlu Zhang · Jianyong Wang · Furu Wei

[ East Exhibit Hall A-C ]

Abstract
We introduce a decoder-decoder architecture, YOCO, for large language models, which only caches key-value pairs once. It consists of two components, i.e., a cross-decoder stacked upon a self-decoder. The self-decoder efficiently encodes global key-value (KV) caches that are reused by the cross-decoder via cross-attention. The overall model behaves like a decoder-only Transformer, although YOCO only caches once. The design substantially reduces GPU memory demands, yet retains global attention capability. Additionally, the computation flow enables prefilling to early exit without changing the final output, thereby significantly speeding up the prefill stage. Experimental results demonstrate that YOCO achieves favorable performance compared to Transformer in various settings of scaling up model size and number of training tokens. We also extend YOCO to 1M context length with near-perfect needle retrieval accuracy. The profiling results show that YOCO improves inference memory, prefill latency, and throughput by orders of magnitude across context lengths and model sizes.
Poster
Haolin Wang · Xuefeng Liu · Jianwei Niu · Wenkai Guo · Shaojie Tang

[ East Exhibit Hall A-C ]

Abstract
Federated learning is a distributed machine learning paradigm designed to protect user data privacy, which has been successfully implemented across various scenarios. In traditional federated learning, the entire parameter set of local models is updated and averaged in each training round. Although this full network update method maximizes knowledge acquisition and sharing for each model layer, it prevents the layers of the global model from cooperating effectively to complete the tasks of each client, a challenge we refer to as layer mismatch. This mismatch problem recurs after every parameter averaging, consequently slowing down model convergence and degrading overall performance. To address the layer mismatch issue, we introduce the FedPart method, which restricts model updates to either a single layer or a few layers during each communication round. Furthermore, to maintain the efficiency of knowledge acquisition and sharing, we develop several strategies to select trainable layers in each round, including sequential updating and multi-round cycle training. Through both theoretical analysis and experiments, our findings demonstrate that the FedPart method significantly surpasses conventional full network update strategies in terms of convergence speed and accuracy, while also reducing communication and computational overheads.
Poster
Yue Lu · Shizhou Zhang · De Cheng · Yinghui Xing · Nannan Wang · PENG WANG · Yanning Zhang

[ East Exhibit Hall A-C ]

Abstract
Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL), by selecting and updating relevant prompts in the vision-transformer models. On the contrary, this paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features, so as to ensure no interference on tasks that have been learned to overcome catastrophic forgetting in CL. However, different from the orthogonal projection in the traditional CNN architecture, the prompt gradient orthogonal projection in the ViT architecture shows completely different and greater challenges, i.e., 1) the high-order and non-linear self-attention operation; 2) the drift of prompt distribution brought by the LayerNorm in the transformer block. Theoretically, we have finally deduced two consistency conditions to achieve the prompt gradient orthogonal projection, which provide a theoretical guarantee of eliminating interference on previously learned knowledge via the self-attention mechanism in visual prompt tuning. In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient orthogonal projection. Extensive experimental results demonstrate the effectiveness of anti-forgetting on four class-incremental benchmarks with diverse pre-trained baseline models, and our approach achieves superior performances to state-of-the-art methods. Our code is available at https://github.com/zugexiaodui/VPTinNSforCL
Poster
Can Jin · Tong Che · Hongwu Peng · Yiyuan Li · Dimitris Metaxas · Marco Pavone

[ East Exhibit Hall A-C ]

Abstract
Generalization remains a central challenge in machine learning. In this work, we propose *Learning from Teaching* (**LoT**), a novel regularization technique for deep neural networks to enhance generalization. Inspired by the human ability to capture concise and abstract patterns, we hypothesize that generalizable correlations are expected to be easier to imitate. LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners. The student learners are trained by the main model and, in turn, provide feedback to help the main model capture more generalizable and imitable correlations. Our experimental results across several domains, including Computer Vision, Natural Language Processing, and methodologies like Reinforcement Learning, demonstrate that the introduction of LoT brings significant benefits compared to training models on the original dataset. The results suggest the effectiveness and efficiency of LoT in identifying generalizable information at the right scales while discarding spurious data correlations, thus making LoT a valuable addition to current machine learning. Code is available at https://github.com/jincan333/LoT.
Spotlight Poster
QIUHAO Zeng · Long-Kai Huang · Qi CHEN · Charles Ling · Boyu Wang

[ East Exhibit Hall A-C ]

Abstract
In many machine learning tasks, data is inherently sequential. Most existing algorithms learn from sequential data in an auto-regressive manner, which predicts the next unseen data point based on the observed sequence, implicitly assuming the presence of an \emph{evolving pattern} embedded in the data that can be leveraged. However, identifying and assessing evolving patterns in learning tasks often relies on subjective judgments rooted in the prior knowledge of human experts, lacking a standardized quantitative measure. Furthermore, such measures enable us to determine the suitability of employing sequential models effectively and make informed decisions on the temporal order of time series data, and feature/data selection processes. To address this issue, we introduce the Evolving Rate (EvoRate), which quantitatively approximates the intensity of evolving patterns in the data with Mutual Information. Furthermore, in some temporal data with neural mutual information estimations, we only have snapshots at different timestamps, lacking correspondence, which hinders EvoRate estimation. To tackle this challenge, we propose EvoRate$_\mathcal{W}$, aiming to establish correspondence with optimal transport for estimating the first-order EvoRate. Experiments on synthetic and real-world datasets including images and tabular data validate the efficacy of our EvoRate.
Poster
Robert Csordas · Kazuki Irie · Jürgen Schmidhuber · Christopher Potts · Christopher D Manning

[ East Exhibit Hall A-C ]

Abstract
Previous work on Universal Transformers (UTs) has demonstrated the importance of parameter sharing across layers. By allowing recurrence in depth, UTs have advantages over standard Transformers in learning compositional generalizations, but layer-sharing comes with a practical limitation of parameter-compute ratio: it drastically reduces the parameter count compared to the non-shared model with the same dimensionality. Naively scaling up the layer size to compensate for the loss of parameters makes its computational resource requirements prohibitive. In practice, no previous work has succeeded in proposing a shared-layer Transformer design that is competitive in parameter count-dominated tasks such as language modeling. Here we propose MoEUT (pronounced "moot"), an effective mixture-of-experts (MoE)-based shared-layer Transformer architecture, which combines several recent advances in MoEs for both feedforward and attention layers of standard Transformers together with novel layer-normalization and grouping schemes that are specific and crucial to UTs. The resulting UT model, for the first time, slightly outperforms standard Transformers on language modeling tasks such as BLiMP and PIQA, while using significantly less compute and memory.
Poster
Sheng Yan · Cunhang Fan · Hongyu Zhang · Xiaoke Yang · Jianhua Tao · Zhao Lv

[ East Exhibit Hall A-C ]

Abstract
At a cocktail party, humans exhibit an impressive ability to direct their attention. The auditory attention detection (AAD) approach seeks to identify the attended speaker by analyzing brain signals, such as EEG signals. However, current AAD algorithms overlook the spatial distribution information within EEG signals and lack the ability to capture long-range latent dependencies, limiting the model's ability to decode brain activity.To address these issues, this paper proposes a dual attention refinement network with spatiotemporal construction for AAD, named DARNet, which consists of the spatiotemporal construction module, dual attention refinement module, and feature fusion \& classifier module. Specifically, the spatiotemporal construction module aims to construct more expressive spatiotemporal feature representations, by capturing the spatial distribution characteristics of EEG signals. The dual attention refinement module aims to extract different levels of temporal patterns in EEG signals and enhance the model's ability to capture long-range latent dependencies. The feature fusion \& classifier module aims to aggregate temporal patterns and dependencies from different levels and obtain the final classification results.The experimental results indicate that DARNet achieved excellent classification performance, particularly under short decision windows. While maintaining excellent classification performance, DARNet significantly reduces the number of required parameters. Compared to the state-of-the-art models, DARNet …
Poster
Jingdi Chen · Hanhan Zhou · Yongsheng Mei · Carlee Joe-Wong · Gina C. Adam · Nathaniel Bastian · Tian Lan

[ East Exhibit Hall A-C ]

Abstract
Deep Reinforcement Learning (DRL) algorithms have achieved great success in solving many challenging tasks while their black-box nature hinders interpretability and real-world applicability, making it difficult for human experts to interpret and understand DRL policies. Existing works on interpretable reinforcement learning have shown promise in extracting decision tree (DT) based policies from DRL policies with most focus on the single-agent settings while prior attempts to introduce DT policies in multi-agent scenarios mainly focus on heuristic designs which do not provide any quantitative guarantees on the expected return.In this paper, we establish an upper bound on the return gap between the oracle expert policy and an optimal decision tree policy. This enables us to recast the DT extraction problem into a novel non-euclidean clustering problem over the local observation and action values space of each agent, with action values as cluster labels and the upper bound on the return gap as clustering loss.Both the algorithm and the upper bound are extended to multi-agent decentralized DT extractions by an iteratively-grow-DT procedure guided by an action-value function conditioned on the current DTs of other agents. Further, we propose the Return-Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly simple design and is integrated …
Poster
Mohammad Mahmudul Alam · Alexander Oberle · Edward Raff · Stella Biderman · Tim Oates · James Holt

[ East Exhibit Hall A-C ]

Abstract
Vector Symbolic Architectures (VSAs) are one approach to developing Neuro-symbolic AI, where two vectors in $\mathbb{R}^d$ are 'bound' together to produce a new vector in the same space. VSAs support the commutativity and associativity of this binding operation, along with an inverse operation, allowing one to construct symbolic-style manipulations over real-valued vectors. Most VSAs were developed before deep learning and automatic differentiation became popular and instead focused on efficacy in hand-designed systems. In this work, we introduce the Hadamard-derived linear Binding (HLB), which is designed to have favorable computational efficiency, and efficacy in classic VSA tasks, and perform well in differentiable systems.
Poster
Huanan LI · Juntao Guan · Lai Rui · Sijun Ma · Lin Gu · Noperson

[ East Exhibit Hall A-C ]

Abstract
Look-up tables(LUTs)-based methods have recently shown enormous potential in image restoration tasks, which are capable of significantly accelerating the inference. However, the size of LUT exhibits exponential growth with the convolution kernel size, creating a storage bottleneck for its broader application on edge devices. Here, we address the storage explosion challenge to promote the capacity of mapping the complex CNN models by LUT. We introduce an innovative separable mapping strategy to achieve over $7\times$ storage reduction, transforming the storage from exponential dependence on kernel size to a linear relationship. Moreover, we design a dynamic discretization mechanism to decompose the activation and compress the quantization scale that further shrinks the LUT storage by $4.48\times$. As a result, the storage requirement of our proposed TinyLUT is around 4.1\% of MuLUT-SDY-X2 and amenable to on-chip cache, yielding competitive accuracy with over $5\times$ lower inference latency on Raspberry 4B than FSRCNN. Our proposed TinyLUT enables superior inference speed on edge devices with new state-of-the-art accuracy on both of image super-resolution and denoising, showcasing the potential of applying this method to various image restoration tasks at the edge. The codes are available at: https://github.com/Jonas-KD/TinyLUT.
Poster
Hao Deng · Kunlei Jing · Shengmei Chen · Cheng Liu · Jiawei Ru · Bo Jiang · Lin Wang

[ East Exhibit Hall A-C ]

Abstract
Point-based methods have made significant progress, but improving their scalability in large-scale 3D scenes is still a challenging problem. In this paper, we delve into the point-based method and develop a simpler, faster, stronger variant model, dubbed as LinNet. In particular, we first propose the disassembled set abstraction (DSA) module, which is more effective than the previous version of set abstraction. It achieves more efficient local aggregation by leveraging spatial anisotropy and channel anisotropy separately. Additionally, by mapping 3D point clouds onto 1D space-filling curves, we enable parallelization of downsampling and neighborhood queries on GPUs with linear complexity. LinNet, as a purely point-based method, outperforms most previous methods in both indoor and outdoor scenes without any extra attention, and sparse convolution but merely relying on a simple MLP. It achieves the mIoU of 73.7\%, 81.4\%, and 69.1\% on the S3DIS Area5, NuScenes, and SemanticKITTI validation benchmarks, respectively, while speeding up almost 10x times over PointNeXt. Our work further reveals both the efficacy and efficiency potential of the vanilla point-based models in large-scale representation learning. Our code will be available upon publication.
Poster
Christopher Scarvelis · Justin Solomon

[ East Exhibit Hall A-C ]

Abstract
Penalizing the nuclear norm of a function's Jacobian encourages it to locally behave like a low-rank linear map. Such functions vary locally along only a handful of directions, making the Jacobian nuclear norm a natural regularizer for machine learning problems. However, this regularizer is intractable for high-dimensional problems, as it requires computing a large Jacobian matrix and taking its SVD. We show how to efficiently penalize the Jacobian nuclear norm using techniques tailor-made for deep learning. We prove that for functions parametrized as compositions $f = g \circ h$, one may equivalently penalize the average squared Frobenius norm of $Jg$ and $Jh$. We then propose a denoising-style approximation that avoids the Jacobian computations altogether. Our method is simple, efficient, and accurate, enabling Jacobian nuclear norm regularization to scale to high-dimensional deep learning problems. We complement our theory with an empirical study of our regularizer's performance and investigate applications to denoising and representation learning.
Poster
Maxime Darrin · Philippe Formont · Ismail Ayed · Jackie CK Cheung · Pablo Piantanida

[ East Exhibit Hall A-C ]

Abstract
Embedders play a central role in machine learning, projecting any object into numerical representations that can, in turn, be leveraged to perform various downstream tasks. The evaluation of embedding models typically depends on domain-specific empirical approaches utilizing downstream tasks, primarily because of the lack of a standardized framework for comparison. However, acquiring adequately large and representative datasets for conducting these assessments is not always viable and can prove to be prohibitively expensive and time-consuming. In this paper, we present a unified approach to evaluate embedders. First, we establish theoretical foundations for comparing embedding models, drawing upon the concepts of sufficiency and informativeness. We then leverage these concepts to devise a tractable comparison criterion (information sufficiency), leading to a task-agnostic and self-supervised ranking procedure. We demonstrate experimentally that our approach aligns closely with the capability of embedding models to facilitate various downstream tasks in both natural language processing and molecular biology. This effectively offers practitioners a valuable tool for prioritizing model trials.
Poster
Yinuo Jiang · Xiuchuan Tang · Cheng Cheng · Ye Yuan

[ East Exhibit Hall A-C ]

Abstract
Correspondences in point cloud registration are prone to outliers, significantly reducing registration accuracy and highlighting the need for precise inlier identification. In this paper, we propose a robust inlier identification algorithm for point cloud registration by reformulating the conventional registration problem as an alignment error $\ell_0$-minimization problem. The $\ell_0$-minimization problem is formulated for each local set, where those local sets are built on a compatibility graph of input correspondences. To resolve the $\ell_0$-minimization, we develop a novel two-stage decoupling strategy, which first decouples the alignment error into a rotation fitting error and a translation fitting error. Second, null-space matrices are employed to decouple inlier identification from the estimation of rotation and translation respectively, thereby applying Bayesian theory to $\ell_0$-minimization problems and solving for fitting errors. Correspondences with the smallest errors are identified as inliers to generate a transformation hypothesis for each local set. The best hypothesis is selected to perform registration. We demonstrate that the proposed inlier identification algorithm is robust under high outlier ratios and noise through experiments. Extensive results on the KITTI, 3DMatch, and 3DLoMatch datasets demonstrate that our method achieves state-of-the-art performance compared to both traditional and learning-based methods in various indoor and outdoor scenes.
Poster
Nasibullah Nasibullah · Erik Schultheis · Mike Lasby · Yani Ioannou · Rohit Babbar

[ East Exhibit Hall A-C ]

Abstract
In recent years, Dynamic Sparse Training (DST) has emerged as an alternative to post-training pruning for generating efficient models. In principle, DST allows for a much more memory efficient training process,as it maintains sparsity throughout the entire training run. However, current DST implementations fail to capitalize on this. Because sparse matrix multiplication is much less efficient than dense matrix multiplication on GPUs, mostimplementations simulate sparsity by masking weights. In this paper, we leverage recent advances in semi-structured sparse training to apply DST in the domain of classificationwith large output spaces, where memory-efficiency is paramount. With a label space of possibly millions of candidates,the classification layer alone will consume several gigabytes of memory. Switching from a dense to a fixed fan-in sparse layer updated with sparse evolutionary training (SET); however, severely hampers training convergence, especiallyat the largest label spaces. We find that the gradients fed back from the classifier into the text encoder make itmuch more difficult to learn good input representations, despite using a dense encoder.By employing an intermediate layer or adding an auxiliary training objective, we recover most of the generalisation performance of the dense model. Overall, we demonstrate the applicability of DST in a challenging domain, characterized by …
Poster
Yinzhu Jin · Aman Shrivastava · Tom Fletcher

[ East Exhibit Hall A-C ]

Abstract
In this work, we introduce a new approach to model group actions in autoencoders. Diverging from prior research in this domain, we propose to learn the group actions on the latent space rather than strictly on the data space. This adaptation enhances the versatility of our model, enabling it to learn a broader range of scenarios prevalent in the real world, where groups can act on latent factors. Our method allows a wide flexibility in the encoder and decoder architectures and does not require group-specific layers. In addition, we show that our model theoretically serves as a superset of methods that learn group actions on the data space. We test our approach on five image datasets with diverse groups acting on them and demonstrate superior performance to recently proposed methods for modeling group actions.
Poster
Hanseul Cho · Jaeyoung Cha · Pranjal Awasthi · Srinadh Bhojanapalli · Anupam Gupta · Chulhee Yun

[ East Exhibit Hall A-C ]

Abstract
Even for simple arithmetic tasks like integer addition, it is challenging for Transformers to generalize to longer sequences than those encountered during training. To tackle this problem, we propose *position coupling*, a simple yet effective method that directly embeds the structure of the tasks into the positional encoding of a (decoder-only) Transformer. Taking a departure from the vanilla absolute position mechanism assigning unique position IDs to each of the tokens, we assign the same position IDs to two or more "relevant" tokens; for integer addition tasks, we regard digits of the same significance as in the same position. On the empirical side, we show that with the proposed position coupling, our models trained on 1 to 30-digit additions can generalize up to *200-digit* additions (6.67x of the trained length). On the theoretical side, we prove that a 1-layer Transformer with coupled positions can solve the addition task involving exponentially many digits, whereas any 1-layer Transformer without positional information cannot entirely solve it. We also demonstrate that position coupling can be applied to other algorithmic tasks such as Nx2 multiplication and a two-dimensional task. Our codebase is available at [github.com/HanseulJo/position-coupling](https://github.com/HanseulJo/position-coupling).
Poster
Lingjing Kong · Guangyi Chen · Petar Stojanov · Haoxuan Li · Eric Xing · Kun Zhang

[ East Exhibit Hall A-C ]

Abstract
Canonical work handling distribution shifts typically necessitates an entire target distribution that lands inside the training distribution.However, practical scenarios often involve only a handful target samples, potentially lying outside the training support, which requires the capability of extrapolation.In this work, we aim to provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it without requiring an on-support target distribution.To this end, we formulate the extrapolation problem with a latent-variable model that embodies the minimal change principle in causal mechanisms.Under this formulation, we cast the extrapolation problem into a latent-variable identification problem.We provide realistic conditions on shift properties and the estimation objectives that lead to identification even when only one off-support target sample is available, tackling the most challenging scenarios.Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties.We showcase how our theoretical results inform the design of practical adaptation algorithms. Through experiments on both synthetic and real-world data, we validate our theoretical findings and their practical implications.
Poster
Sifei Liu · Shalini De Mello · Jan Kautz

[ East Exhibit Hall A-C ]

Abstract
In this paper, we introduce Cosine Autoencoder (CosAE), a novel, generic Autoencoder that seamlessly leverages the classic Fourier series with a feed-forward neural network. CosAE represents an input image as a series of 2D Cosine time series, each defined by a tuple of learnable frequency and Fourier coefficients. This method stands in contrast to a conventional Autoencoder that often sacrifices detail in their reduced-resolution bottleneck latent spaces. CosAE, however, encodes frequency coefficients, i.e., the amplitudes and phases, in its bottleneck. This encoding enables extreme spatial compression, e.g., $64\times$ downsampled feature maps in the bottleneck, without losing detail upon decoding. We showcase the advantage of CosAE via extensive experiments on flexible-resolution super-resolution and blind image restoration, two highly challenging tasks that demand the restoration network to effectively generalize to complex and even unknown image degradations. Our method surpasses state-of-the-art approaches, highlighting its capability to learn a generalizable representation for image restoration. The project page is maintained at [https://sifeiliu.net/CosAE-page/](https://sifeiliu.net/CosAE-page/).
Poster
Songlin Yang · Bailin Wang · Yu Zhang · Yikang Shen · Yoon Kim

[ East Exhibit Hall A-C ]

Abstract
Transformers with linear attention (i.e., linear transformers) and state-space models have recently been suggested as a viable linear-time alternative to transformers with softmax attention. However, these models still underperform transformers especially on tasks that require in-context retrieval. While more expressive variants of linear transformers which replace the additive update in linear transformers with the delta rule (DeltaNet) have been found to be more effective at associative recall, existing algorithms for training such models do not parallelize over sequence length and are thus inefficient to train on modern hardware. This work describes a hardware-efficient algorithm for training linear transformers with the delta rule, which exploits a memory-efficient representation for computing products of Householder matrices. This algorithm allows us to scale up DeltaNet to standard language modeling settings. We train a 1.3B model for 100B tokens and find that it outperforms recent linear-time baselines such as Mamba and GLA in terms of perplexity and zero-shot performance on downstream tasks. We also experiment with two hybrid models which combine DeltaNet layers with (1) sliding-window attention layers every other layer or (2) two global attention layers, and find that these hybrids outperform strong transformer baselines.
Poster
Jitesh Joshi · Sos Agaian · Youngjun Cho

[ East Exhibit Hall A-C ]

Abstract
Remote photoplethysmography (rPPG) enables non-invasive extraction of blood volume pulse signals through imaging, transforming spatial-temporal data into time series signals. Advances in end-to-end rPPG approaches have focused on this transformation where attention mechanisms are crucial for feature extraction. However, existing methods compute attention disjointly across spatial, temporal, and channel dimensions. Here, we propose the Factorized Self-Attention Module (FSAM), which jointly computes multidimensional attention from voxel embeddings using nonnegative matrix factorization. To demonstrate FSAM's effectiveness, we developed FactorizePhys, an end-to-end 3D-CNN architecture for estimating blood volume pulse signals from raw video frames. Our approach adeptly factorizes voxel embeddings to achieve comprehensive spatial, temporal, and channel attention, enhancing performance of generic signal extraction tasks. Furthermore, we deploy FSAM within an existing 2D-CNN-based rPPG architecture to illustrate its versatility. FSAM and FactorizePhys are thoroughly evaluated against state-of-the-art rPPG methods, each representing different types of architecture and attention mechanism. We perform ablation studies to investigate the architectural decisions and hyperparameters of FSAM. Experiments on four publicly available datasets and intuitive visualization of learned spatial-temporal features substantiate the effectiveness of FSAM and enhanced cross-dataset generalization in estimating rPPG signals, suggesting its broader potential as a multidimensional attention mechanism. The code is accessible at https://github.com/PhysiologicAILab/FactorizePhys.
Poster
Tianyi Zhang · Jonah Yi · Bowen Yao · Zhaozhuo Xu · Anshumali Shrivastava

[ East Exhibit Hall A-C ]

Abstract
Large Language Model (LLM) inference on Central Processing Units (CPU) is challenging due to the vast quantities of Multiply-Add (MAD) matrix operations in the attention computations. This paper highlights a rare gem in modern CPUs, Single-Instruction-Multiple-Data (SIMD) registers, which allows for ultra-low-latency lookups in a batch. We leverage this unique capability to propose NoMAD-Attention, an efficient attention algorithm that replaces MAD operations with in-register lookups. Through hardware-aware algorithmic designs, NoMAD-Attention achieves the computation of attention scores using repeated fast accesses to SIMD registers. NoMAD-Attention works with pre-trained attention-based LLMs without model finetuning. Extensive empirical evaluations demonstrate that NoMAD-Attention maintains the quality of the original LLMs well and speeds up the 4-bit quantized LLaMA-7B-based model by up to $2 \times$ at 16k context length.
Poster
Haicang Zhou · Weiming Huang · Yile Chen · Tiantian He · Gao Cong · Yew Soon Ong

[ East Exhibit Hall A-C ]

Abstract
Road network representation learning aims to learn compressed and effective vectorized representations for road segments that are applicable to numerous tasks. In this paper, we identify the limitations of existing methods, particularly their overemphasis on the distance effect as outlined in the First Law of Geography. In response, we propose to endow road network representation with the principles of the recent Third Law of Geography. To this end, we propose a novel graph contrastive learning framework that employs geographic configuration-aware graph augmentation and spectral negative sampling, ensuring that road segments with similar geographic configurations yield similar representations, and vice versa, aligning with the principles stated in the Third Law. The framework further fuses the Third Law with the First Law through a dual contrastive learning objective to effectively balance the implications of both laws. We evaluate our framework on two real-world datasets across three downstream tasks. The results show that the integration of the Third Law significantly improves the performance of road segment representations in downstream tasks.
Poster
Donato Crisostomi · Marco Fumero · Daniele Baieri · Florian Bernard · Emanuele Rodolà

[ East Exhibit Hall A-C ]

Abstract
In this paper, we present a novel data-free method for merging neural networks in weight space. Our method optimizes for the permutations of network neurons while ensuring global coherence across all layers, and it outperforms recent layer-local approaches in a set of challenging scenarios. We then generalize the formulation to the $N$-models scenario to enforce cycle consistency of the permutations with guarantees, allowing circular compositions of permutations to be computed without accumulating error along the path. We qualitatively and quantitatively motivate the need for such a constraint, showing its benefits when merging homogeneous sets of models in scenarios spanning varying architectures and datasets. We finally show that, when coupled with activation renormalization, the approach yields the best results in the task.
Poster
Roshni Iyer · Yewen Wang · Wei Wang · Yizhou Sun

[ East Exhibit Hall A-C ]

Abstract
It is largely agreed that social network links are formed due to either homophily or social influence. Inspired by this, we aim at understanding the generation of links via providing a novel embedding-based graph formation model. Different from existing graph representation learning, where link generation probabilities are defined as a simple function of the corresponding node embeddings, we model the link generation as a mixture model of the two factors. In addition, we model the homophily factor in spherical space and the influence factor in hyperbolic space to accommodate the fact that (1) homophily results in cycles and (2) influence results in hierarchies in networks. We also design a special projection to align these two spaces. We call this model Non-Euclidean Mixture Model, i.e., NMM. We further integrate NMM with our non-Euclidean graph variational autoencoder (VAE) framework, NMM-GNN. NMM-GNN learns embeddings through a unified framework which uses non-Euclidean GNN encoders, non-Euclidean Gaussian priors, a non-Euclidean decoder, and a novel space unification loss component to unify distinct non-Euclidean geometric spaces. Experiments on public datasets show NMM-GNN significantly outperforms state-of-the-art baselines on social network generation and classification tasks, demonstrating its ability to better explain how the social network is formed.
Poster
Junxiong Wang · Daniele Paliotta · Avner May · Alexander Rush · Tri Dao

[ East Exhibit Hall A-C ]

Abstract
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x …
Poster
Maximilian Granz · Manuel Heurich · Tim Landgraf

[ East Exhibit Hall A-C ]

Abstract
Recent advances in out-of-distribution (OOD) detection on image data show that pre-trained neural network classifiers can separate in-distribution (ID) from OOD data well, leveraging the class-discriminative ability of the model itself. Methods have been proposed that either use logit information directly or that process the model's penultimate layer activations. With "WeiPer", we introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input. We show that this simple trick can improve the OOD detection performance of a variety of methods and additionally propose a distance-based method that leverages the properties of the augmented WeiPer space. We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework, especially pronounced in difficult settings in which OOD samples are positioned close to the training set distribution. We support our findings with theoretical motivations and empirical observations, and run extensive ablations to provide insights into why WeiPer works. Our code is available at: https://github.com/mgranz/weiper.
Poster
Kaibo Zhang · Yunjuan Wang · Raman Arora

[ East Exhibit Hall A-C ]

Abstract
Adversarial training has emerged as a popular approach for training models that are robust to inference-time adversarial attacks. However, our theoretical understanding of why and when it works remains limited. Prior work has offered generalization analysis of adversarial training, but they are either restricted to the Neural Tangent Kernel (NTK) regime or they make restrictive assumptions about data such as (noisy) linear separability or robust realizability. In this work, we study the stability and generalization of adversarial training for two-layer networks **without any data distribution assumptions** and **beyond the NTK regime**. Our findings suggest that for networks with *any given initialization* and *sufficiently large width*, the generalization bound can be effectively controlled via early stopping. We further improve the generalization bound by leveraging smoothing using Moreau’s envelope.
Poster
Xilin He · Jingyu Hu · Qinliang Lin · Cheng Luo · Weicheng Xie · Siyang Song · Muhammad Haris Khan · Linlin Shen

[ East Exhibit Hall A-C ]

Abstract
Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement.In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a data-driven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts.To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving …
Poster
Shuyang Jiang · Yusheng Liao · Ya Zhang · Yanfeng Wang · Yu Wang

[ East Exhibit Hall A-C ]

Abstract
Fine-tuning on task-specific question-answer pairs is a predominant method for enhancing the performance of instruction-tuned large language models (LLMs) on downstream tasks. However, in certain specialized domains, such as healthcare or harmless content generation, it is nearly impossible to obtain a large volume of high-quality data that matches the downstream distribution. To improve the performance of LLMs in data-scarce domains with domain-mismatched data, we re-evaluated the Transformer architecture and discovered that not all parameter updates during fine-tuning contribute positively to downstream performance. Our analysis reveals that within the self-attention and feed-forward networks, only the fine-tuned attention parameters are particularly beneficial when the training set's distribution does not fully align with the test set. Based on this insight, we propose an effective inference-time intervention method: \uline{T}raining \uline{A}ll parameters but \uline{I}nferring with only \uline{A}ttention (TAIA). We empirically validate TAIA using two general instruction-tuning datasets and evaluate it on seven downstream tasks involving math, reasoning, and knowledge understanding across LLMs of different parameter sizes and fine-tuning techniques. Our comprehensive experiments demonstrate that TAIA achieves superior improvements compared to both the fully fine-tuned model and the base model in most scenarios, with significant performance gains. The high tolerance of TAIA to data mismatches makes …
Poster
Odelia Melamed · Gilad Yehudai · Adi Shamir

[ East Exhibit Hall A-C ]

Abstract
Current adversarial attacks for multi-class classifiers choose potential adversarial target classes naively based on the classifier's confidence levels. We present a novel adversarial targeting method, \textit{MALT - Mesoscopic Almost Linearity Targeting}, based on local almost linearity assumptions. Our attack wins over the current state of the art AutoAttack on the standard benchmark datasets CIFAR-100 and Imagenet and for different robust models. In particular, our attack uses a \emph{five times faster} attack strategy than AutoAttack's while successfully matching AutoAttack's successes and attacking additional samples that were previously out of reach. We additionally prove formally and demonstrate empirically that our targeting method, although inspired by linear predictors, also applies to non-linear models.
Poster
Cem Anil · Esin DURMUS · Nina Panickssery · Mrinank Sharma · Joe Benton · Sandipan Kundu · Joshua Batson · Meg Tong · Jesse Mu · Daniel Ford · Francesco Mosconi · Rajashree Agrawal · Rylan Schaeffer · Naomi Bashkansky · Samuel Svenningsen · Mike Lambert · Ansh Radhakrishnan · Carson Denison · Evan Hubinger · Yuntao Bai · Trenton Bricken · Timothy Maxwell · Nicholas Schiefer · James Sully · Alex Tamkin · Tamera Lanham · Karina Nguyen · Tomek Korbak · Jared Kaplan · Deep Ganguli · Samuel Bowman · Ethan Perez · Roger Grosse · David Duvenaud

[ East Exhibit Hall A-C ]

Abstract
We investigate a family of simple long-context attacks on large language models: prompting with hundreds of demonstrations of undesirable behavior. This attack is newly feasible with the larger context windows recently deployed by language model providers like Google DeepMind, OpenAI and Anthropic. We find that in diverse, realistic circumstances, the effectiveness of this attack follows a power law, up to hundreds of shots. We demonstrate the success of this attack on the most widely used state-of-the-art closed-weight models, and across various tasks. Our results suggest very long contexts present a rich new attack surface for LLMs.
Poster
Yifei Wang · Kaiwen Hu · Sharut Gupta · Ziyu Ye · Yisen Wang · Stefanie Jegelka

[ East Exhibit Hall A-C ]

Abstract
Contrastive learning has been a leading paradigm for self-supervised learning, but it is widely observed that it comes at the price of sacrificing useful features (\eg colors) by being invariant to data augmentations. Given this limitation, there has been a surge of interest in equivariant self-supervised learning (E-SSL) that learns features to be augmentation-aware. However, even for the simplest rotation prediction method, there is a lack of rigorous understanding of why, when, and how E-SSL learns useful features for downstream tasks. To bridge this gap between practice and theory, we establish an information-theoretic perspective to understand the generalization ability of E-SSL. In particular, we identify a critical explaining-away effect in E-SSL that creates a synergy between the equivariant and classification tasks. This synergy effect encourages models to extract class-relevant features to improve its equivariant prediction, which, in turn, benefits downstream tasks requiring semantic features. Based on this perspective, we theoretically analyze the influence of data transformations and reveal several principles for practical designs of E-SSL. Our theory not only aligns well with existing E-SSL methods but also sheds light on new directions by exploring the benefits of model equivariance. We believe that a theoretically grounded understanding on the role of …
Poster
Jan-Philipp Fraenken · Eric Zelikman · Rafael Rafailov · Kanishk Gandhi · Tobias Gerstenberg · Noah Goodman

[ East Exhibit Hall A-C ]

Abstract
When prompting a language model (LM), users often expect the model to adhere to a set of behavioral principles across diverse tasks, such as producing insightful content while avoiding harmful or biased language. Instilling such principles (i.e., a constitution) into a model is resource-intensive, technically challenging, and generally requires human preference labels or examples. We introduce SAMI, an iterative algorithm that finetunes a pretrained language model (without requiring preference labels or demonstrations) to increase the conditional mutual information between constitutions and self-generated responses given queries from a dataset. On single-turn dialogue and summarization, a SAMI-trained mistral-7b outperforms the initial pretrained model, with win rates between 66% and 77%. Strikingly, it also surpasses an instruction-finetuned baseline (mistral-7b-instruct) with win rates between 55% and 57% on single-turn dialogue. SAMI requires a model that writes the principles. To avoid dependence on strong models for writing principles, we align a strong pretrained model (mixtral-8x7b) using constitutions written by a weak instruction-finetuned model (mistral-7b-instruct), achieving a 65% win rate on summarization. Finally, we investigate whether SAMI generalizes to diverse summarization principles (e.g., "summaries should be scientific") and scales to stronger models (llama3-70b), finding that it achieves win rates of up to 68% for learned and …
Poster
Jaeseok Jang · HYUK-YOON KWON

[ East Exhibit Hall A-C ]

Abstract
Multiple Instance Learning (MIL) has been increasingly adopted to mitigate the high costs and complexity associated with labeling individual instances, learning instead from bags of instances labeled at the bag level and enabling instance-level labeling. While existing research has primarily focused on the learnability of MIL at the bag level, there is an absence of theoretical exploration to check if a given MIL algorithm is learnable at the instance level. This paper proposes a theoretical framework based on probably approximately correct (PAC) learning theory to assess the instance-level learnability of deep multiple instance learning (Deep MIL) algorithms. Our analysis exposes significant gaps between current Deep MIL algorithms, highlighting the theoretical conditions that must be satisfied by MIL algorithms to ensure instance-level learnability. With these conditions, we interpret the learnability of the representative Deep MIL algorithms and validate them through empirical studies.
Poster
Aditya Vardhan Varre · Margarita Sagitova · Nicolas Flammarion

[ East Exhibit Hall A-C ]

Abstract
In this article, we study the behaviour of continuous-time gradient methods on a two-layer linear network with square loss. A dichotomy between SGD and GD is revealed: GD preserves the rank at initialization while (label noise) SGD diminishes the rank regardless of the initialization. We demonstrate this rank deficiency by studying the time evolution of the *determinant* of a matrix of parameters. To further understand this phenomenon, we derive the stochastic differential equation (SDE) governing the eigenvalues of the parameter matrix. This SDE unveils a *replusive force* between the eigenvalues: a key regularization mechanism which induces rank deficiency. Our results are well supported by experiments illustrating the phenomenon beyond linear networks and regression tasks.
Poster
Tim Large · Yang Liu · Jacob Huh · Hyojin Bahng · Phillip Isola · Jeremy Bernstein

[ East Exhibit Hall A-C ]

Abstract
To improve performance in contemporary deep learning, one is interested in scaling up the neural network in terms of both the number and the size of the layers. When ramping up the width of a single layer, graceful scaling of training has been linked to the need to normalize the weights and their updates in the "natural norm" particular to that layer. In this paper, we significantly generalize this idea by defining the modular norm, which is the natural norm on the full weight space of any neural network architecture. The modular norm is defined recursively in tandem with the network architecture itself. We show that the modular norm has several promising applications. On the practical side, the modular norm can be used to normalize the updates of any base optimizer so that the learning rate becomes transferable across width and depth. This means that the user does not need to compute optimizer-specific scale factors in order to scale training. On the theoretical side, we show that for any neural network built from "well-behaved" atomic modules, the gradient of the network is Lipschitz-continuous in the modular norm, with the Lipschitz constant admitting a simple recursive formula. This characterization opens the …
Poster
Antoine Maillard · Emanuele Troiani · Simon Martin · Florent Krzakala · Lenka Zdeborová

[ East Exhibit Hall A-C ]

Abstract
We consider the problem of learning a target function corresponding to a singlehidden layer neural network, with a quadratic activation function after the first layer,and random weights. We consider the asymptotic limit where the input dimensionand the network width are proportionally large. Recent work [Cui et al., 2023]established that linear regression provides Bayes-optimal test error to learn sucha function when the number of available samples is only linear in the dimension.That work stressed the open challenge of theoretically analyzing the optimal testerror in the more interesting regime where the number of samples is quadratic inthe dimension. In this paper, we solve this challenge for quadratic activations andderive a closed-form expression for the Bayes-optimal test error. We also provide analgorithm, that we call GAMP-RIE, which combines approximate message passingwith rotationally invariant matrix denoising, and that asymptotically achieves theoptimal performance. Technically, our result is enabled by establishing a linkwith recent works on optimal denoising of extensive-rank matrices and on theellipsoid fitting problem. We further show empirically that, in the absence ofnoise, randomly-initialized gradient descent seems to sample the space of weights,leading to zero training loss, and averaging over initialization leads to a test errorequal to the Bayes-optimal one.
Poster
Licong Lin · Jingfeng Wu · Sham Kakade · Peter Bartlett · Jason Lee

[ East Exhibit Hall A-C ]

Abstract
Empirically, large-scale deep learning models often satisfy a neural scaling law: the test error of the trained model improves polynomially as the model size and data size grow. However, conventional wisdom suggests the test error consists of approximation, bias, and variance errors, where the variance error increases with model size. This disagrees with the general form of neural scaling laws, which predict that increasing model size monotonically improves performance.We study the theory of scaling laws in an infinite dimensional linear regression setup. Specifically, we consider a model with $M$ parameters as a linear function of sketched covariates. The model is trained by one-pass stochastic gradient descent (SGD) using $N$ data. Assuming the optimal parameter satisfies a Gaussian prior and the data covariance matrix has a power-law spectrum of degree $a>1$, we show that the reducible part of the test error is $\Theta(M^{-(a-1)} + N^{-(a-1)/a})$. The variance error, which increases with $M$, is dominated by the other errors due to the implicit regularization of SGD, thus disappearing from the bound. Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
Poster
Alexander Havrilla · Wenjing Liao

[ East Exhibit Hall A-C ]

Abstract
When training deep neural networks, a model's generalization error is often observed to follow a power scaling law dependent both on the model size and the data size. Perhaps the best known example of such scaling laws are for transformer-based large language models (**LLMs**), where networks with billions of parameters are trained on trillions of tokens of text. Yet, despite sustained widespread interest, a rigorous understanding of why transformer scaling laws exist is still missing. To answer this question, we establish novel statistical estimation and mathematical approximation theories for transformers when the input data are concentrated on a low-dimensional manifold. Our theory predicts a power law between the generalization error and both the training data size and the network size for transformers, where the power depends on the intrinsic dimension $d$ of the training data. Notably, the constructed model architecture is shallow, requiring only logarithmic depth in $d$. By leveraging low-dimensional data structures under a manifold hypothesis, we are able to explain transformer scaling laws in a way which respects the data geometry. Moreover, we test our theory with empirical observation by training LLMs on natural language datasets. We find the observed empirical scaling laws closely agree with our theoretical …
Poster
Haocheng Luo · Tuan Truong · Tung Pham · Mehrtash Harandi · Dinh Phung · Trung Le

[ East Exhibit Hall A-C ]

Abstract
Sharpness-Aware Minimization (SAM) has attracted significant attention for its effectiveness in improving generalization across various tasks. However, its underlying principles remain poorly understood. In this work, we analyze SAM’s training dynamics using the maximum eigenvalue of the Hessian as a measure of sharpness and propose a third-order stochastic differential equation (SDE), which reveals that the dynamics are driven by a complex mixture of second- and third-order terms. We show that alignment between the perturbation vector and the top eigenvector is crucial for SAM’s effectiveness in regularizing sharpness, but find that this alignment is often inadequate in practice, which limits SAM's efficiency. Building on these insights, we introduce Eigen-SAM, an algorithm that explicitly aims to regularize the top Hessian eigenvalue by aligning the perturbation vector with the leading eigenvector. We validate the effectiveness of our theory and the practical advantages of our proposed approach through comprehensive experiments. Code is available at https://github.com/RitianLuo/EigenSAM.
Poster
Tin Sum Cheng · Aurelien Lucchi · Anastasis Kratsios · David Belius

[ East Exhibit Hall A-C ]

Abstract
This paper conducts a comprehensive study of the learning curves of kernel ridge regression (KRR) under minimal assumptions.Our contributions are three-fold: 1) we analyze the role of key properties of the kernel, such as its spectral eigen-decay, the characteristics of the eigenfunctions, and the smoothness of the kernel; 2) we demonstrate the validity of the Gaussian Equivalent Property (GEP), which states that the generalization performance of KRR remains the same when the whitened features are replaced by standard Gaussian vectors, thereby shedding light on the success of previous analyzes under the Gaussian Design Assumption; 3) we derive novel bounds that improve over existing bounds across a broad range of setting such as (in)dependent feature vectors and various combinations of eigen-decay rates in the over/underparameterized regimes.
Poster
Riccardo Rende · Federica Gerace · Alessandro Laio · Sebastian Goldt

[ East Exhibit Hall A-C ]

Abstract
The remarkable capability of over-parameterised neural networks to generalise effectively has been explained by invoking a ``simplicity bias'': neural networks prevent overfitting by initially learning simple classifiers before progressing to more complex, non-linear functions. While simplicity biases have been described theoretically and experimentally in feed-forward networks for supervised learning, the extent to which they also explain the remarkable success of transformers trained with self-supervised techniques remains unclear. In our study, we demonstrate that transformers, trained on natural language data, also display a simplicity bias. Specifically, they sequentially learn many-body interactions among input tokens, reaching a saturation point in the prediction error for low-degree interactions while continuing to learn high-degree interactions. To conduct this analysis, we develop a procedure to generate \textit{clones} of a given natural language data set, which rigorously capture the interactions between tokens up to a specified order. This approach opens up the possibilities of studying how interactions of different orders in the data affect learning, in natural language processing and beyond.
Poster
Atsushi Nitanda

[ East Exhibit Hall A-C ]

Abstract
Mean-field Langevin dynamics (MFLD) minimizes an entropy-regularized nonlinear convex functional defined over the space of probability distributions. MFLD has gained attention due to its connection with noisy gradient descent for mean-field two-layer neural networks. Unlike standard Langevin dynamics, the nonlinearity of the objective functional induces particle interactions, necessitating multiple particles to approximate the dynamics in a finite-particle setting. Recent works (Chen et al., 2022; Suzuki et al., 2023b) have demonstrated the uniform-in-time propagation of chaos for MFLD, showing that the gap between the particle system and its mean-field limit uniformly shrinks over time as the number of particles increases. In this work, we improve the dependence on logarithmic Sobolev inequality (LSI) constants in their particle approximation errors, which can exponentially deteriorate with the regularization coefficient. Specifically, we establish an LSI-constant-free particle approximation error concerning the objective gap by leveraging the problem structure in risk minimization. As the application, we demonstrate improved convergence of MFLD, sampling guarantee for the mean-field stationary distribution, and uniform-in-time Wasserstein propagation of chaos in terms of particle complexity.
Poster
Hugo Chateau-Laurent · Frederic Alexandre

[ East Exhibit Hall A-C ]

Abstract
Neural Episodic Control is a powerful reinforcement learning framework that employs a differentiable dictionary to store non-parametric memories. It was inspired by episodic memory on the functional level, but lacks a direct theoretical connection to the associative memory models generally used to implement such a memory. We first show that the dictionary is an instance of the recently proposed Universal Hopfield Network framework. We then introduce a continuous approximation of the dictionary readout operation in order to derive two energy functions that are Lyapunov functions of the dynamics. Finally, we empirically show that the dictionary outperforms the Max separation function, which had previously been argued to be optimal, and that performance can further be improved by replacing the Euclidean distance kernel by a Manhattan distance kernel. These results are enabled by the generalization capabilities of the dictionary, so a novel criterion is introduced to disentangle memorization from generalization when evaluating associative memory models.
Poster
Peter Súkeník · Christoph Lampert · Marco Mondelli

[ East Exhibit Hall A-C ]

Abstract
Deep neural networks (DNNs) exhibit a surprising structure in their final layer known as neural collapse (NC), and a growing body of works is currently investigated the propagation of neural collapse to earlier layers of DNNs -- a phenomenon called deep neural collapse (DNC). However, existing theoretical results are restricted to either linear models, the last two layers or binary classification. In contrast, we focus on non-linear models of arbitrary depth in multi-class classification and reveal a surprising qualitative shift. As soon as we go beyond two layers or two classes, DNC stops being optimal for the deep unconstrained features model (DUFM) -- the standard theoretical framework for the analysis of collapse. The main culprit is the low-rank bias of multi-layer regularization schemes. This bias leads to optimal solutions of even lower rank than the neural collapse. We support our theoretical findings with experiments on both DUFM and real data, which show the emergence of the low-rank structure in the solution found by gradient descent.
Poster
Jim Zhao · Sidak Pal Singh · Aurelien Lucchi

[ East Exhibit Hall A-C ]

Abstract
The Gauss-Newton (GN) matrix plays an important role in machine learning, most evident in its use as a preconditioning matrix for a wide family of popular adaptive methods to speed up optimization. Besides, it can also provide key insights into the optimization landscape of neural networks. In the context of deep neural networks, understanding the GN matrix involves studying the interaction between different weight matrices as well as the dependencies introduced by the data, thus rendering its analysis challenging.In this work, we take a first step towards theoretically characterizing the conditioning of the GN matrix in neural networks. We establish tight bounds on the condition number of the GN in deep linear networks of arbitrary depth and width, which we also extend to two-layer ReLU networks.We expand the analysis to further architectural components, such as residual connections and convolutional layers. Finally, we empirically validate the bounds and uncover valuable insights into the influence of the analyzed architectural components.
Poster
Lijia Yu · Xiao-Shan Gao · Lijun Zhang · Yibo Miao

[ East Exhibit Hall A-C ]

Abstract
The neural network memorization problem is to study the expressive power of neural networks to interpolate a finite dataset. Although memorization is widely believed to have a close relationship with the strong generalizability of deep learning when using overparameterized models, to the best of our knowledge, there exists no theoretical study on the generalizability of memorization neural networks. In this paper, we give the first theoretical analysis of this topic. Since using i.i.d. training data is a necessary condition for a learning algorithm to be generalizable, memorization and its generalization theory for i.i.d. datasets are developed under mild conditions on the data distribution. First, algorithms are given to construct memorization networks for an i.i.d. dataset, which have the smallest number of parameters and even a constant number of parameters. Second, we show that, in order for the memorization networks to be generalizable, the width of the network must be at least equal to the dimension of the data, which implies that the existing memorization networks with an optimal number of parameters are not generalizable. Third, a lower bound for the sample complexity of general memorization algorithms and the exact sample complexity for memorization algorithms with constant number of parameters are …
Poster
Lénaïc Chizat · Praneeth Netrapalli

[ East Exhibit Hall A-C ]

Abstract
Deep learning succeeds by doing hierarchical feature learning, yet tuning hyper-parameters (HP) such as initialization scales, learning rates etc., only give indirect control over this behavior. In this paper, we introduce a key notion to predict and control feature learning: the angle $\theta_\ell$ between the feature updates and the backward pass (at layer index $\ell$). We show that the magnitude of feature updates after one GD step, at any training time, can be expressed via a simple and general *feature speed formula* in terms of this angle $\theta_\ell$, the loss decay, and the magnitude of the backward pass. This angle $\theta_\ell$ is controlled by the conditioning of the layer-to-layer Jacobians and at random initialization, it is determined by the spectrum of a certain kernel, which coincides with the Neural Tangent Kernel when $\ell=\text{depth}$. Given $\theta_\ell$, the feature speed formula provides us with rules to adjust HPs (scales and learning rates) so as to satisfy certain dynamical properties, such as feature learning and loss decay. We investigate the implications of our approach for ReLU MLPs and ResNets in the large width-then-depth limit. Relying on prior work, we show that in ReLU MLPs with iid initialization, the angle degenerates with depth as …
Poster
Pengyue Jia · Yiding Liu · Xiaopeng Li · Xiangyu Zhao · Yuhao Wang · Yantong Du · Xiao Han · Xuetao Wei · Shuaiqiang Wang · Dawei Yin

[ East Exhibit Hall A-C ]

Abstract
Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose **G3**, a novel framework based on Retrieval-Augmented Generation (RAG). In particular, G3 consists of three steps, i.e., **G**eo-alignment, **G**eo-diversification, and **G**eo-verification to optimize both retrieval and generation phases of worldwide geolocalization. During Geo-alignment, our solution jointly learns expressive multi-modal representations for images, GPS and textual descriptions, which allows us to capture location-aware semantics for retrieving nearby images for a given query. During Geo-diversification, we leverage a prompt ensembling method that is robust to inconsistent retrieval performance for different image queries. Finally, we combine both retrieved and generated GPS candidates in Geo-verification for location prediction. Experiments on two well-established datasets IM2GPS3k and YFCC4k verify the superiority of G3 compared to other state-of-the-art methods. Our code …
Poster
Filip Szatkowski · Bartosz Wójcik · Mikołaj Piórczyński · Simone Scardapane

[ East Exhibit Hall A-C ]

Abstract
Transformer models can face practical limitations due to their high computational requirements. At the same time, such models exhibit significant activation sparsity, which can be leveraged to reduce the inference cost by converting parts of the network into equivalent Mixture-of-Experts (MoE) layers. Despite the crucial role played by activation sparsity, its impact on this process remains unexplored. We demonstrate that the efficiency of the conversion can be significantly enhanced by a proper regularization of the activation sparsity of the base model. Moreover, motivated by the high variance of the number of activated neurons for different inputs, we introduce a more effective dynamic-$k$ expert selection rule that adjusts the number of executed experts on a per-token basis. To achieve further savings, we extend this approach to multi-head attention projections. Finally, we develop an efficient implementation that translates these computational savings into actual wall-clock speedup. The proposed method, Dense to Dynamic-$k$ Mixture-of-Experts (D2DMoE), outperforms existing approaches on common NLP and vision tasks, reducing inference cost by up to 60\% without significantly impacting performance.
Poster
Xin-Chun Li · Jin-Lin Tang · Bo Zhang · Lan Li · De-Chuan Zhan

[ East Exhibit Hall A-C ]

Abstract
Exploring the loss landscape offers insights into the inherent principles of deep neural networks (DNNs). Recent work suggests an additional asymmetry of the valley beyond the flat and sharp ones, yet without thoroughly examining its causes or implications. Our study methodically explores the factors affecting the symmetry of DNN valleys, encompassing (1) the dataset, network architecture, initialization, and hyperparameters that influence the convergence point; and (2) the magnitude and direction of the noise for 1D visualization. Our major observation shows that the {\it degree of sign consistency} between the noise and the convergence point is a critical indicator of valley symmetry. Theoretical insights from the aspects of ReLU activation and softmax function could explain the interesting phenomenon. Our discovery propels novel understanding and applications in the scenario of Model Fusion: (1) the efficacy of interpolating separate models significantly correlates with their sign consistency ratio, and (2) imposing sign alignment during federated learning emerges as an innovative approach for model parameter alignment.
Poster
Minu Kim · Yongsik Lee · Sehyeok Kang · Jihwan Oh · Song Chong · Se-Young Yun

[ East Exhibit Hall A-C ]

Abstract
We present Preference Flow Matching (PFM), a new framework for preference alignment that streamlines the integration of preferences into an arbitrary class of pre-trained models. Existing alignment methods require fine-tuning pre-trained models, which presents challenges such as scalability, inefficiency, and the need for model modifications, especially with black-box APIs like GPT-4. In contrast, PFM utilizes flow matching techniques to directly learn from preference data, thereby reducing the dependency on extensive fine-tuning of pre-trained models. By leveraging flow-based models, PFM transforms less preferred data into preferred outcomes, and effectively aligns model outputs with human preferences without relying on explicit or implicit reward function estimation, thus avoiding common issues like overfitting in reward models. We provide theoretical insights that support our method’s alignment with standard preference alignment objectives. Experimental results indicate the practical effectiveness of our method, offering a new direction in aligning a pre-trained model to preference. Our code is available at https://github.com/jadehaus/preference-flow-matching.
Poster
Le-Trung Nguyen · Aël Quélennec · Enzo Tartaglione · Samuel Tardieu · Van-Tam Nguyen

[ East Exhibit Hall A-C ]

Abstract
Internet of Things and Deep Learning are synergetically and exponentially growing industrial fields with a massive call for their unification into a common framework called Edge AI. While on-device inference is a well-explored topic in recent research, backpropagation remains an open challenge due to its prohibitive computational and memory costs compared to the extreme resource constraints of embedded devices. Drawing on tensor decomposition research, we tackle the main bottleneck of backpropagation, namely the memory footprint of activation map storage. We investigate and compare the effects of activation compression using Singular Value Decomposition and its tensor variant, High-Order Singular Value Decomposition. The application of low-order decomposition results in considerable memory savings while preserving the features essential for learning, and also offers theoretical guarantees to convergence. Experimental results obtained on main-stream architectures and tasks demonstrate Pareto-superiority over other state-of-the-art solutions, in terms of the trade-off between generalization and memory footprint.
Poster
Ziyao Wang · Zheyu Shen · Yexiao He · Guoheng Sun · Hongyi Wang · Lingjuan Lyu · Ang Li

[ East Exhibit Hall A-C ]

Abstract
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients' local data through in-situ computation, eliminating the need for data movement. However, fine-tuning LLMs, given their massive scale of parameters, poses challenges for clients with constrained and heterogeneous resources in FL. Previous methods employed low-rank adaptation (LoRA) for efficient federated fine-tuning but utilized traditional FL aggregation strategies on LoRA adapters. This approach led to mathematically inaccurate aggregation noise, reducing fine-tuning effectiveness and failing to address heterogeneous LoRAs. In this work, we first highlight the mathematical incorrectness of LoRA aggregation in existing federated fine-tuning methods. We introduce a new approach called FLoRA that enables federated fine-tuning on heterogeneous LoRA adapters across clients through a novel stacking-based aggregation method. Our approach is noise-free and seamlessly supports heterogeneous LoRAs. Extensive experiments demonstrate FLoRA's superior performance in both homogeneous and heterogeneous settings, surpassing state-of-the-art methods. We envision this work as a milestone for efficient, privacy-preserving, and accurate federated fine-tuning of LLMs.
Poster
Anian Ruoss · Grégoire Delétang · Sourabh Medapati · Jordi Grau-Moya · Kevin Li · Elliot Catt · John Reid · Cannada Lewis · Joel Veness · Tim Genewein

[ East Exhibit Hall A-C ]

Abstract
This paper uses chess, a landmark planning problem in AI, to assess transformers’ performance on a planning task where memorization is futile — even at a large scale. To this end, we release ChessBench, a large-scale benchmark dataset of 10 million chess games with legal move and value annotations (15 billion data points) provided by Stockfish 16, the state-of-the-art chess engine. We train transformers with up to 270 million parameters on ChessBench via supervised learning and perform extensive ablations to assess the impact of dataset size, model size, architecture type, and different prediction targets (state-values, action-values, and behavioral cloning). Our largest models learn to predict action-values for novel boards quite accurately, implying highly non-trivial generalization. Despite performing no explicit search, our resulting chess policy solves challenging chess puzzles and achieves a surprisingly strong Lichess blitz Elo of 2895 against humans (grandmaster level). We also compare to Leela Chess Zero and AlphaZero (trained without supervision via self-play) with and without search. We show that, although a remarkably good approximation of Stockfish’s search-based algorithm can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach, thus making ChessBench well-suited for future research.
Poster
Francesco D&#x27;Angelo · Maksym Andriushchenko · Aditya Vardhan Varre · Nicolas Flammarion

[ East Exhibit Hall A-C ]

Abstract
Weight decay is a broadly used technique for training state-of-the-art deep networks from image classification to large language models. Despite its widespread usage and being extensively studied in the classical literature, its role remains poorly understood for deep learning. In this work, we highlight that the role of weight decay in modern deep learning is different from its regularization effect studied in classical learning theory. For deep networks on vision tasks trained with multipass SGD, we show how weight decay modifies the optimization dynamics enhancing the ever-present implicit regularization of SGD via the *loss stabilization mechanism*. In contrast, for large language models trained with nearly one-epoch training, we describe how weight decay balances the *bias-variance tradeoff* in stochastic optimization leading to lower training loss and improved training stability. Overall, we present a unifying perspective from ResNets on vision tasks to LLMs: weight decay is never useful as an explicit regularizer but instead changes the training dynamics in a desirable way.
Poster
Hanxin Zhu · Tianyu He · Anni Tang · Junliang Guo · Zhibo Chen · Jiang Bian

[ East Exhibit Hall A-C ]

Abstract
Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual elements within the generated video, such as the movement and appearance of specific characters and the manipulation of viewpoints. In this work, we propose a novel paradigm that generates each element in 3D representation separately and then composites them with priors from Large Language Models (LLMs) and 2D diffusion models. Specifically, given an input textual query, our scheme consists of four stages: 1) we leverage the LLMs as the director to first decompose the complex query into several sub-queries, where each sub-query describes each element of the generated video; 2) to generate each element, pre-trained models are invoked by the LLMs to obtain the corresponding 3D representation; 3) to composite the generated 3D representations, we prompt multi-modal LLMs to produce coarse guidance on the scale, location, and trajectory of different objects; 4) to make the results adhere to natural distribution, we further leverage 2D diffusion priors and use score distillation sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with flexible control over each element.
Spotlight Poster
Huiqiang Jiang · Yucheng LI · Chengruidong Zhang · Qianhui Wu · Xufang Luo · Surin Ahn · Zhenhua Han · Amir Abdi · Dongsheng Li · Chin-Yew Lin · Yuqing Yang · Lili Qiu

[ East Exhibit Hall A-C ]

Abstract
The computational challenges of Large Language Model (LLM) inference remain a significant barrier to their widespread deployment, especially as prompt lengths continue to increase. Due to the quadratic complexity of the attention computation, it takes 30 minutes for an 8B LLM to process a prompt of 1M tokens (i.e., the pre-filling stage) on a single A100 GPU. Existing methods for speeding up prefilling often fail to maintain acceptable accuracy or efficiency when applied to long-context LLMs. To address this gap, we introduce MInference (Milliontokens Inference), a sparse calculation method designed to accelerate pre-filling of long-sequence processing. Specifically, we identify three unique patterns in long-context attention matrices-the A-shape, Vertical-Slash, and Block-Sparse-that can be leveraged for efficient sparse computation on GPUs. We determine the optimal pattern for each attention head offline and dynamically build sparseindices based on the assigned pattern during inference. With the pattern and sparse indices, we perform efficient sparse attention calculations via our optimized GPU kernels to significantly reduce the latency in the pre-filling stage of longcontext LLMs. Our proposed technique can be directly applied to existing LLMs without any modifications to the pre-training setup or additional fine-tuning. Byevaluating on a wide range of downstream tasks, including InfiniteBench, RULER, …
Poster
Tianshi Wang · Qikai Yang · Ruijie Wang · Dachun Sun · Jinyang Li · Yizhuo Chen · Yigong Hu · Chaoqi Yang · Tomoyoshi Kimura · Denizhan Kara · Tarek Abdelzaher

[ East Exhibit Hall A-C ]

Abstract
Internet of Things (IoT) sensing models often suffer from overfitting due to data distribution shifts between training dataset and real-world scenarios. To address this, data augmentation techniques have been adopted to enhance model robustness by bolstering the diversity of synthetic samples within a defined vicinity of existing samples. This paper introduces a novel paradigm of data augmentation for IoT sensing signals by adding fine-grained control to generative models. We define a metric space with statistical metrics that capture the essential features of the short-time Fourier transformed (STFT) spectrograms of IoT sensing signals. These metrics serve as strong conditions for a generative model, enabling us to tailor the spectrogram characteristics in the time-frequency domain according to specific application needs. Furthermore, we propose a set of data augmentation techniques within this metric space to create new data samples. Our method is evaluated across various generative models, datasets, and downstream IoT sensing models. The results demonstrate that our approach surpasses the conventional transformation-based data augmentation techniques and prior generative data augmentation models.
Oral Poster
YUHONG CHOU · Man Yao · Kexin Wang · Yuqi Pan · Rui-Jie Zhu · Jibin Wu · Yiran Zhong · Yu Qiao · Bo Xu · Guoqi Li

[ East Exhibit Hall A-C ]

Abstract
Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: (1) Dynamic memory ability; (2) Static approximation ability; (3) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.
Poster
Peter Holderrieth · Yilun Xu · Tommi Jaakkola

[ East Exhibit Hall A-C ]

Abstract
Classical Hamiltonian mechanics has been widely used in machine learning in the form of Hamiltonian Monte Carlo for applications with predetermined force fields. In this paper, we explore the potential of deliberately designing force fields for Hamiltonian systems, introducing Hamiltonian velocity predictors (HVPs) as a core tool for constructing energy-based and generative models. We present two innovations: Hamiltonian Score Matching (HSM), which utilizes score functions to augment data by simulating Hamiltonian trajectories, and Hamiltonian Generative Flows (HGFs), a novel generative model that encompasses diffusion models and OT-flow matching as HGFs with zero force fields. We showcase the extended design space of force fields by introducing Oscillation HGFs, a generative model inspired by harmonic oscillators. Our experiments demonstrate that HSM and HGFs rival leading score-matching and generative modeling techniques. Overall, our work systematically elucidates the synergy between Hamiltonian dynamics, force fields, and generative models, thereby opening new avenues for applications of machine learning in physical sciences and dynamical systems.
Poster
Xuanyu Yi · Zike Wu · Qiuhong Shen · Qingshan Xu · Pan Zhou · Joo-Hwee Lim · Shuicheng Yan · Xinchao Wang · Hanwang Zhang

[ East Exhibit Hall A-C ]

Abstract
Recent 3D large reconstruction models (LRMs) can generate high-quality 3D content in sub-seconds by integrating multi-view diffusion models with scalable multi-view reconstructors. Current works further leverage 3D Gaussian Splatting as 3D representation for improved visual quality and rendering efficiency. However, we observe that existing Gaussian reconstruction models often suffer from multi-view inconsistency and blurred textures. We attribute this to the compromise of multi-view information propagation in favor of adopting powerful yet computationally intensive architectures (\eg, Transformers). To address this issue, we introduce MVGamba, a general and lightweight Gaussian reconstruction model featuring a multi-view Gaussian reconstructor based on the RNN-like State Space Model (SSM). Our Gaussian reconstructor propagates causal context containing multi-view information for cross-view self-refinement while generating a long sequence of Gaussians for fine-detail modeling with linear complexity.With off-the-shelf multi-view diffusion models integrated, MVGamba unifies 3D generation tasks from a single image, sparse images, or text prompts. Extensive experiments demonstrate that MVGamba outperforms state-of-the-art baselines in all 3D content generation scenarios with approximately only $0.1\times$ of the model size. The codes are available at \url{https://github.com/SkyworkAI/MVGamba}.
Poster
Ameya Prabhu · Vishaal Udandarao · Philip Torr · Matthias Bethge · Adel Bibi · Samuel Albanie

[ East Exhibit Hall A-C ]

Abstract
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling \textit{ever-expanding} large-scale benchmarks called \textit{Lifelong Benchmarks}. As exemplars of our approach, we create \textit{Lifelong-CIFAR10} and \textit{Lifelong-ImageNet}, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: \textit{Sort \& Search (S\&S)}, which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across $\sim$31,000 models demonstrate that \textit{S\&S} achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours ($\sim$1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the ``benchmark exhaustion'' problem.
Poster
Zhihan Liu · Miao Lu · Shenao Zhang · Boyi Liu · Hongyi Guo · Yingxiang Yang · Jose Blanchet · Zhaoran Wang

[ East Exhibit Hall A-C ]

Abstract
Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output even undesired responses. We investigate this problem in a principled manner by identifying the source of the issue as the distributional shift and uncertainty of human preference in dataset. To mitigate overoptimization, we first propose a theoretical algorithm which optimizes the policy against an adversarially chosen reward model, one that simultaneously minimizes its MLE loss and a reward penalty term. The penalty pessimistically biases the uncertain rewards so as to prevent the policy from choosing actions with spursiouly high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy to implement form. With a clever usage of the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss which explicitly imitates the policy with a baseline distribution. In the context of aligning large language models (LLM), this objective …
Poster
Yasi Zhang · Peiyu Yu · Yaxuan Zhu · Yingshan CHANG · Feng Gao · Ying Nian Wu · Oscar Leong

[ East Exhibit Hall A-C ]

Abstract
Generative models based on flow matching have attracted significant attention for their simplicity and superior performance in high-resolution image synthesis. By leveraging the instantaneous change-of-variables formula, one can directly compute image likelihoods from a learned flow, making them enticing candidates as priors for downstream tasks such as inverse problems. In particular, a natural approach would be to incorporate such image probabilities in a maximum-a-posteriori (MAP) estimation problem. A major obstacle, however, lies in the slow computation of the log-likelihood, as it requires backpropagating through an ODE solver, which can be prohibitively slow for high-dimensional problems. In this work, we propose an iterative algorithm to approximate the MAP estimator efficiently to solve a variety of linear inverse problems. Our algorithm is mathematically justified by the observation that the MAP objective can be approximated by a sum of $N$ ``local MAP'' objectives, where $N$ is the number of function evaluations. By leveraging Tweedie's formula, we show that we can perform gradient steps to sequentially optimize these objectives. We validate our approach for various linear inverse problems, such as super-resolution, deblurring, inpainting, and compressed sensing, and demonstrate that we can outperform other methods based on flow matching. Code is available at \url{https://github.com/YasminZhang/ICTM}.
Poster
Anuroop Sriram · Benjamin Miller · Ricky T. Q. Chen · Brandon Wood

[ East Exhibit Hall A-C ]

Abstract
Material discovery is a critical area of research with the potential to revolutionize various fields, including carbon capture, renewable energy, and electronics. However, the immense scale of the chemical space makes it challenging to explore all possible materials experimentally. In this paper, we introduce FlowLLM, a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials. FlowLLM first fine-tunes an LLM to learn an effective base distribution of meta-stable crystals in a text representation. After converting to a graph representation, the RFM model takes samples from the LLM and iteratively refines the coordinates and lattice parameters. Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by $\sim50$% – a huge improvement on a difficult problem. Additionally, the crystals generated by FlowLLM are much closer to their relaxed state when compared with another leading model, significantly reducing post-hoc computational cost.
Poster
Mahdi Morafah · Vyacheslav Kungurtsev · Hojin Chang · Chen Chen · Bill Lin

[ East Exhibit Hall A-C ]

Abstract
Federated Learning (FL) has emerged as a promising paradigm for collaborative machine learning, while preserving user data privacy. Despite its potential, standard FL algorithms lack support for diverse heterogeneous device prototypes, which vary significantly in model and dataset sizes---from small IoT devices to large workstations. This limitation is only partially addressed by existing knowledge distillation (KD) techniques, which often fail to transfer knowledge effectively across a broad spectrum of device prototypes with varied capabilities. This failure primarily stems from two issues: the dilution of informative logits from more capable devices by those from less capable ones, and the use of a single integrated logits as the distillation target across all devices, which neglects their individual learning capacities and and the unique contributions of each device. To address these challenges, we introduce TAKFL, a novel KD-based framework that treats the knowledge transfer from each device prototype's ensemble as a separate task, independently distilling each to preserve its unique contributions and avoid dilution. TAKFL also incorporates a KD-based self-regularization technique to mitigate the issues related to the noisy and unsupervised ensemble distillation process. To integrate the separately distilled knowledge, we introduce an adaptive task arithmetic knowledge integration process, allowing each student model …
Spotlight Poster
Tom Sander · Pierre Fernandez · Alain Durmus · Matthijs Douze · Teddy Furon

[ East Exhibit Hall A-C ]

Abstract
We investigate the radioactivity of text generated by large language models (LLM), \ie whether it is possible to detect that such synthetic input was used to train a subsequent LLM.Current methods like membership inference or active IP protection either work only in settings where the suspected text is known or do not provide reliable statistical guarantees.We discover that, on the contrary, it is possible to reliably determine if a language model was trained on synthetic data if that data is output by a watermarked LLM.Our new methods, specialized for radioactivity, detects with a provable confidence weak residuals of the watermark signal in the fine-tuned LLM.We link the radioactivity contamination level to the following properties: the watermark robustness, its proportion in the training set, and the fine-tuning process.For instance, if the suspect model is open-weight, we demonstrate that training on watermarked instructions can be detected with high confidence ($p$-value $< 10^{-5}$) even when as little as $5\%$ of training text is watermarked.
Poster
Shelly Golan · Roy Ganz · Michael Elad

[ East Exhibit Hall A-C ]

Abstract
The recently introduced Consistency models pose an efficient alternative to diffusion algorithms, enabling rapid and good quality image synthesis. These methods overcome the slowness of diffusion models by directly mapping noise to data, while maintaining a (relatively) simpler training. Consistency models enable a fast one- or few-step generation, but they typically fall somewhat short in sample quality when compared to their diffusion origins. In this work we propose a novel and highly effective technique for post-processing Consistency-based generated images, enhancing their perceptual quality. Our approach utilizes a joint classifier-discriminator model, in which both portions are trained adversarially. While the classifier aims to grade an image based on its assignment to a designated class, the discriminator portion of the very same network leverages the softmax values to assess the proximity of the input image to the targeted data manifold, thereby serving as an Energy-based Model. By employing example-specific projected gradient iterations under the guidance of this joint machine, we refine synthesized images and achieve an improved FID scores on the ImageNet 64x64 dataset for both Consistency-Training and Consistency-Distillation techniques.
Poster
Yongxin Zhu · Bocheng Li · Hang Zhang · Xin Li · Linli Xu · Lidong Bing

[ East Exhibit Hall A-C ]

Abstract
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling by applying K-Means on the latent features of self-supervised learning models. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for …
Poster
Yuxiang Wei · Federico Cassano · Jiawei Liu · Yifeng Ding · Naman Jain · Zachary Mueller · Harm de Vries · Leandro Von Werra · Arjun Guha · LINGMING ZHANG

[ East Exhibit Hall A-C ]

Abstract
Instruction tuning is a supervised fine-tuning approach that significantly improves the ability of large language models (LLMs) to follow human instructions. For programming tasks, most models are finetuned with costly human-annotated instruction-response pairs or those generated by large, proprietary LLMs, which may not be permitted. We propose SelfCodeAlign, the first fully transparent and permissive pipeline for self-aligning code LLMs without extensive human annotations or distillation. SelfCodeAlign employs the same base model for inference throughout the data generation process. It first extracts diverse coding concepts from high-quality seed snippets to generate new tasks. It then samples multiple responses per task, pairs each with test cases, and validates them in a sandbox environment. Finally, passing examples are selected for instruction tuning. In our primary experiments, we use SelfCodeAlign with CodeQwen1.5-7B to generate a dataset of 74k instruction-response pairs. Finetuning on this dataset leads to a model that achieves a 67.1 pass@1 on HumanEval+, surpassing CodeLlama-70B-Instruct despite being ten times smaller. Across all benchmarks, this finetuned model consistently outperforms the original version trained with OctoPack, the previous state-of-the-art method for instruction tuning without human annotations or distillation. Additionally, we show that SelfCodeAlign is effective across LLMs of various sizes, from 3B to 33B, …
Poster
Yang Sui · Yanyu Li · Anil Kag · Yerlan Idelbayev · Junli Cao · Ju Hu · Dhritiman Sagar · Bo Yuan · Sergey Tulyakov · Jian Ren

[ East Exhibit Hall A-C ]

Abstract
Diffusion-based image generation models have achieved great success in recent years by showing the capability of synthesizing high-quality content. However, these models contain a huge number of parameters, resulting in a significantly large model size. Saving and transferring them is a major bottleneck for various applications, especially those running on resource-constrained devices. In this work, we develop a novel weight quantization method that quantizes the UNet from Stable Diffusion v1.5 to $1.99$ bits, achieving a model with $7.9\times$ smaller size while exhibiting even better generation quality than the original one. Our approach includes several novel techniques, such as assigning optimal bits to each layer, initializing the quantized model for better performance, and improving the training strategy to dramatically reduce quantization error. Furthermore, we extensively evaluate our quantized model across various benchmark datasets and through human evaluation to demonstrate its superior generation quality.
Spotlight Poster
Valentin De Bortoli · Iryna Korshunova · Andriy Mnih · Arnaud Doucet

[ East Exhibit Hall A-C ]

Abstract
Mass transport problems arise in many areas of machine learning whereby one wants to compute a map transporting one distribution to another. Generative modeling techniques like Generative Adversarial Networks (GANs) and Denoising Diffusion Models (DMMs) have been successfully adapted to solve such transport problems, resulting in CycleGAN and Bridge Matching respectively. However, these methods do not approximate Optimal Transport (OT) maps, which are known to have desirable properties. Existing techniques approximating OT maps for high-dimensional data-rich problems, including DDMs-based Rectified Flow and Schrodinger bridge procedures, require fully training a DDM-type model at each iteration, or use mini-batch techniques which can introduce significant errors. We propose a novel algorithm to compute the Schrodinger bridge, a dynamic entropy-regularized version of OT, that eliminates the need to train multiple DDMs-like models. This algorithm corresponds to a discretization of a flow of path measures, referred to as the Schrodinger Bridge Flow, whose only stationary point is the Schrodinger bridge. We demonstrate the performance of our algorithm on a variety of unpaired data translation tasks.
Poster
David McAllister · Songwei Ge · Jia-Bin Huang · David Jacobs · Alexei Efros · Aleksander Holynski · Angjoo Kanazawa

[ East Exhibit Hall A-C ]

Abstract
Score distillation sampling (SDS) has proven to be an important tool, enabling the use of large-scale diffusion priors for tasks operating in data-poor domains. Unfortunately, SDS has a number of characteristic artifacts that limit its utility in general-purpose applications. In this paper, we make progress toward understanding the behavior of SDS and its variants by viewing them as solving an optimal-cost transport path from some current source distribution to a target distribution. Under this new interpretation, we argue that these methods' characteristic artifacts are caused by (1) linear approximation of the optimal path and (2) poor estimates of the source distribution.We show that by calibrating the text conditioning of the source distribution, we can produce high-quality generation and translation results with little extra overhead. Our method can be easily applied across many domains, matching or beating the performance of specialized methods. We demonstrate its utility in text-to-2D, text-to-3D, translating paintings to real images, optical illusion generation, and 3D sketch-to-real. We compare our method to existing approaches for score distillation sampling and show that it can produce high-frequency details with realistic colors.
Poster
Nikiforos Mimikos-Stamatopoulos · Benjamin Zhang · Markos Katsoulakis

[ East Exhibit Hall A-C ]

Abstract
Through an uncertainty quantification (UQ) perspective, we show that score-based generative models (SGMs) are provably robust to the multiple sources of error in practical implementation. Our primary tool is the Wasserstein uncertainty propagation (WUP) theorem, a *model-form UQ* bound that describes how the $L^2$ error from learning the score function propagates to a Wasserstein-1 ($\mathbf{d}_1$) ball around the true data distribution under the evolution of the Fokker-Planck equation. We show how errors due to (a) finite sample approximation, (b) early stopping, (c) score-matching objective choice, (d) score function parametrization expressiveness, and (e) reference distribution choice, impact the quality of the generative model in terms of a $\mathbf{d}_1$ bound of computable quantities. The WUP theorem relies on Bernstein estimates for Hamilton-Jacobi-Bellman partial differential equations (PDE) and the regularizing properties of diffusion processes. Specifically, *PDE regularity theory* shows that *stochasticity* is the key mechanism ensuring SGM algorithms are provably robust. The WUP theorem applies to integral probability metrics beyond $\mathbf{d}_1$, such as the total variation distance and the maximum mean discrepancy. Sample complexity and generalization bounds in $\mathbf{d}_1$ follow directly from the WUP theorem. Our approach requires minimal assumptions, is agnostic to the manifold hypothesis and avoids absolute continuity assumptions for the …
Poster
Joan Bruna · Jiequn Han

[ East Exhibit Hall A-C ]

Abstract
Score-based diffusion models have significantly advanced high-dimensional data generation across various domains, by learning a denoising oracle (or score) from datasets. From a Bayesian perspective, they offer a realistic modeling of data priors and facilitate solving inverse problems through posterior sampling. Although many heuristic methods have been developed recently for this purpose, they lack the quantitative guarantees needed in many scientific applications. This work addresses the topic from two perspectives. We first present a hardness result indicating that a generic method leveraging the prior denoising oracle for posterior sampling becomes infeasible as soon as the measurement operator is mildly ill-conditioned. We next develop the *tilted transport* technique, which leverages the quadratic structure of the log-likelihood in linear inverse problems in combination with the prior denoising oracle to exactly transform the original posterior sampling problem into a new one that is provably easier to sample from. We quantify the conditions under which the boosted posterior is strongly log-concave, highlighting how task difficulty depends on the condition number of the measurement matrix and the signal-to-noise ratio. The resulting general scheme is shown to match the best-known sampling methods for Ising models, and is further validated on high-dimensional Gaussian mixture models.
Poster
Chi-Wei Hsiao · Yu-Lun Liu · Cheng-Kun Yang · Sheng-Po Kuo · Kevin Jou · Chia-Ping Chen

[ East Exhibit Hall A-C ]

Abstract
While recent works on blind face image restoration have successfully produced impressive high-quality (HQ) images with abundant details from low-quality (LQ) input images, the generated content may not accurately reflect the real appearance of a person. To address this problem, incorporating well-shot personal images as additional reference inputs may be a promising strategy. Inspired by the recent success of the Latent Diffusion Model (LDM) in image generation, we propose ReF-LDM—an adaptation of LDM designed to generate HQ face images conditioned on one LQ image and multiple HQ reference images. Our LDM-based model incorporates an effective and efficient mechanism, CacheKV, for conditioning on reference images. Additionally, we design a timestep-scaled identity loss, enabling LDM to focus on learning the discriminating features of human faces. Lastly, we construct FFHQ-ref, a dataset consisting of 20,406 high-quality (HQ) face images with corresponding reference images, which can serve as both training and evaluation data for reference-based face restoration models.
Poster
Benyuan Meng · Qianqian Xu · Zitai Wang · Zhiyong Yang · Xiaochun Cao · Qingming Huang

[ East Exhibit Hall A-C ]

Abstract
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely, diffusion feature. We discover that diffusion feature has been hindered by a hidden yet universal phenomenon that we call content shift. To be specific, there are content differences between features and the input image, such as the exact shape of a certain object. We locate the cause of content shift as one inherent characteristic of diffusion models, which suggests the broad existence of this phenomenon in diffusion feature. Further empirical study also indicates that its negative impact is not negligible even when content shift is not visually perceivable. Hence, we propose to suppress content shift to enhance the overall quality of diffusion features. Specifically, content shift is related to the information drift during the process of recovering an image from the noisy input, pointing out the possibility of turning off-the-shelf generation techniques into tools for content shift suppression. We further propose a practical guideline named GATE to efficiently evaluate the potential benefit of a technique and provide an implementation of our methodology. Despite the simplicity, the proposed approach has …
Poster
Yuseung Lee · Taehoon Yoon · Minhyuk Sung

[ East Exhibit Hall A-C ]

Abstract
We introduce GrounDiT, a novel training-free spatial grounding technique for text-to-image generation using Diffusion Transformers (DiT). Spatial grounding with bounding boxes has gained attention for its simplicity and versatility, allowing for enhanced user control in image generation. However, prior training-free approaches often rely on updating the noisy image during the reverse diffusion process via backpropagation from custom loss functions, which frequently struggle to provide precise control over individual bounding boxes. In this work, we leverage the flexibility of the Transformer architecture, demonstrating that DiT can generate noisy patches corresponding to each bounding box, fully encoding the target object and allowing for fine-grained control over each region. Our approach builds on an intriguing property of DiT, which we refer to as semantic sharing. Due to semantic sharing, when a smaller patch is jointly denoised alongside a generatable-size image, the two become semantic clones. Each patch is denoised in its own branch of the generation process and then transplanted into the corresponding region of the original noisy image at each timestep, resulting in robust spatial grounding for each bounding box. In our experiments on the HRS and DrawBench benchmarks, we achieve state-of-the-art performance compared to previous training-free approaches. Project Page: https://groundit-diffusion.github.io/.
Poster
Rui Yang · Jie Wang · Guoping Wu · Bin Li

[ East Exhibit Hall A-C ]

Abstract
Real-world offline datasets are often subject to data corruptions (such as noise or adversarial attacks) due to sensor failures or malicious attacks. Despite advances in robust offline reinforcement learning (RL), existing methods struggle to learn robust agents under high uncertainty caused by the diverse corrupted data (i.e., corrupted states, actions, rewards, and dynamics), leading to performance degradation in clean environments. To tackle this problem, we propose a novel robust variational Bayesian inference for offline RL (TRACER). It introduces Bayesian inference for the first time to capture the uncertainty via offline data for robustness against all types of data corruptions. Specifically, TRACER first models all corruptions as the uncertainty in the action-value function. Then, to capture such uncertainty, it uses all offline data as the observations to approximate the posterior distribution of the action-value function under a Bayesian inference framework. An appealing feature of TRACER is that it can distinguish corrupted data from clean data using an entropy-based uncertainty measure, since corrupted data often induces higher uncertainty and entropy. Based on the aforementioned measure, TRACER can regulate the loss associated with corrupted data to reduce its influence, thereby enhancing robustness and performance in clean environments. Experiments demonstrate that TRACER significantly outperforms …
Poster
Marcin Sendera · Minsu Kim · Sarthak Mittal · Pablo Lemos · Luca Scimeca · Jarrid Rector-Brooks · Alexandre Adam · Yoshua Bengio · Nikolay Malkin

[ East Exhibit Hall A-C ]

Abstract
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at [this link](https://github.com/GFNOrg/gfn-diffusion) as a base for future work on diffusion models for amortized inference.
Poster
Jialu Li · Jaemin Cho · Yi-Lin Sung · Jaehong Yoon · Mohit Bansal

[ East Exhibit Hall A-C ]

Abstract
Recent text-to-image (T2I) generation models have demonstrated impressive capabilities in creating images from text descriptions. However, these T2I generation models often fail to generate images that precisely match the details of the text inputs, such as incorrect spatial relationship or missing objects. In this paper, we introduce SELMA: Skill-Specific Expert Learning and Merging with Auto-Generated Data, a novel paradigm to improve the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets, with skill-specific expert learning and merging. First, SELMA leverages an LLM’s in-context learning capability to generate multiple datasets of text prompts that can teach different skills, and then generates the images with a T2I model based on the prompts. Next, SELMA adapts the T2I model to the new skills by learning multiple single-skill LoRA (low-rank adaptation) experts followed by expert merging. Our independent expert fine-tuning specializes multiple models for different skills, and expert merging helps build a joint multi-skill T2I model that can generate faithful images given diverse text prompts, while mitigating the knowledge conflict from different datasets. We empirically demonstrate that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks (+2.1% on TIFA and +6.9% on …
Poster
Haowei Zhu · Dehua Tang · Ji Liu · Mingjie Lu · Jintu Zheng · Jinzhang Peng · Dong Li · Yu Wang · Fan Jiang · Lu Tian · Spandan Tiwari · Ashish Sirasao · Jun-Hai Yong · Bin Wang · Emad Barsoum

[ East Exhibit Hall A-C ]

Abstract
Diffusion models have achieved remarkable progress in the field of image generation due to their outstanding capabilities. However, these models require substantial computing resources because of the multi-step denoising process during inference. While traditional pruning methods have been employed to optimize these models, the retraining process necessitates large-scale training datasets and extensive computational costs to maintain generalization ability, making it neither convenient nor efficient. Recent studies attempt to utilize the similarity of features across adjacent denoising stages to reduce computational costs through simple and static strategies. However, these strategies cannot fully harness the potential of the similar feature patterns across adjacent timesteps. In this work, we propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner. At the core of our approach is casting the model pruning process into a SubNet search process. Specifically, we first introduce a SuperNet based on standard diffusion via adding some backup connections built upon the similar features. We then construct a plugin pruner network and design optimization losses to identify redundant computation. Finally, our method can identify an optimal SubNet through few-step gradient optimization and a simple post-processing procedure. We conduct extensive experiments on various diffusion …
Poster
Xingyu Zheng · Xianglong Liu · Yichen Bian · Xudong Ma · Yulun Zhang · Jiakai Wang · Jinyang Guo · Haotong Qin

[ East Exhibit Hall A-C ]

Abstract
Diffusion models (DMs) have been significantly developed and widely used in various applications due to their excellent generative qualities. However, the expensive computation and massive parameters of DMs hinder their practical use in resource-constrained scenarios. As one of the effective compression approaches, quantization allows DMs to achieve storage saving and inference acceleration by reducing bit-width while maintaining generation performance. However, as the most extreme quantization form, 1-bit binarization causes the generation performance of DMs to face severe degradation or even collapse. This paper proposes a novel method, namely BiDM, for fully binarizing weights and activations of DMs, pushing quantization to the 1-bit limit. From a temporal perspective, we introduce the Timestep-friendly Binary Structure (TBS), which uses learnable activation binarizers and cross-timestep feature connections to address the highly timestep-correlated activation features of DMs. From a spatial perspective, we propose Space Patched Distillation (SPD) to address the difficulty of matching binary features during distillation, focusing on the spatial locality of image generation tasks and noise estimation networks. As the first work to fully binarize DMs, the W1A1 BiDM on the LDM-4 model for LSUN-Bedrooms 256$\times$256 achieves a remarkable FID of 22.74, significantly outperforming the current state-of-the-art general binarization methods with an FID …
Spotlight Poster
Subham Sahoo · Aaron Gokaslan · Christopher De Sa · Volodymyr Kuleshov

[ East Exhibit Hall A-C ]

Abstract
Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, a set of equations which maps data to noise in a way that can significantly affect performance. In this paper, we explore whether the diffusionprocess can be learned from data.Our work is grounded in Bayesian inference and seeks to improve log-likelihood estimation by casting the learned diffusion process as an approximate variational posterior that yields a tighter lower bound (ELBO) on the likelihood.A widely held assumption is that the ELBO is invariant to the noise process: our work dispels this assumption and proposes multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies noise at different rates across an image. Our method consists of three components: a multivariate noise schedule, adaptive input-conditional diffusion, and auxiliary variables; these components ensure that the ELBO is no longer invariant to the choice of the noise schedule as in previous works. Empirically, MuLAN sets a new **state-of-the-art** in density estimation on CIFAR-10 and ImageNet while matching the performance of previous state-of-the-art models with **50%** fewer steps. We provide the code, along with a blog post and video tutorial on the project page: https://s-sahoo.com/MuLAN
Poster
Jingyuan Zhu · Shiyu Li · Yuxuan (Andy) Liu · Jian Yuan · Ping Huang · Jiulong Shan · Huimin Ma

[ East Exhibit Hall A-C ]

Abstract
Modern diffusion-based image generative models have made significant progress and become promising to enrich training data for the object detection task. However, the generation quality and the controllability for complex scenes containing multi-class objects and dense objects with occlusions remain limited. This paper presents ODGEN, a novel method to generate high-quality images conditioned on bounding boxes, thereby facilitating data synthesis for object detection. Given a domain-specific object detection dataset, we first fine-tune a pre-trained diffusion model on both cropped foreground objects and entire images to fit target distributions. Then we propose to control the diffusion model using synthesized visual prompts with spatial constraints and object-wise textual descriptions. ODGEN exhibits robustness in handling complex scenes and specific domains. Further, we design a dataset synthesis pipeline to evaluate ODGEN on 7 domain-specific benchmarks to demonstrate its effectiveness. Adding training data generated by ODGEN improves up to 25.3% mAP@.50:.95 with object detectors like YOLOv5 and YOLOv7, outperforming prior controllable generative methods. In addition, we design an evaluation protocol based on COCO-2014 to validate ODGEN in general domains and observe an advantage up to 5.6% in mAP@.50:.95 against existing methods.
Poster
Ziyuan Zhang · Han Qiu · Maosen Zhang · Jun Liu · Bin Chen · Tianwei Zhang · Hewu Li

[ East Exhibit Hall A-C ]

Abstract
With the rapidly increasing number of satellites in space and their enhanced capabilities, the amount of earth observation images collected by satellites is exceeding the transmission limits of satellite-to-ground links. Although existing learned image compression solutions achieve remarkable performance by using a sophisticated encoder to extract fruitful features as compression and using a decoder to reconstruct. It is still hard to directly deploy those complex encoders on current satellites' embedded GPUs with limited computing capability and power supply to compress images in orbit. In this paper, we propose COSMIC, a simple yet effective learned compression solution to transmit satellite images. We first design a lightweight encoder (i.e. reducing FLOPs by 2.5~5X) on satellite to achieve a high image compression ratio to save satellite-to-ground links. Then, for reconstructions on the ground, to deal with the feature extraction ability degradation due to simplifying encoders, we propose a diffusion-based model to compensate image details when decoding. Our insight is that satellite's earth observation photos are not just images but indeed multi-modal data with a nature of Text-to-Image pairing since they are collected with rich sensor data (e.g. coordinates, timestep, etc.) that can be used as the condition for diffusion generation. Extensive experiments show …
Poster
Le Zhuo · Ruoyi Du · Han Xiao · Yangguang Li · Dongyang Liu · Rongjie Huang · Wenze Liu · Xiangyang Zhu · Fu-Yun Wang · Zhanyu Ma · Xu Luo · Zehan Wang · Kaipeng Zhang · Lirui Zhao · Si Liu · Xiangyu Yue · Wanli Ouyang · Yu Qiao · Hongsheng Li · Peng Gao

[ East Exhibit Hall A-C ]

Abstract
Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers (Flag-DiT) that establishes a unified framework for transforming noise into various modalities, such as images and videos, conditioned on text instructions. Despite its promising capabilities, Lumina-T2X still encounters challenges including training instability, slow inference, and extrapolation artifacts. In this paper, we present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger generation performance with increased training and inference efficiency. We begin with a comprehensive analysis of the Flag-DiT architecture and identify several suboptimal components, which we address by introducing the Next-DiT architecture with 3D RoPE and sandwich normalizations. To enable better resolution extrapolation, we thoroughly compare different context extrapolation methods applied to text-to-image generation with 3D RoPE, and propose Frequency- and Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we introduce a sigmoid time discretization schedule for diffusion sampling, which achieves high-quality generation in 5-10 steps combined with higher-order ODE solvers. Thanks to these improvements, Lumina-Next not only improves the basic text-to-image generation but also demonstrates superior resolution extrapolation capabilities as well as multilingual generation using decoder-based LLMs as the text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versatile generative framework, we instantiate it on diverse …
Poster
Junkun Chen · Yu-Xiong Wang

[ East Exhibit Hall A-C ]

Abstract
This paper proposes ProEdit - a simple yet effective framework for high-quality 3D scene editing guided by diffusion distillation in a novel progressive manner. Inspired by the crucial observation that multi-view inconsistency in scene editing is rooted in the diffusion model’s large feasible output space (FOS), our framework controls the size of FOS and reduces inconsistency by decomposing the overall editing task into several subtasks, which are then executed progressively on the scene. Within this framework, we design a difficulty-aware subtask decomposition scheduler and an adaptive 3D Gaussian splatting (3DGS) training strategy, ensuring high efficiency in performing each subtask. Extensive evaluation shows that our ProEdit achieves state-of-the-art results in various scenes and challenging editing tasks, all through a simple framework without any expensive or sophisticated add-ons like distillation losses, components, or training procedures. Notably, ProEdit also provides a new way to preview, control, and select the aggressivity of editing operation during the editing process.
Poster
Wenhao Wang · Yifan Sun · Zhentao Tan · Yi Yang

[ East Exhibit Hall A-C ]

Abstract
Images produced by diffusion models are increasingly popular in digital artwork and visual marketing. However, such generated images might replicate content from existing ones and pose the challenge of content originality. Existing Image Copy Detection (ICD) models, though accurate in detecting hand-crafted replicas, overlook the challenge from diffusion models. This motivates us to introduce ICDiff, the first ICD specialized for diffusion models. To this end, we construct a Diffusion-Replication (D-Rep) dataset and correspondingly propose a novel deep embedding method. D-Rep uses a state-of-the-art diffusion model (Stable Diffusion V1.5) to generate 40, 000 image-replica pairs, which are manually annotated into 6 replication levels ranging from 0 (no replication) to 5 (total replication). Our method, PDF-Embedding, transforms the replication level of each image-replica pair into a probability density function (PDF) as the supervision signal. The intuition is that the probability of neighboring replication levels should be continuous and smooth. Experimental results show that PDF-Embedding surpasses protocol-driven methods and non-PDF choices on the D-Rep test set. Moreover, by utilizing PDF-Embedding, we find that the replication ratios of well-known diffusion models against an open-source gallery range from 10% to 20%. The project is publicly available at https://icdiff.github.io/.
Oral Poster
Gang Liu · Jiaxin Xu · Tengfei Luo · Meng Jiang

[ East Exhibit Hall A-C ]

Abstract
Inverse molecular design with diffusion models holds great potential for advancements in material and drug discovery. Despite success in unconditional molecule generation, integrating multiple properties such as synthetic score and gas permeability as condition constraints into diffusion models remains unexplored. We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation. Graph DiT has a condition encoder to learn the representation of numerical and categorical properties and utilizes a Transformer-based graph denoiser to achieve molecular graph denoising under conditions. Unlike previous graph diffusion models that add noise separately on the atoms and bonds in the forward diffusion process, we propose a graph-dependent noise model for training Graph DiT, designed to accurately estimate graph-related noise in molecules. We extensively validate the Graph DiT for multi-conditional polymer and small molecule generation. Results demonstrate our superiority across metrics from distribution learning to condition control for molecular properties. A polymer inverse design task for gas separation with feedback from domain experts further demonstrates its practical utility. The code is available at https://github.com/liugangcode/Graph-DiT.
Poster
Yi-Chung Chen · Zhi-Kai Huang · Jing-Ren Chen

[ East Exhibit Hall A-C ]

Abstract
Quantization of diffusion models has attracted considerable attention due to its potential to enable various applications on resource-constrained mobile devices. However, given the cumulative nature of quantization errors in quantized diffusion models, overall performance may still decline even with efforts to minimize quantization error at each sampling step.Recent studies have proposed several methods to address accumulated quantization error, yet these solutions often suffer from limited applicability due to their underlying assumptions or only partially resolve the issue due to an incomplete understanding.In this work, we introduce a novel perspective by conceptualizing quantization error as a "stepback" in the denoising process. We investigate how the accumulation of quantization error can distort the sampling trajectory, resulting in a notable decrease in model performance. To address this challenge, we introduce StepbaQ, a method that calibrates the sampling trajectory and counteracts the adverse effects of accumulated quantization error through a sampling step correction mechanism. Notably, StepbaQ relies solely on statistics of quantization error derived from a small calibration dataset, highlighting its strong applicability.Our experimental results demonstrate that StepbaQ can serve as a plug-and-play technique to enhance the performance of diffusion models quantized by off-the-shelf tools without modifying the quantization settings. For example, StepbaQ significantly …
Poster
Zijian Zhou · Xiaoqiang Lin · Xinyi Xu · Alok Prakash · Daniela Rus · Bryan Kian Hsiang Low

[ East Exhibit Hall A-C ]

Abstract
In-context learning (ICL) allows transformer-based language models that are pre-trained on general text to quickly learn a specific task with a few "task demonstrations" without updating their parameters, significantly boosting their flexibility and generality. ICL possesses many distinct characteristics from conventional machine learning, thereby requiring new approaches to interpret this learning paradigm. Taking the viewpoint of recent works showing that transformers learn in context by formulating an internal optimizer, we propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL. We empirically verify the effectiveness of our approach for demonstration attribution while being computationally efficient. Leveraging the results, we then show how DETAIL can help improve model performance in real-world scenarios through demonstration reordering and curation. Finally, we experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
Spotlight Poster
Rishabh Agarwal · Avi Singh · Lei Zhang · Bernd Bohnet · Luis Rosias · Stephanie Chan · Biao Zhang · Ankesh Anand · Zaheer Abbas · Azade Nova · John Co-Reyes · Eric Chu · Feryal Behbahani · Aleksandra Faust · Hugo Larochelle

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples – the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated outputs. To mitigate this limitation, we explore two new settings: (1) "Reinforced ICL" that uses model-generated chain-of-thought rationales in place of human rationales, and (2) "Unsupervised ICL" where we remove rationales from the prompt altogether, and prompts the model only with domain-specific inputs. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. We demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to supervised fine-tuning. Finally, we reveal the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Spotlight Poster
Anna Mészáros · Szilvia Ujváry · Wieland Brendel · Patrik Reizinger · Ferenc Huszar

[ East Exhibit Hall A-C ]

Abstract
LLMs show remarkable emergent abilities, such as inferring concepts from presumably out-of-distribution prompts, known as in-context learning. Though this success is often attributed to the Transformer architecture, our systematic understanding is limited. In complex real-world data sets, even defining what is out-of-distribution is not obvious. To better understand the OOD behaviour of autoregressive LLMs, we focus on formal languages, which are defined by the intersection of rules. We define a new scenario of OOD compositional generalization, termed \textit{rule extrapolation}. Rule extrapolation describes OOD scenarios, where the prompt violates at least one rule. We evaluate rule extrapolation in formal languages with varying complexity in linear and recurrent architectures, the Transformer, and state space models to understand the architectures' influence on rule extrapolation. We also lay the first stones of a normative theory of rule extrapolation, inspired by the Solomonoff prior in algorithmic information theory.
Poster
Andrew Jesson · Nicolas Beltran Velez · Quentin Chu · Sweta Karlekar · Jannik Kossen · Yarin Gal · John Cunningham · David Blei

[ East Exhibit Hall A-C ]

Abstract
This paper presents a method for estimating the hallucination rate for in-context learning (ICL) with generative AI. In ICL, a conditional generative model (CGM) is prompted with a dataset and a prediction question and asked to generate a response. One interpretation of ICL assumes that the CGM computes the posterior predictive of an unknown Bayesian model, which implicitly defines a joint distribution over observable datasets and latent mechanisms. This joint distribution factorizes into two components: the model prior over mechanisms and the model likelihood of datasets given a mechanism. With this perspective, we define a \textit{hallucination} as a generated response to the prediction question with low model likelihood given the mechanism. We develop a new method that takes an ICL problem and estimates the probability that a CGM will generate a hallucination. Our method only requires generating prediction questions and responses from the CGM and evaluating its response log probability. We empirically evaluate our method using large language models for synthetic regression and natural language ICL tasks.
Poster
Chengshuai Shi · Kun Yang · Jing Yang · Cong Shen

[ East Exhibit Hall A-C ]

Abstract
The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
Poster
Jiaojiao Fan · Haotian Xue · Qinsheng Zhang · Yongxin Chen

[ East Exhibit Hall A-C ]

Abstract
There is a rapidly growing interest in controlling consistency across multiple generated images using diffusion models. Among various methods, recent works have found that simply manipulating attention modules by concatenating features from multiple reference images provides an efficient approach to enhancing consistency without fine-tuning. Despite its popularity and success, few studies have elucidated the underlying mechanisms that contribute to its effectiveness. In this work, we reveal that the popular approach is a linear interpolation of image self-attention and cross-attention between synthesized content and reference features, with a constant rank-1 coefficient. Motivated by this observation, we find that a rank-1 coefficient is not necessary and simplifies the controllable generation mechanism. The resulting algorithm, which we coin as RefDrop, allows users to control the influence of reference context in a direct and precise manner. Besides further enhancing consistency in single-subject image generation, our method also enables more interesting applications, such as the consistent generation of multiple subjects, suppressing specific features to encourage more diverse content, and high-quality personalized video generation by boosting temporal consistency. Even compared with state-of-the-art image-prompt-based generators, such as IP-Adapter, RefDrop is competitive in terms of controllability and quality while avoiding the need to train a separate image encoder …
Poster
Zhenwei Tang · Difan Jiao · Reid McIlroy-Young · Jon Kleinberg · Siddhartha Sen · Ashton Anderson

[ East Exhibit Hall A-C ]

Abstract
There are an increasing number of domains in which artificial intelligence (AI) systems both surpass human ability and accurately model human behavior. This introduces the possibility of algorithmically-informed teaching in these domains through more relatable AI partners and deeper insights into human decision-making. Critical to achieving this goal, however, is coherently modeling human behavior at various skill levels. Chess is an ideal model system for conducting research into this kind of human-AI alignment, with its rich history as a pivotal testbed for AI research, mature superhuman AI systems like AlphaZero, and precise measurements of skill via chess rating systems. Previous work in modeling human decision-making in chess uses completely independent models to capture human style at different skill levels, meaning they lack coherence in their ability to adapt to the full spectrum of human improvement and are ultimately limited in their effectiveness as AI partners and teaching tools. In this work, we propose a unified modeling approach for human-AI alignment in chess that coherently captures human style across different skill levels and directly captures how people improve. Recognizing the complex, non-linear nature of human learning, we introduce a skill-aware attention mechanism to dynamically integrate players’ strengths with encoded chess positions, …
Poster
Ruikai Cui · Xibin Song · Weixuan Sun · Senbo Wang · Weizhe Liu · Shenzhou Chen · Taizhang Shang · YANG LI · Nick Barnes · Hongdong Li · Pan Ji

[ East Exhibit Hall A-C ]

Abstract
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images. Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data. In this work, we introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes. Our methodology begins with the development of a point-cloud-based network that effectively generates precise and meaningful latent tri-planes, laying the groundwork for accurate 3D mesh reconstruction. Building upon this, our Image-Point-Cloud Feature Alignment technique processes a single input image, aligning to the latent tri-planes to imbue image features with robust 3D information. This process not only enriches the image features but also facilitates the production of high-fidelity 3D meshes without the need for multi-view input, significantly reducing geometric distortions. Our approach achieves state-of-the-art high-fidelity 3D mesh reconstruction from a single image in just 6 seconds, and experiments on various datasets demonstrate its effectiveness.
Spotlight Poster
Xinmeng Huang · Shuo Li · Edgar Dobriban · Osbert Bastani · Hamed Hassani · Dongsheng Ding

[ East Exhibit Hall A-C ]

Abstract
The growing safety concerns surrounding large language models raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, typical Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based settings (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness and merits of our algorithms.
Poster
Ching-An Cheng · Allen Nie · Adith Swaminathan

[ East Exhibit Hall A-C ]

Abstract
We study a class of optimization problems motivated by automating the design and update of AI systems like coding assistants, robots, and copilots. AutoDiff frameworks, like PyTorch, enable efficient end-to-end optimization of differentiable systems. However, general computational workflows can be non-differentiable and involve rich feedback (e.g. console output or user’s responses), heterogeneous parameters (e.g. prompts, codes), and intricate objectives (beyond maximizing a score). We investigate end-to-end generative optimization – using generative models such as LLMs within the optimizer for automatic updating of general computational workflows. We discover that workflow execution traces are akin to back-propagated gradients in AutoDiff and can provide key information to interpret feedback for efficient optimization. Formally, we frame a new mathematical setup, Optimization with Trace Oracle (OPTO). In OPTO, an optimizer receives an execution trace along with feedback on the computed output and updates parameters iteratively. We provide a Python library, Trace, that efficiently converts a workflow optimization problem into an OPTO instance using PyTorch-like syntax. Using Trace, we develop a general LLM-based generative optimizer called OptoPrime. In empirical studies, we find that OptoPrime is capable of first-order numerical optimization, prompt optimization, hyper-parameter tuning, robot controller design, code debugging, etc., and is often competitive with specialized …
Poster
Xiaojuan Tang · Jiaqi Li · Yitao Liang · Song-Chun Zhu · Muhan Zhang · Zilong Zheng

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) trained on massive corpora have shown remarkable success in knowledge-intensive tasks. Yet, most of them rely on pre-stored knowledge. Inducing new general knowledge from a specific environment andperforming reasoning with the acquired knowledge—situated inductive reasoning, is crucial and challenging for machine intelligence. In this paper, we design Mars, an interactive environment devised for situated inductive reasoning. It introduces counter-commonsense game mechanisms by modifying terrain, survival setting and task dependency while adhering to certain principles. In Mars, agents need to actively interact with their surroundings, derive useful rules and perform decision-making tasks in specific contexts. We conduct experiments on various RL-based and LLM-based methods, finding that they all struggle on this challenging situated inductive reasoning benchmark. Furthermore, we explore Induction from Reflection, where we instruct agents to perform inductive reasoning from history trajectory. The superior performance underscores the importance of inductive reasoning in Mars. Through Mars, we aim to galvanize advancements in situated inductive reasoning and set the stage for developing the next generation of AI systems that can reason in an adaptive and context-sensitive way.
Poster
Ke Wang · Junting Pan · Weikang Shi · Zimu Lu · Houxing Ren · Aojun Zhou · Mingjie Zhan · Hongsheng Li

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models exceeding human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on \datasetname, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The dataset is released at [MathLLMs/MathVision](https://huggingface.co/datasets/MathLLMs/MathVision)
Poster
Xiaoxue Han · Zhuo Feng · Yue Ning

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs) experience "catastrophic forgetting" in continual learning setups, where they tend to lose previously acquired knowledge and perform poorly on old tasks. Rehearsal-based methods, which consolidate old knowledge with a replay memory buffer, are a de facto solution due to their straightforward workflow. However, these methods often fail to adequately capture topological information, leading to incorrect input-label mappings in replay samples. To address this, we propose TACO, a topology-aware graph coarsening and continual learning framework that stores information from previous tasks as a reduced graph. Throughout each learning period, this reduced graph expands by integrating with a new graph and aligning shared nodes, followed by a "zoom-out" reduction process to maintain a stable size. We have developed a graph coarsening algorithm based on node representation proximities to efficiently reduce a graph while preserving essential topological information. We empirically demonstrate that the learning process on the reduced graph can closely approximate that on the original graph. We compare TACO with a wide range of state-of-the-art baselines, proving its superiority and the necessity of preserving high-quality topological information for effective replaying.
Poster
Jitao Zhao · Di Jin · Meng Ge · Lianze Shan · Xin Wang · Dongxiao He · Zhiyong Feng

[ East Exhibit Hall A-C ]

Abstract
Graph Neural Networks (GNNs), known for their effective graph encoding, are extensively used across various fields. Graph self-supervised pre-training, which trains GNN encoders without manual labels to generate high-quality graph representations, has garnered widespread attention. However, due to the inherent complex characteristics in graphs, GNNs encoders pre-trained on one dataset struggle to directly adapt to others that have different node feature shapes. This typically necessitates either model rebuilding or data alignment. The former results in non-transferability as each dataset need to rebuild a new model, while the latter brings serious knowledge loss since it forces features into a uniform shape by preprocessing such as Principal Component Analysis (PCA). To address this challenge, we propose a new Feature-Universal Graph contrastive pre-training strategy (FUG) that naturally avoids the need for model rebuilding and data reshaping. Specifically, inspired by discussions in existing work on the relationship between contrastive Learning and PCA, we conducted a theoretical analysis and discovered that PCA's optimization objective is a special case of that in contrastive Learning. We designed an encoder with contrastive constraints to emulate PCA's generation of basis transformation matrix, which is utilized to losslessly adapt features in different datasets. Furthermore, we introduced a global uniformity constraint …
Poster
Luis Müller · Daniel Kusuma · Blai Bonet · Christopher Morris

[ East Exhibit Hall A-C ]

Abstract
The expressive power of graph learning architectures based on the $k$-dimensional Weisfeiler-Leman ($k$-WL) hierarchy is well understood. However, such architectures often fail to deliver solid predictive performance on real-world tasks, limiting their practical impact. In contrast, global attention-based models such as graph transformers demonstrate strong performance in practice, but comparing their expressive power with the $k$-WL hierarchy remains challenging, particularly since these architectures rely on positional or structural encodings for their expressivity and predictive performance. To address this, we show that the recently proposed Edge Transformer, a global attention model operating on node pairs instead of nodes, has 3-WL expressive power when provided with the right tokenization. Empirically, we demonstrate that the Edge Transformer surpasses other theoretically aligned architectures regarding predictive performance while not relying on positional or structural encodings.
Poster
Nimrah Mustafa · Rebekka Burkholz

[ East Exhibit Hall A-C ]

Abstract
Graph neural networks (GNNs) with a rescale invariance, such as GATs, can be re-parameterized during optimization through dynamic rescaling of network parameters and gradients while keeping the loss invariant. In this work, we explore dynamic rescaling as a tool to influence GNN training dynamics in two key ways: i) balancing the network with respect to various criteria, and ii) controlling the relative learning speeds of different layers. We gain novel insights, unique to GNNs, that reveal distinct training modes for different tasks. For heterophilic graphs, achieving balance based on relative gradients leads to faster training and better generalization. In contrast, homophilic graphs benefit from delaying the learning of later layers. Additionally, we show that training in balance supports larger learning rates, which can improve generalization. Moreover, controlling layer-wise training speeds is linked to grokking-like phenomena, which may be of independent interest.
Poster
Kun Zhou · Beichen Zhang · jiapeng wang · Zhipeng Chen · Xin Zhao · Jing Sha · Zhichao Sheng · Shijin Wang · Ji-Rong Wen

[ East Exhibit Hall A-C ]

Abstract
Mathematical reasoning is an important capability of large language models~(LLMs) for real-world applications.To enhance this capability, existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs (\eg GPT-4) to synthesize massive math problems. Both types of work generally lead to large costs in training or synthesis.To reduce the cost, based on open-source available texts, we propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data.To achieve it, we create a dataset using GPT-4 to distill its data synthesis capability into the small LLM.Concretely, we craft a set of prompts based on human education stages to guide GPT-4, to synthesize problems covering diverse math knowledge and difficulty levels.Besides, we adopt the gradient-based influence estimation method to select the most valuable math-related texts.The both are fed into GPT-4 for creating the knowledge distillation dataset to train the small LLM.We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model. The whole process only needs to invoke GPT-4 API 9.3k times and use 4.6B data for training.Experimental results have shown that JiuZhang3.0 achieves state-of-the-art performance on several mathematical reasoning datasets, under both natural language reasoning and …
Poster
Zhiqing Sun · Longhui Yu · Yikang Shen · Weiyang Liu · Yiming Yang · Sean Welleck · Chuang Gan

[ East Exhibit Hall A-C ]

Abstract
Current AI alignment methodologies rely on human-provided demonstrations or judgments, and the learned capabilities of AI systems would be upper-bounded by human capabilities as a result. This raises a challenging research question: How can we keep improving the systems when their capabilities have surpassed the levels of humans? This paper answers this question in the context of tackling hard reasoning tasks (e.g., level 4-5 MATH problems) via learning from human annotations on easier tasks (e.g., level 1-3 MATH problems), which we term as easy-to-hard generalization. Our key insight is that an evaluator (reward model) trained on supervisions for easier tasks can be effectively used for scoring candidate solutions of harder tasks and hence facilitating easy-to-hard generalization over different levels of tasks. Based on this insight, we propose a novel approach to scalable alignment, which firstly trains the (process-supervised) reward models on easy problems (e.g., level 1-3), and then uses them to evaluate the performance of policy models on hard problems. We show that such easy-to-hard generalization from evaluators can enable easy-to-hard generalizations in generators either through re-ranking or reinforcement learning (RL). Notably, our process-supervised 7b RL model and 34b model (reranking@1024) achieves an accuracy of 34.0% and 52.5% on MATH500, …
Poster
Terufumi Morishita · Gaku Morio · Atsuki Yamaguchi · Yasuhiro Sogawa

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning.To address this, we propose $\textbf{Additional Logic Training (ALT)}$, which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples.We first establish principles for designing high-quality samples by integrating symbolic logic theory and previous empirical insights.Then, based on these principles, we construct a synthetic corpus named $\textbf{Formal} \ \textbf{Logic} \ \textbf{\textit{D}eduction} \ \textbf{\textit{D}iverse}$ (FLD$ _{\times2}$), comprising numerous samples of multi-step deduction with unknown facts, diverse reasoning rules, diverse linguistic expressions, and challenging distractors.Finally, we empirically show that ALT on FLD$ _{\times2}$ substantially enhances the reasoning capabilities of state-of-the-art LLMs, including LLaMA-3.1-70B.Improvements include gains of up to 30 points on logical reasoning benchmarks, up to 10 points on math and coding benchmarks, and 5 points on the benchmark suite BBH.
Poster
Javier Gonzalez · Aditya Nori

[ East Exhibit Hall A-C ]

Abstract
Recent advances in AI have been significantly driven by the capabilities of large language models (LLMs) to solve complex problems in ways that resemble human thinking. However, there is an ongoing debate about the extent to which LLMs are capable ofactual reasoning. Central to this debate are two key probabilistic concepts that are essential for connecting causesto their effects: the probability of necessity (PN) and the probability of sufficiency (PS). This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms using these probabilistic measures. By viewing LLMs as abstract machines that process information through a natural language interface, we examine the conditions under which it is possible to compute suitable approximations of PN and PS. Our research marks an important step towards gaining a deeper understanding of when LLMs are capable of reasoning, as illustrated by a series of math examples.
Poster
Mikhail Mozikov · Nikita Severin · Valeria Bodishtianu · Maria Glushanina · Ivan Nasonov · Daniil Orekhov · Pekhotin Vladislav · Ivan Makovetskiy · Mikhail Baklashkin · Vasily Lavrentyev · Akim Tsvigun · Denis Turdakov · Tatiana Shavrina · Andrey Savchenko · Ilya Makarov

[ East Exhibit Hall A-C ]

Abstract
One of the urgent tasks of artificial intelligence is to assess the safety and alignment of large language models (LLMs) with human behavior. Conventional verification only in pure natural language processing benchmarks can be insufficient. Since emotions often influence human decisions, this paper examines LLM alignment in complex strategic and ethical environments, providing an in-depth analysis of the drawbacks of our psychology and the emotional impact on decision-making in humans and LLMs. We introduce the novel EAI framework for integrating emotion modeling into LLMs to examine the emotional impact on ethics and LLM-based decision-making in various strategic games, including bargaining and repeated games. Our experimental study with various LLMs demonstrated that emotions can significantly alter the ethical decision-making landscape of LLMs, highlighting the need for robust mechanisms to ensure consistent ethical standards. Our game-theoretic analysis revealed that LLMs are susceptible to emotional biases influenced by model size, alignment strategies, and primary pretraining language. Notably, these biases often diverge from typical human emotional responses, occasionally leading to unexpected drops in cooperation rates, even under positive emotional influence. Such behavior complicates the alignment of multiagent systems, emphasizing the need for benchmarks that can rigorously evaluate the degree of emotional alignment. Our framework …
Poster
Johannes Treutlein · Dami Choi · Jan Betley · Samuel Marks · Cem Anil · Roger Grosse · Owain Evans

[ East Exhibit Hall A-C ]

Abstract
One way to address safety risks from large language models (LLMs) is to censor dangerous knowledge from their training data. While this removes the explicit information, implicit information can remain scattered across various training documents. Could an LLM infer the censored knowledge by piecing together these implicit hints? As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning. Using a suite of five tasks, we demonstrate that frontier LLMs can perform inductive OOCR. In one experiment we finetune an LLM on a corpus consisting only of distances between an unknown city and other known cities. Remarkably, without in-context examples or Chain of Thought, the LLM can verbalize that the unknown city is Paris and use this fact to answer downstream questions. Further experiments show that LLMs trained only on individual coin flip outcomes can verbalize whether the coin is biased, and those trained only on pairs $(x,f(x))$ can articulate a definition of $f$ and compute inverses. While OOCR succeeds in a range of cases, we also show that it is unreliable, particularly …
Poster
Xuezhi Wang · Denny Zhou

[ East Exhibit Hall A-C ]

Abstract
In enhancing the reasoning capabilities of large language models (LLMs), prior research primarily focuses on specific prompting techniques such as few-shot or zero-shot chain-of-thought (CoT) prompting. These methods, while effective, often involve manually intensive prompt engineering. Our study takes a novel approach by asking: Can LLMs reason effectively without any prompting? Our findings reveal that, intriguingly, CoT reasoning paths can be elicited from pre-trained LLMs by simply altering the \textit{decoding} process. Rather than conventional greedy decoding, we investigate the top-$k$ alternative tokens, uncovering that CoT paths are frequently inherent in these sequences. This approach not only bypasses the confounders of prompting but also allows us to assess the LLMs' \textit{intrinsic} reasoning abilities. Moreover, we observe that the presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer. This confidence metric effectively differentiates between CoT and non-CoT paths. Extensive empirical studies on various reasoning benchmarks show that the proposed CoT-decoding effectively elicits reasoning capabilities from language models, which were previously obscured by standard greedy decoding.
Poster
Mohit Kataria · Sandeep Kumar · Jayadeva Dr

[ East Exhibit Hall A-C ]

Abstract
In the era of big data, graphs have emerged as a natural representation of intricate relationships. However, graph sizes often become unwieldy, leading to storage, computation, and analysis challenges. A crucial demand arises for methods that can effectively downsize large graphs while retaining vital insights. Graph coarsening seeks to simplify large graphs while maintaining the basic statistics of the graphs, such as spectral properties and $\epsilon$-similarity in the coarsened graph. This ensures that downstream processes are more efficient and effective. Most published methods are suitable for homophilic datasets, limiting their universal use. We propose **U**niversal **G**raph **C**oarsening (UGC), a framework equally suitable for homophilic and heterophilic datasets. UGC integrates node attributes and adjacency information, leveraging the dataset's heterophily factor. Results on benchmark datasets demonstrate that UGC preserves spectral similarity while coarsening. In comparison to existing methods, UGC is 4x to 15x faster, has lower eigen-error, and yields superior performance on downstream processing tasks even at 70% coarsening ratios.
Poster
Jialu Li · Yu Wang · Pengfei Zhu · Wanyu Lin · Qinghua Hu

[ East Exhibit Hall A-C ]

Abstract
Graph class incremental learning (GCIL) requires the model to classify emerging nodes of new classes while remembering old classes. Existing methods are designed to preserve effective information of old models or graph data to alleviate forgetting, but there is no clear theoretical understanding of what matters in information preservation. In this paper, we consider that present practice suffers from high semantic and structural shifts assessed by two devised shift metrics. We provide insights into information preservation in GCIL and find that maintaining graph information can preserve information of old models in theory to calibrate node semantic and graph structure shifts. We correspond graph information into low-frequency local-global information and high-frequency information in spatial domain. Based on the analysis, we propose a framework, Graph Spatial Information Preservation (GSIP). Specifically, for low-frequency information preservation, the old node representations obtained by inputting replayed nodes into the old model are aligned with the outputs of the node and its neighbors in the new model, and then old and new outputs are globally matched after pooling. For high-frequency information preservation, the new node representations are encouraged to imitate the near-neighbor pair similarity of old node representations. GSIP achieves a 10\% increase in terms of the …
Poster
Eeshaan Jain · Indradyumna Roy · Saswat Meher · Soumen Chakrabarti · Abir De

[ East Exhibit Hall A-C ]

Abstract
Graph Edit Distance (GED) measures the (dis-)similarity between two given graphs in terms of the minimum-cost edit sequence, which transforms one graph to the other.GED is related to other notions of graph similarity, such as graph and subgraph isomorphism, maximum common subgraph, etc. However, the computation of exact GED is NP-Hard, which has recently motivated the design of neural models for GED estimation.However, they do not explicitly account for edit operations with different costs. In response, we propose $\texttt{GraphEdX}$, a neural GED estimator that can work with general costs specified for the four edit operations, viz., edge deletion, edge addition, node deletion, and node addition.We first present GED as a quadratic assignment problem (QAP) that incorporates these four costs.Then, we represent each graph as a set of node and edge embeddings and use them to design a family of neural set divergence surrogates. We replace the QAP terms corresponding to each operation with their surrogates. Computing such neural set divergence requires aligning nodes and edges of the two graphs.We learn these alignments using a Gumbel-Sinkhorn permutation generator, additionally ensuring that the node and edge alignments are consistent with each other. Moreover, these alignments are cognizant of both the presence and …
Oral Poster
Dora Zhao · Morgan Scheuerman · Pooja Chitre · Jerone Andrews · Georgia Panagiotidou · Shawn Walker · Kathleen Pine · Alice Xiang

[ East Exhibit Hall A-C ]

Abstract
Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade-offs encountered throughout the dataset curation lifecycle. Our findings underscore overarching issues within the broader fairness landscape that impact data curation. We conclude with recommendations aimed at fostering systemic changes to better facilitate fair dataset curation practices.
Poster
Zunnan Xu · Yukang Lin · Haonan Han · Sicheng Yang · Ronghui Li · Yachao Zhang · Xiu Li

[ East Exhibit Hall A-C ]

Abstract
Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model to improve gesture synthesis. However, the high computational complexity of these techniques limits the application in reality. In this study, we explore the potential of state space models (SSMs).Direct application of SSMs in gesture synthesis encounters difficulties, which stem primarily from the diverse movement dynamics of various body parts. The generated gestures may also exhibit unnatural jittering issues.To address these, we implement a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures.Built upon the selective scan mechanism, we introduce MambaTalk, which integrates hybrid fusion modules, local and global scans to refine latent space representations.Subjective and objective experiments demonstrate that our method surpasses the performance of state-of-the-art models. Our project is publicly available at~\url{https://kkakkkka.github.io/MambaTalk/}.
Poster
Zhenyu Lou · Qiongjie Cui · Tuo Wang · Zhenbo Song · Luoming Zhang · Cheng Cheng · Haofan Wang · Xu Tang · Huaxia Li · Hong Zhou

[ East Exhibit Hall A-C ]

Abstract
Diverse human motion prediction (HMP) is a fundamental application in computer vision that has recently attracted considerable interest. Prior methods primarily focus on the stochastic nature of human motion, while neglecting the specific impact of external environment, leading to the pronounced artifacts in prediction when applied to real-world scenarios. To fill this gap, this work introduces a novel task: predicting diverse human motion within real-world 3D scenes. In contrast to prior works, it requires harmonizing the deterministic constraints imposed by the surrounding 3D scenes with the stochastic aspect of human motion. For this purpose, we propose DiMoP3D, a diverse motion prediction framework with 3D scene awareness, which leverages the 3D point cloud and observed sequence to generate diverse and high-fidelity predictions. DiMoP3D is able to comprehend the 3D scene, and determines the probable target objects and their desired interactive pose based on the historical motion. Then, it plans the obstacle-free trajectory towards these interested objects, and generates diverse and physically-consistent future motions. On top of that, DiMoP3D identifies deterministic factors in the scene and integrates them into the stochastic modeling, making the diverse HMP in realistic scenes become a controllable stochastic generation process. On two real-captured benchmarks, DiMoP3D has demonstrated …
Poster
Brandon McMahan · Zhenghao (Mark) Peng · Bolei Zhou · Jonathan Kao

[ East Exhibit Hall A-C ]

Abstract
The rapid development of artificial intelligence (AI) has unearthed the potential to assist humans in controlling advanced technologies. Shared autonomy (SA) facilitates control by combining inputs from a human pilot and an AI copilot. In prior SA studies, the copilot is constantly active in determining the action played at each time step. This limits human autonomy that may have deleterious effects on performance. In general, the amount of helpful copilot assistance varies greatly depending on the task dynamics. We therefore hypothesized that human autonomy and SA performance improves through dynamic and selective copilot intervention. To address this, we develop a goal-agnostic intervention assistance (IA) that dynamically shares control by having the copilot intervene only when the expected value of the copilot’s action exceeds that of the human’s action. We implement IA with a diffusion copilot (termed IDA) trained on expert demonstrations with goal masking. We prove that IDA performance is lower bounded by human performance, so that IDA does not negatively impact human control. In experiments with simulated human pilots, we show that IDA achieves higher performance than both pilot-only and traditional SA control in variants of the Reacher environment and Lunar Lander. We then demonstrate with human-in the-loop experiments …
Poster
Christoph Leiter · Piyawat Lertvittayakumjorn · Marina Fomicheva · Wei Zhao · Yang Gao · Steffen Eger

[ East Exhibit Hall A-C ]

Abstract

Unlike classical lexical overlap metrics such as BLEU, most current evaluation metrics for machine translation (for example, COMET or BERTScore) are based on black-box large language models. They often achieve strong correlations with human judgments, but recent research indicates that the lower-quality classical metrics remain dominant, one of the potential reasons being that their decision processes are more transparent. To foster more widespread acceptance of novel high-quality metrics, explainability thus becomes crucial. In this concept paper, we identify key properties as well as key goals of explainable machine translation metrics and provide a comprehensive synthesis of recent techniques, relating them to our established goals and properties. In this context, we also discuss the latest state-of-the-art approaches to explainable metrics based on generative models such as ChatGPT and GPT4. Finally, we contribute a vision of next-generation approaches, including natural language explanations. We hope that our work can help catalyze and guide future research on explainable evaluation metrics and, mediately, also contribute to better and more transparent machine translation systems.

Poster
Robin Hesse · Simone Schaub-Meyer · Stefan Roth

[ East Exhibit Hall A-C ]

Abstract
Attribution maps are one of the most established tools to explain the functioning of computer vision models. They assign importance scores to input features, indicating how relevant each feature is for the prediction of a deep neural network. While much research has gone into proposing new attribution methods, their proper evaluation remains a difficult challenge. In this work, we propose a novel evaluation protocol that overcomes two fundamental limitations of the widely used incremental-deletion protocol, i.e., the out-of-domain issue and lacking inter-model comparisons. This allows us to evaluate 23 attribution methods and how different design choices of popular vision backbones affect their attribution quality. We find that intrinsically explainable models outperform standard models and that raw attribution values exhibit a higher attribution quality than what is known from previous work. Further, we show consistent changes in the attribution quality when varying the network design, indicating that some standard design choices promote attribution quality.
Poster
Lennart Bürger · Fred Hamprecht · Boaz Nadler

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) have revolutionised natural language processing, exhibiting impressive human-like capabilities. In particular, LLMs are capable of "lying", knowingly outputting false statements. Hence, it is of interest and importance to develop methods to detect when LLMs lie. Indeed, several authors trained classifiers to detect LLM lies based on their internal model activations. However, other researchers showed that these classifiers may fail to generalise, for example to negated statements. In this work, we aim to develop a robust method to detect when an LLM is lying. To this end, we make the following key contributions: (i) We demonstrate the existence of a two-dimensional subspace, along which the activation vectors of true and false statements can be separated. Notably, this finding is universal and holds for various LLMs, including Gemma-7B, LLaMA2-13B, Mistral-7B and LLaMA3-8B. Our analysis explains the generalisation failures observed in previous studies and sets the stage for more robust lie detection;(ii) Building upon (i), we construct an accurate LLM lie detector. Empirically, our proposed classifier achieves state-of-the-art performance, attaining 94\% accuracy in both distinguishing true from false factual statements and detecting lies generated in real-world scenarios.
Spotlight Poster
Matt MacDermott · James Fox · Francesco Belardinelli · Tom Everitt

[ East Exhibit Hall A-C ]

Abstract
We define maximum entropy goal-directedness (MEG), a formal measure of goal-directedness in causal models and Markov decision processes, and give algorithmsfor computing it. Measuring goal-directedness is important, as it is a criticalelement of many concerns about harm from AI. It is also of philosophical interest,as goal-directedness is a key aspect of agency. MEG is based on an adaptation ofthe maximum causal entropy framework used in inverse reinforcement learning. Itcan measure goal-directedness with respect to a known utility function, a hypothesisclass of utility functions, or a set of random variables. We prove that MEG satisfiesseveral desiderata and demonstrate our algorithms with small-scale experiments.
Poster
Moritz Vandenhirtz · Sonia Laguna · Ričards Marcinkevičs · Julia Vogt

[ East Exhibit Hall A-C ]

Abstract
Concept Bottleneck Models (CBMs) have emerged as a promising interpretable method whose final prediction is based on intermediate, human-understandable concepts rather than the raw input. Through time-consuming manual interventions, a user can correct wrongly predicted concept values to enhance the model's downstream performance. We propose *Stochastic Concept Bottleneck Models* (SCBMs), a novel approach that models concept dependencies. In SCBMs, a single-concept intervention affects all correlated concepts, thereby improving intervention effectiveness. Unlike previous approaches that model the concept relations via an autoregressive structure, we introduce an explicit, distributional parameterization that allows SCBMs to retain the CBMs' efficient training and inference procedure. Additionally, we leverage the parameterization to derive an effective intervention strategy based on the confidence region. We show empirically on synthetic tabular and natural image datasets that our approach improves intervention effectiveness significantly. Notably, we showcase the versatility and usability of SCBMs by examining a setting with CLIP-inferred concepts, alleviating the need for manual concept annotations.
Poster
James Oldfield · Markos Georgopoulos · Grigorios Chrysos · Christos Tzelepis · Yannis Panagakis · Mihalis Nicolaou · Jiankang Deng · Ioannis Patras

[ East Exhibit Hall A-C ]

Abstract
The Mixture of Experts (MoE) paradigm provides a powerful way to decompose dense layers into smaller, modular computations often more amenable to human interpretation, debugging, and editability. However, a major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization. In this paper, we propose the Multilinear Mixture of Experts (μMoE) layer to address this, focusing on vision models. μMoE layers enable scalable expert specialization by performing an implicit computation on prohibitively large weight tensors entirely in factorized form. Consequently, μMoEs (1) avoid the restrictively high inference-time costs of dense MoEs, yet (2) do not inherit the training issues of the popular sparse MoEs' discrete (non-differentiable) expert routing. We present both qualitative and quantitative evidence that scaling μMoE layers when fine-tuning foundation models for vision tasks leads to more specialized experts at the class-level, further enabling manual bias correction in CelebA attribute classification. Finally, we show qualitative results demonstrating the expert specialism achieved when pre-training large GPT2 and MLP-Mixer models with parameter-matched μMoE blocks at every layer, maintaining comparable accuracy. Our code is available at: https://github.com/james-oldfield/muMoE.
Spotlight Poster
Geng Chen · Yinxu Jia · Guanghui Wang · Changliang Zou

[ East Exhibit Hall A-C ]

Abstract
The widespread use of black box prediction methods has sparked an increasing interest in algorithm/model-agnostic approaches for quantifying goodness-of-fit, with direct ties to specification testing, model selection and variable importance assessment. A commonly used framework involves defining a predictiveness criterion, applying a cross-fitting procedure to estimate the predictiveness, and utilizing the difference in estimated predictiveness between two models as the test statistic. However, even after standardization, the test statistic typically fails to converge to a non-degenerate distribution under the null hypothesis of equal goodness, leading to what is known as the degeneracy issue. To addresses this degeneracy issue, we present a simple yet effective device, Zipper. It draws inspiration from the strategy of additional splitting of testing data, but encourages an overlap between two testing data splits in predictiveness evaluation. Zipper binds together the two overlapping splits using a slider parameter that controls the proportion of overlap. Our proposed test statistic follows an asymptotically normal distribution under the null hypothesis for any fixed slider value, guaranteeing valid size control while enhancing power by effective data reuse. Finite-sample experiments demonstrate that our procedure, with a simple choice of the slider, works well across a wide range of settings.
Poster
Jiachang Liu · Rui Zhang · Cynthia Rudin

[ East Exhibit Hall A-C ]

Abstract
Survival analysis is an important research topic with applications in healthcare, business, and manufacturing. One essential tool in this area is the Cox proportional hazards (CPH) model, which is widely used for its interpretability, flexibility, and predictive performance. However, for modern data science challenges such as high dimensionality (both $n$ and $p$) and high feature correlations, current algorithms to train the CPH model have drawbacks, preventing us from using the CPH model at its full potential. The root cause is that the current algorithms, based on the Newton method, have trouble converging due to vanishing second order derivatives when outside the local region of the minimizer. To circumvent this problem, we propose new optimization methods by constructing and minimizing surrogate functions that exploit hidden mathematical structures of the CPH model. Our new methods are easy to implement and ensure monotonic loss decrease and global convergence. Empirically, we verify the computational efficiency of our methods. As a direct application, we show how our optimization methods can be used to solve the cardinality-constrained CPH problem, producing very sparse high-quality models that were not previously practical to construct. We list several extensions that our breakthrough enables, including optimization opportunities, theoretical questions on CPH's …
Poster
Arlind Kadra · Sebastian Pineda Arango · Josif Grabocka

[ East Exhibit Hall A-C ]

Abstract
Even though neural networks have been long deployed in applications involving tabular data, still existing neural architectures are not explainable by design. In this paper, we propose a new class of interpretable neural networks for tabular data that are both deep and linear at the same time (i.e. mesomorphic). We optimize deep hypernetworks to generate explainable linear models on a per-instance basis. As a result, our models retain the accuracy of black-box deep networks while offering free-lunch explainability for tabular data by design. Through extensive experiments, we demonstrate that our explainable deep networks have comparable performance to state-of-the-art classifiers on tabular data and outperform current existing methods that are explainable by design.
Poster
Pulkit Gopalani · Ekdeep S Lubana · Wei Hu

[ East Exhibit Hall A-C ]

Abstract
Recent analysis on the training dynamics of Transformers has unveiled an interesting characteristic: the training loss plateaus for a significant number of training steps, and then suddenly (and sharply) drops to near--optimal values. To understand this phenomenon in depth, we formulate the low-rank matrix completion problem as a masked language modeling (MLM) task, and show that it is possible to train a BERT model to solve this task to low error. Furthermore, the loss curve shows a plateau early in training followed by a sudden drop to near-optimal values, despite no changes in the training procedure or hyper-parameters. To gain interpretability insights into this sudden drop, we examine the model's predictions, attention heads, and hidden states before and after this transition. Concretely, we observe that (a) the model transitions from simply copying the masked input to accurately predicting the masked entries; (b) the attention heads transition to interpretable patterns relevant to the task; and (c) the embeddings and hidden states encode information relevant to the problem. We also analyze the training dynamics of individual model components to understand the sudden drop in loss.
Poster
Yiyang Sun · Tong Wang · Cynthia Rudin

[ East Exhibit Hall A-C ]

Abstract
Sparsity is a central aspect of interpretability in machine learning. Typically, sparsity is measured in terms of the size of a model globally, such as the number of variables it uses. However, this notion of sparsity is not particularly relevant for decision making; someone subjected to a decision does not care about variables that do not contribute to the decision. In this work, we dramatically expand a notion of *decision sparsity* called the *Sparse Explanation Value* (SEV) so that its explanations are more meaningful. SEV considers movement along a hypercube towards a reference point. By allowing flexibility in that reference and by considering how distances along the hypercube translate to distances in feature space, we can derive sparser and more meaningful explanations for various types of function classes. We present cluster-based SEV and its variant tree-based SEV, introduce a method that improves credibility of explanations, and propose algorithms that optimize decision sparsity in machine learning models.
Poster
Michael Lepori · Alexa Tartaglini · Wai Keen Vong · Thomas Serre · Brenden Lake · Ellie Pavlick

[ East Exhibit Hall A-C ]

Abstract
Though vision transformers (ViTs) have achieved state-of-the-art performance in a variety of settings, they exhibit surprising failures when performing tasks involving visual relations. This begs the question: how do ViTs attempt to perform tasks that require computing visual relations between objects? Prior efforts to interpret ViTs tend to focus on characterizing relevant low-level visual features. In contrast, we adopt methods from mechanistic interpretability to study the higher-level visual algorithms that ViTs use to perform abstract visual reasoning. We present a case study of a fundamental, yet surprisingly difficult, relational reasoning task: judging whether two visual entities are the same or different. We find that pretrained ViTs fine-tuned on this task often exhibit two qualitatively different stages of processing despite having no obvious inductive biases to do so: 1) a perceptual stage wherein local object features are extracted and stored in a disentangled representation, and 2) a relational stage wherein object representations are compared. In the second stage, we find evidence that ViTs can learn to represent somewhat abstract visual relations, a capability that has long been considered out of reach for artificial neural networks. Finally, we demonstrate that failures at either stage can prevent a model from learning a generalizable …
Poster
Dan Braun · Jordan Taylor · Nicholas Goldowsky-Dill · Lee Sharkey

[ East Exhibit Hall A-C ]

Abstract
Identifying the features learned by neural networks is a core challenge in mechanistic interpretability. Sparse autoencoders (SAEs), which learn a sparse, overcomplete dictionary that reconstructs a network's internal activations, have been used to identify these features. However, SAEs may learn more about the structure of the datatset than the computational structure of the network. There is therefore only indirect reason to believe that the directions found in these dictionaries are functionally important to the network. We propose end-to-end (e2e) sparse dictionary learning, a method for training SAEs that ensures the features learned are functionally important by minimizing the KL divergence between the output distributions of the original model and the model with SAE activations inserted. Compared to standard SAEs, e2e SAEs offer a Pareto improvement: They explain more network performance, require fewer total features, and require fewer simultaneously active features per datapoint, all with no cost to interpretability. We explore geometric and qualitative differences between e2e SAE features and standard SAE features. E2e dictionary learning brings us closer to methods that can explain network behavior concisely and accurately. We release our library for training e2e SAEs and reproducing our analysis athttps://github.com/ApolloResearch/e2e_sae.
Poster
Usha Bhalla · Alex Oesterling · Suraj Srinivas · Flavio Calmon · Himabindu Lakkaraju

[ East Exhibit Hall A-C ]

Abstract
CLIP embeddings have demonstrated remarkable performance across a wide range of multimodal applications. However, these high-dimensional, dense vector representations are not easily interpretable, limiting our understanding of the rich structure of CLIP and its use in downstream applications that require transparency. In this work, we show that the semantic structure of CLIP's latent space can be leveraged to provide interpretability, allowing for the decomposition of representations into semantic concepts. We formulate this problem as one of sparse recovery and propose a novel method, Sparse Linear Concept Embeddings (SpLiCE), for transforming CLIP representations into sparse linear combinations of human-interpretable concepts. Distinct from previous work, \method is task-agnostic and can be used, without training, to explain and even replace traditional dense CLIP representations, maintaining high downstream performance while significantly improving their interpretability. We also demonstrate significant use cases of \method representations including detecting spurious correlations and model editing. Code is provided at https://github.com/AI4LIFE-GROUP/SpLiCE.
Spotlight Poster
Maximilian Li · Lucas Janson

[ East Exhibit Hall A-C ]

Abstract
Interpretability studies often involve tracing the flow of information through machine learning models to identify specific model components that perform relevant computations for tasks of interest. Prior work quantifies the importance of a model component on a particular task by measuring the impact of performing ablation on that component, or simulating model inference with the component disabled. We propose a new method, optimal ablation (OA), and show that OA-based component importance has theoretical and empirical advantages over measuring importance via other ablation methods. We also show that OA-based component importance can benefit several downstream interpretability tasks, including circuit discovery, localization of factual recall, and latent prediction.
Poster
Tong Mu · Alec Helyar · Johannes Heidecke · Joshua Achiam · Andrea Vallone · Ian Kivlichan · Molly Lin · Alex Beutel · John Schulman · Lilian Weng

[ East Exhibit Hall A-C ]

Abstract
Reinforcement learning based fine-tuning of large language models (LLMs) on human preferences has been shown to enhance both their capabilities and safety behavior. However, in cases related to safety, without precise instructions to human annotators, the data collected may cause the model to become overly cautious, or to respond in an undesirable style, such as being judgmental. Additionally, as model capabilities and usage patterns evolve, there may be a costly need to add or relabel data to modify safety behavior. We propose a novel preference modeling approach that utilizes AI feedback and only requires a small amount of human data. Our method, Rule Based Rewards (RBR), uses a collection of rules for desired or undesired behaviors (e.g. refusals should not be judgmental) along with a LLM grader. In contrast to prior methods using AI feedback, our method uses fine-grained, composable, LLM-graded few-shot prompts as reward directly in RL training, resulting in greater control, accuracy and ease of updating. We show that RBRs are an effective training method, achieving an F1 score of 97.1, compared to a human-feedback baseline of 91.7, resulting in much higher safety-behavior accuracy through better balancing usefulness and safety.
Poster
Peng Wang · Songshuo Lu · Yaohua Tang · Sijie Yan · Wei Xia · Yuanjun Xiong

[ East Exhibit Hall A-C ]

Abstract
We present a generative dialogue system capable of operating in a full-duplex manner, allowing for seamless interaction. It is based on a large language model (LLM) carefully aligned to be aware of a perception module, a motor function module, and the concept of a simple finite state machine (called neural FSM) with two states. The perception and motor function modules operate in tandem, allowing the system to speak and listen to the user simultaneously. The LLM generates textual tokens for inquiry responses and makes autonomous decisions to start responding to, wait for, or interrupt the user by emitting control tokens to the neural FSM. All these tasks of the LLM are carried out as next token prediction on a serialized view of the dialogue in real-time. In automatic quality evaluations simulating real-life interaction, the proposed system reduces the average conversation response latency by more than threefold compared with LLM-based half-duplex dialogue systems while responding within less than 500 milliseconds in more than 50% of evaluated interactions. Running an LLM with only 8 billion parameters, our system exhibits an 8% higher interruption precision rate than the best available commercial LLM for voice-based dialogue.
Poster
Yuzhuang Xu · Xu Han · Zonghan Yang · Shuo Wang · Qingfu Zhu · Zhiyuan Liu · Weidong Liu · Wanxiang Che

[ East Exhibit Hall A-C ]

Abstract
Model quantification uses low bit-width values to represent the weight matrices of existing models to be quantized, which is a promising approach to reduce both storage and computational overheads of deploying highly anticipated LLMs. However, current quantization methods suffer severe performance degradation when the bit-width is extremely reduced, and thus focus on utilizing 4-bit or 8-bit values to quantize models. This paper boldly quantizes the weight matrices of LLMs to 1-bit, paving the way for the extremely low bit-width deployment of LLMs. For this target, we introduce a 1-bit model compressing framework named OneBit, including a novel 1-bit parameter representation method to better quantize LLMs as well as an effective parameter initialization method based on matrix decomposition to improve the convergence speed of the quantization framework. Sufficient experimental results indicate that OneBit achieves good performance (at least 81% of the non-quantized performance on LLaMA models) with robust training processes when only using 1-bit weight matrices.
Poster
Xun Guo · Yongxin He · Shan Zhang · Ting Zhang · Wanquan Feng · Haibin Huang · Chongyang Ma

[ East Exhibit Hall A-C ]

Abstract
Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that …
Poster
Ibrahim Alabdulmohsin · Vinh Tran · Mostafa Dehghani

[ East Exhibit Hall A-C ]

Abstract
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately 0.7.Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can capture the structure of text across multiple levels of granularity, from words and clauses to broader contexts and intents. In addition, we carry out an extensive analysis across different domains and architectures, showing that fractal parameters are robust.Finally, we demonstrate that the tiny variations in fractal parameters seen across LLMs improve upon perplexity-based bits-per-byte (BPB) in predicting their downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.
Oral Poster
Jiaming Ji · Boyuan Chen · Hantao Lou · Donghai Hong · Borong Zhang · Xuehai Pan · Tianyi (Alex) Qiu · Juntao Dai · Yaodong Yang

[ East Exhibit Hall A-C ]

Abstract
With the rapid development of large language models (LLMs) and ever-evolving practical requirements, finding an efficient and effective alignment method has never been more critical. However, the tension between the complexity of current alignment methods and the need for rapid iteration in deployment scenarios necessitates the development of a model-agnostic alignment approach that can operate under these constraints. In this paper, we introduce Aligner, a novel and simple alignment paradigm that learns the correctional residuals between preferred and dispreferred answers using a small model. Designed as a model-agnostic, plug-and-play module, Aligner can be directly applied to various open-source and API-based models with only one-off training, making it suitable for rapid iteration. Notably, Aligner can be applied to any powerful, large-scale upstream models. Moreover, it can even iteratively bootstrap the upstream models using corrected responses as synthetic human preference data, breaking through the model's performance ceiling. Our experiments demonstrate performance improvements by deploying the same Aligner model across 11 different LLMs, evaluated on the 3H dimensions (helpfulness, harmlessness, and honesty). Specifically, Aligner-7B has achieved an average improvement of 68.9% in helpfulness and 22.8% in harmlessness across the tested LLMs while also effectively reducing hallucination. In the Alpaca-Eval leaderboard, stacking Aligner-2B on …
Poster
Andrew Estornell · Yang Liu

[ East Exhibit Hall A-C ]

Abstract
The flexible and generalized nature of large language models has allowed for their application in a wide array of language-based domains.Much like their human contemporaries, these models are capable of engaging in discussions and debates as a means of improving answer quality.We first take a theoretical approach to analyzing debate and provide a framework through which debate can be mathematically examined.Building on this framework, we provide several theoretical results for multi-agent debate.In particular, we demonstrate that similar model capabilities, or similar model responses, can result in static debate dynamics where the debate procedure simply converges to the majority opinion. When this majority opinion is the result of a common misconception (ingrained in the models through shared training data) debate is likely to converge to answers associated with that common misconception.Using insights from our theoretical results we then propose three interventions which improve the efficacy of debate. For each intervention, we provide theoretical results demonstrating how debate is improved.We also demonstrate that these interventions result in better performance on four common benchmark tasks.
Poster
Letian Peng · Jingbo Shang

[ East Exhibit Hall A-C ]

Abstract
Persona-driven role-playing (PRP) aims to build AI characters that can respond to user queries by faithfully sticking with \emph{all} (factual) statements in persona documents.Unfortunately, existing faithfulness criteria for PRP are limited to coarse-grained LLM-based scoring without a clear definition or formulation.This paper presents a pioneering exploration to quantify PRP faithfulness evaluation as a fine-grained and explainable criterion, which also serves as a reliable reference for faithfulness optimization.Our criterion first discriminates persona statements into \emph{active} and \emph{passive} constraints by identifying the query-statement relevance.Then, we incorporate all constraints following the principle that the AI character's response should be (a) entailed by active constraints and (b) not contradicted by passive constraints.We translate this principle mathematically into a novel Active-Passive-Constraint (APC) score, a constraint-wise sum of statement-to-response natural language inference (NLI) scores weighted by constraint-query relevance scores. In practice, we build the APC scoring system by symbolically distilling small NLI and relevance discriminators (300M parameters) from GPT-4 for efficiency, and both show high consistency with GPT-4's discrimination.We validate the quality of the APC score against human evaluation based on example personas with tens of statements, and the results show a high correlation.As the APC score could faithfully reflect the PRP quality, we further leverage …
Poster
Xin Cheng · Xun Wang · Xingxing Zhang · Tao Ge · Si-Qing Chen · Furu Wei · Huishuai Zhang · Dongyan Zhao

[ East Exhibit Hall A-C ]

Abstract
This paper introduces xRAG, an innovative context compression method tailored for retrieval-augmented generation. xRAG reinterprets document embeddings in dense retrieval--traditionally used solely for retrieval--as features from the retrieval modality. By employing a modality fusion methodology, xRAG seamlessly integrates these embeddings into the language model representation space, effectively eliminating the need for their textual counterparts and achieving an extreme compression rate. In xRAG, the only trainable component is the modality bridge, while both the retriever and the language model remain frozen. This design choice allows for the reuse of offline-constructed document embeddings and preserves the plug-and-play nature of retrieval augmentation. Experimental results demonstrate that xRAG achieves an average improvement of over 10% across six knowledge-intensive tasks, adaptable to various language model backbones, ranging from a dense 7B model to an 8x7B Mixture of Experts configuration. xRAG not only significantly outperforms previous context compression methods but also matches the performance of uncompressed models on several datasets, while reducing overall FLOPs by a factor of 3.53. Our work pioneers new directions in retrieval-augmented generation from the perspective of multimodality fusion, and we hope it lays the foundation for future efficient and scalable retrieval-augmented systems.
Poster
Kailai Yang · Zhiwei Liu · Qianqian Xie · Jimin Huang · Tianlin Zhang · Sophia Ananiadou

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in large language models (LLMs) focus on aligning to heterogeneous human expectations and values via multi-objective preference alignment. However, existing methods are dependent on the policy model parameters, which require high-cost repetition of their alignment algorithms for each new policy model, and they cannot expand to unseen objectives due to their static alignment objectives. In this work, we propose Meta-Objective Aligner (MetaAligner), the first policy-agnostic and generalizable method for multi-objective preference alignment.MetaAligner models multi-objective alignment into three stages: (1) dynamic objectives reformulation algorithm reorganizes traditional alignment datasets to supervise the model on performing flexible alignment across different objectives; (2) conditional weak-to-strong correction paradigm aligns the weak outputs of fixed policy models to approach strong outputs with higher preferences in the corresponding alignment objectives, enabling plug-and-play inferences on any policy models, which significantly reduces training costs and facilitates alignment on close-source policy models; (3) generalizable inference method flexibly adjusts target objectives by updating their text descriptions in the prompts, facilitating generalizable alignment to unseen objectives.Experimental results show that MetaAligner achieves significant and balanced improvements in multi-objective alignments on 10 state-of-the-art policy models, and saves up to 93.63% of GPU training hours compared to previous alignment methods. The model also …
Poster
Zhanhui Zhou · Zhixuan Liu · Jie Liu · Zhichen Dong · Chao Yang · Yu Qiao

[ East Exhibit Hall A-C ]

Abstract
Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce $\textit{weak-to-strong search}$, framing the alignment of a large language model as a test-time greedy search to maximize the log-probability difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (1) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (2) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance.Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned $\texttt{gpt2}$s to improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small models (e.g., $\texttt{zephyr-7b-beta}$ and its untuned version) can improve the length-controlled win rates of both white-box and black-box large models against $\texttt{gpt-4-turbo}$ (e.g., $34.4\% \rightarrow 37.9\%$ for $\texttt{Llama-3-70B-Instruct}$ and $16.0\% \rightarrow 20.1\%$ for $\texttt{gpt-3.5-turbo-instruct}$), despite the small models' low win rates $\approx 10.0\%$.
Poster
Wangbo Zhao · Jiasheng Tang · Yizeng Han · Yibing Song · Kai Wang · Gao Huang · Fan Wang · Yang You

[ East Exhibit Hall A-C ]

Abstract
Existing parameter-efficient fine-tuning (PEFT) methods have achieved significant success on vision transformers (ViTs) adaptation by improving parameter efficiency. However, the exploration of enhancing inference efficiency during adaptation remains underexplored. This limits the broader application of pre-trained ViT models, especially when the model is computationally extensive. In this paper, we propose Dynamic Tuning (DyT), a novel approach to improve both parameter and inference efficiency for ViT adaptation. Specifically, besides using the lightweight adapter modules, we propose a token dispatcher to distinguish informative tokens from less important ones, allowing the latter to dynamically skip the original block, thereby reducing the redundant computation during inference. Additionally, we explore multiple design variants to find the best practice of DyT. Finally, inspired by the mixture-of-experts (MoE) mechanism, we introduce an enhanced adapter to further boost the adaptation performance. We validate DyT across various tasks, including image/video recognition and semantic segmentation. For instance, DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
Spotlight Poster
Jiangyuan Li · Jiayi Wang · Raymond K. W. Wong · Kwun Chuen Gary Chan

[ East Exhibit Hall A-C ]

Abstract
While several recent matrix completion methods are developed to deal with non-uniform observation probabilities across matrix entries, very few allow the missingness to depend on the mostly unobserved matrix measurements, which is generally ill-posed. We aim to tackle a subclass of these ill-posed settings, characterized by a flexible separable observation probability assumption that can depend on the matrix measurements. We propose a regularized pairwise pseudo-likelihood approach for matrix completion and prove that the proposed estimator can asymptotically recover the low-rank parameter matrix up to an identifiable equivalence class of a constant shift and scaling, at a near-optimal asymptotic convergence rate of the standard well-posed (non-informative missing) setting, while effectively mitigating the impact of informative missingness. The efficacy of our method is validated via numerical experiments, positioning it as a robust tool for matrix completion to mitigate data bias.
Poster
Sebastian Damrich · Philipp Berens · Dmitry Kobak

[ East Exhibit Hall A-C ]

Abstract
Persistent homology is a popular computational tool for analyzing the topology of point clouds, such as the presence of loops or voids. However, many real-world datasets with low intrinsic dimensionality reside in an ambient space of much higher dimensionality. We show that in this case traditional persistent homology becomes very sensitive to noise and fails to detect the correct topology. The same holds true for existing refinements of persistent homology. As a remedy, we find that spectral distances on the k-nearest-neighbor graph of the data, such as diffusion distance and effective resistance, allow to detect the correct topology even in the presence of high-dimensional noise. Moreover, we derive a novel closed-form formula for effective resistance, and describe its relation to diffusion distances. Finally, we apply these methods to high-dimensional single-cell RNA-sequencing data and show that spectral distances allow robust detection of cell cycle loops.
Spotlight Poster
Praneeth Kacham · David Woodruff

[ East Exhibit Hall A-C ]

Abstract
When rows of an $n \times d$ matrix $A$ are given in a stream, we study algorithms for approximating the top eigenvector of $A^T A$ (equivalently, the top right singular vector of $A$). We consider worst case inputs $A$ but assume that the rows are presented to the streaming algorithm in a uniformly random order. We show that when the gap parameter $R = \sigma_1(A)^2/\sigma_2(A)^2 = \Omega(1)$, then there is a randomized algorithm that uses $O(h \cdot d \cdot \text{polylog}(d))$ bits of space and outputs a unit vector $v$ that has a correlation $1 - O(1/\sqrt{R})$ with the top eigenvector $v_1$. Here $h$ denotes the number of ``heavy rows'' in the matrix, defined as the rows with Euclidean norm at least $\|{A}\|_F/\sqrt{d \cdot \text{polylog}(d)}$. We also provide a lower bound showing that any algorithm using $O(hd/R)$ bits of space can obtain at most $1 - \Omega(1/R^2)$ correlation with the top eigenvector. Thus, parameterizing the space complexity in terms of the number of heavy rows is necessary for high accuracy solutions.Our results improve upon the $R = \Omega(\log n \cdot \log d)$ requirement in a recent work of Price. We note that Price's algorithm works for arbitrary order streams whereas our …
Spotlight Poster
Adam Stooke · Rohit Prabhavalkar · Khe Sim · Pedro Moreno Mengibar

[ East Exhibit Hall A-C ]

Abstract
Modern systems for automatic speech recognition, including the RNN-Transducer and Attention-based Encoder-Decoder (AED), are designed so that the encoder is not required to alter the time-position of information from the audio sequence into the embedding; alignment to the final text output is processed during decoding. We discover that the transformer-based encoder adopted in recent years is actually capable of performing the alignment internally during the forward pass, prior to decoding. This new phenomenon enables a simpler and more efficient model, the ''Aligner-Encoder''. To train it, we discard the dynamic programming of RNN-T in favor of the frame-wise cross-entropy loss of AED, while the decoder employs the lighter text-only recurrence of RNN-T without learned cross-attention---it simply scans embedding frames in order from the beginning, producing one token each until predicting the end-of-message. We conduct experiments demonstrating performance remarkably close to the state of the art, including a special inference configuration enabling long-form recognition. In a representative comparison, we measure the total inference time for our model to be 2x faster than RNN-T and 16x faster than AED. Lastly, we find that the audio-text alignment is clearly visible in the self-attention weights of a certain layer, which could be said to perform …
Poster
Chenyang Le · Yao Qian · Dongmei Wang · Long Zhou · Shujie LIU · Xiaofei Wang · Midia Yousefi · Yanmin Qian · Jinyu Li · Michael Zeng

[ East Exhibit Hall A-C ]

Abstract
There is a rising interest and trend in research towards directly translating speech from one language to another, known as end-to-end speech-to-speech translation. However, most end-to-end models struggle to outperform cascade models, i.e., a pipeline framework by concatenating speech recognition, machine translation and text-to-speech models. The primary challenges stem from the inherent complexities involved in direct translation tasks and the scarcity of data. In this study, we introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion yet facilitates end-to-end inference through joint probability. Furthermore, we propose two separated encoders to preserve the speaker’s voice characteristics and isochrony from the source speech during the translation process, making it highly suitable for scenarios such as video dubbing. Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
Poster
Junyi AO · Yuancheng Wang · Xiaohai Tian · Dekun Chen · Jun Zhang · Lu Lu · Yuxuan Wang · Haizhou Li · Zhizheng Wu

[ East Exhibit Hall A-C ]

Abstract
Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information.This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction.Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech.Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses.We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation.To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation.SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound.To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a process similar to that of SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the …
Spotlight Poster
Xiao Zhang · Miao Li · Ji Wu

[ East Exhibit Hall A-C ]

Abstract
Pretrained language models can encode a large amount of knowledge and utilize it for various reasoning tasks, yet they can still struggle to learn novel factual knowledge effectively from finetuning on limited textual demonstrations. In this work, we show that the reason for this deficiency is that language models are biased to learn word co-occurrence statistics instead of true factual associations. We identify the differences between two forms of knowledge representation in language models: knowledge in the form of co-occurrence statistics is encoded in the middle layers of the transformer model and does not generalize well to reasoning scenarios beyond simple question answering, while true factual associations are encoded in the lower layers and can be freely utilized in various reasoning tasks. Based on these observations, we propose two strategies to improve the learning of factual associations in language models. We show that training on text with implicit rather than explicit factual associations can force the model to learn factual associations instead of co-occurrence statistics, significantly improving the generalization of newly learned knowledge. We also propose a simple training method to actively forget the learned co-occurrence statistics, which unblocks and enhances the learning of factual associations when training on plain …
Poster
Roi Cohen · Konstantin Dobler · Eden Biran · Gerard de Melo

[ East Exhibit Hall A-C ]

Abstract
Large Language Models are known to capture real-world knowledge, allowing them to excel in many downstream tasks. Despite recent advances, these models are still prone to what are commonly known as hallucinations, causing them to emit unwanted and factually incorrect text. In this work, we propose a novel calibration method that can be used to combat hallucinations. We add a special [IDK] (“I Don't Know”) token to the model's vocabulary and introduce an objective function that shifts probability mass to the [IDK] token for incorrect predictions. This approach allows the model to express uncertainty in its output explicitly. We evaluate our proposed method across multiple model architectures and factual downstream tasks.We find that models trained with our method are able to express uncertainty in places where they would previously make mistakes while suffering only a small loss of encoded knowledge. We further perform extensive ablation studies of multiple variations of our approach and provide a detailed analysis of the precision-recall tradeoff of our method.
Poster
Xiaohe Bo · Zeyu Zhang · Quanyu Dai · Xueyang Feng · Lei Wang · Rui Li · Xu Chen · Ji-Rong Wen

[ East Exhibit Hall A-C ]

Abstract
Benefiting from the powerful language expression and planning capabilities of Large Language Models (LLMs), LLM-based autonomous agents have achieved promising performance in various downstream tasks. Recently, based on the development of single-agent systems, researchers propose to construct LLM-based multi-agent systems to tackle more complicated tasks. In this paper, we propose a novel framework, named COPPER, to enhance the collaborative capabilities of LLM-based agents with the self-reflection mechanism. To improve the quality of reflections, we propose to fine-tune a shared reflector, which automatically tunes the prompts of actor models using our counterfactual PPO mechanism. On the one hand, we propose counterfactual rewards to assess the contribution of a single agent’s reflection within the system, alleviating the credit assignment problem. On the other hand, we propose to train a shared reflector, which enables the reflector to generate personalized reflections according to agent roles, while reducing the computational resource requirements and improving training stability. We conduct experiments on three datasets to evaluate the performance of our model in multi-hop question answering, mathematics, and chess scenarios. Experimental results show that COPPER possesses stronger reflection capabilities and exhibits excellent generalization performance across different actor models.
Poster
Fangcheng Liu · Yehui Tang · Zhenhua Liu · Yunsheng Ni · Duyu Tang · Kai Han · Yunhe Wang

[ East Exhibit Hall A-C ]

Abstract
Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models (LLMs) while maintaining an identical sampling distribution. However, the conventional approach of training separate draft model to achieve a satisfactory token acceptance rate can be costly and impractical. In this paper, we propose a novel self-speculative decoding framework \emph{Kangaroo} with \emph{double} early exiting strategy, which leverages the shallow sub-network and the \texttt{LM Head} of the well-trained target LLM to construct a self-drafting model. Then, the self-verification stage only requires computing the remaining layers over the \emph{early-exited} hidden states in parallel. To bridge the representation gap between the sub-network and the full model, we train a lightweight and efficient adapter module on top of the sub-network. One significant challenge that comes with the proposed method is that the inference latency of the self-draft model may no longer be negligible compared to the big model. To boost the token acceptance rate while minimizing the latency of the self-drafting model, we introduce an additional \emph{early exiting} mechanism for both single-sequence and the tree decoding scenarios. Specifically, we dynamically halt the small model's subsequent prediction during the drafting phase once the confidence level for the current step falls below a …
Poster
Xiaoying Zhang · Jean-Francois Ton · Wei Shen · Hongning Wang · Yang Liu

[ East Exhibit Hall A-C ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) has been pivotal in aligning Large Language Models with human values but often suffers from overoptimization due to its reliance on a proxy reward model. To mitigate this limitation, we first propose a lightweight uncertainty quantification method that assesses the reliability of the proxy reward using only the last layer embeddings of the reward model. Enabled by this efficient uncertainty quantification method, we formulate AdvPO, a distributionally robust optimization procedure to tackle the reward overoptimization problem in RLHF. Through extensive experiments on the Anthropic HH and TL;DR summarization datasets, we verify the effectiveness of AdvPO in mitigating the overoptimization problem, resulting in enhanced RLHF performance as evaluated through human-assisted evaluation.
Poster
Yu Zhang · Ruoyu Li · Nengwu Wu · Qing Li · Xinhan Lin · Yang Hu · Tao Li · Yong Jiang

[ East Exhibit Hall A-C ]

Abstract
In high-stakes sectors such as network security, IoT security, accurately distinguishing between normal and anomalous data is critical due to the significant implications for operational success and safety in decision-making. The complexity is exacerbated by the presence of unlabeled data and the opaque nature of black-box anomaly detection models, which obscure the rationale behind their predictions. In this paper, we present a novel method to interpret the decision-making processes of these models, which are essential for detecting malicious activities without labeled attack data. We put forward the Segmentation Clustering Decision Tree (SCD-Tree), designed to dissect and understand the structure of normal data distributions. The SCD-Tree integrates predictions from the anomaly detection model into its splitting criteria, enhancing the clustering process with the model's insights into anomalies. To further refine these segments, the Gaussian Boundary Delineation (GBD) algorithm is employed to define boundaries within each segmented distribution, effectively delineating normal from anomalous data points. At this point, this approach addresses the curse of dimensionality by segmenting high-dimensional data and ensures resilience to data drift and perturbations through flexible boundary fitting. We transform the intricate operations of anomaly detection into an interpretable rule's format, constructing a comprehensive set of rules for understanding. …
Poster
Sejun Park · Kihun Hong · Ganguk Hwang

[ East Exhibit Hall A-C ]

Abstract
Over the past decade, there is a growing interest in collaborative learning that can enhance AI models of multiple parties.However, it is still challenging to enhance performance them without sharing private data and models from individual parties.One recent promising approach is to develop distillation-based algorithms that exploit unlabeled public data but the results are still unsatisfactory in both theory and practice.To tackle this problem, we rigorously analyze a representative distillation-based algorithm in the view of kernel regression.This work provides the first theoretical results to prove the (nearly) minimax optimality of the nonparametric collaborative learning algorithm that does not directly share local data or models in massively distributed statistically heterogeneous environments.Inspired by our theoretical results, we also propose a practical distillation-based collaborative learning algorithm based on neural network architecture.Our algorithm successfully bridges the gap between our theoretical assumptions and practical settings with neural networks through feature kernel matching.We simulate various regression tasks to verify our theory and demonstrate the practical feasibility of our proposed algorithm.
Poster
Anna Korba · Francis Bach · Clémentine CHAZAL

[ East Exhibit Hall A-C ]

Abstract
In this paper, we study the statistical and geometrical properties of the Kullback-Leibler divergence with kernel covariance operators (KKL) introduced by [Bach, 2022, Information Theory with Kernel Methods]. Unlike the classical Kullback-Leibler (KL) divergence that involves density ratios, the KKL compares probability distributions through covariance operators (embeddings) in a reproducible kernel Hilbert space (RKHS), and compute the Kullback-Leibler quantum divergence. This novel divergence hence shares parallel but different aspects with both the standard Kullback-Leibler between probability distributions and kernel embeddings metrics such as the maximum mean discrepancy. A limitation faced with the original KKL divergence is its inability to be defined for distributions with disjoint supports. To solve this problem, we propose in this paper a regularised variant that guarantees that divergence is well defined for all distributions. We derive bounds that quantify the deviation of the regularised KKL to the original one, as well as concentration bounds. In addition, we provide a closed-form expression for the regularised KKL, specifically applicable when the distributions consist of finite sets of points, which makes it implementable. Furthermore, we derive a Wasserstein gradient descent scheme of the KKL divergence in the case of discrete distributions, and study empirically its properties to transport a …
Poster
Katharina Limbeck · Rayna Andreeva · Rik Sarkar · Bastian Rieck

[ East Exhibit Hall A-C ]

Abstract
The *magnitude* of a metric space is a novelinvariant that provides a measure of the 'effective size' of a space acrossmultiple scales, while also capturing numerous geometrical properties, such as curvature, density, or entropy.We develop a family of magnitude-based measures of the intrinsicdiversity of latent representations, formalising a novel notion ofdissimilarity between magnitude functions of finite metric spaces.Our measures are provably stable under perturbations of the data, can beefficiently calculated, and enable a rigorous multi-scale characterisation and comparison oflatent representations. We show their utility and superior performance across different domains and tasks, includingthe automated estimation of diversity,the detection of mode collapse, andthe evaluation of generative models for text, image, and graph data.
Poster
Subash Timilsina · Sagar Shrestha · Xiao Fu

[ East Exhibit Hall A-C ]

Abstract
A core task in multi-modal learning is to integrate information from multiple feature spaces (e.g., text and audio), offering modality-invariant essential representations of data. Recent research showed that, classical tools such as canonical correlation analysis (CCA) provably identify the shared components up to minor ambiguities, when samples in each modality are generated from a linear mixture of shared and private components. Such identifiability results were obtained under the condition that the cross-modality samples are aligned/paired according to their shared information. This work takes a step further, investigating shared component identifiability from multi-modal linear mixtures where cross-modality samples are unaligned. A distribution divergence minimization-based loss is proposed, under which a suite of sufficient conditions ensuring identifiability of the shared components are derived. Our conditions are based on cross-modality distribution discrepancy characterization and density-preserving transform removal, which are much milder than existing studies relying on independent component analysis. More relaxed conditions are also provided via adding reasonable structural constraints, motivated by available side information in various applications. The identifiability claims are thoroughly validated using synthetic and real-world data.
Poster
Sanyam Kapoor · Nate Gruver · Manley Roberts · Katie Collins · Arka Pal · Umang Bhatt · Adrian Weller · Samuel Dooley · Micah Goldblum · Andrew Wilson

[ East Exhibit Hall A-C ]

Abstract
When using large language models (LLMs) in high-stakes applications, we need to know when we can trust their predictions. Some works argue that prompting high-performance LLMs is sufficient to produce calibrated uncertainties, while others introduce sampling methods that can be prohibitively expensive. In this work, we first argue that prompting on its own is insufficient to achieve good calibration and then show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead. We show that a thousand graded examples are sufficient to outperform baseline methods and that training through the features of a model is necessary for good performance and tractable for large open-source models when using LoRA. We also investigate the mechanisms that enable reliable LLM uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators, applicable not just to their own uncertainties but also the uncertainty of other models. Lastly, we show that uncertainty estimates inform human use of LLMs in human-AI collaborative settings through a user study.
Poster
Akiyoshi Tomihari · Issei Sato

[ East Exhibit Hall A-C ]

Abstract
The two-stage fine-tuning (FT) method, linear probing (LP) then fine-tuning (LP-FT), outperforms linear probing and FT alone. This holds true for both in-distribution (ID) and out-of-distribution (OOD) data. One key reason for its success is the preservation of pre-trained features, achieved by obtaining a near-optimal linear head during LP. However, despite the widespread use of large language models, there has been limited exploration of more complex architectures such as Transformers. In this paper, we analyze the training dynamics of LP-FT for classification tasks on the basis of the neural tangent kernel (NTK) theory. Our analysis decomposes the NTK matrix into two components. This decomposition highlights the importance of the linear head norm alongside the prediction accuracy at the start of the FT stage. We also observe a significant increase in the linear head norm during LP, which stems from training with the cross-entropy (CE) loss. This increase in the linear head norm effectively reduces changes in learned features. Furthermore, we find that this increased norm can adversely affect model calibration, which can be corrected using temperature scaling. Additionally, we extend our analysis with the NTK to the low-rank adaptation (LoRA) method and validate its effectiveness. Our experiments using a Transformer-based …
Poster
Junyuan Zhang · Songhua Liu · Xinchao Wang

[ East Exhibit Hall A-C ]

Abstract
One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication. While its superiority lies in communication efficiency and privacy preservation compared to iterative FL, one-shot FL often compromises model performance. Prior research has primarily focused on employing data-free knowledge distillation to optimize data generators and ensemble models for better aggregating local knowledge into the server model. However, these methods typically struggle with data heterogeneity, where inconsistent local data distributions can cause teachers to provide misleading knowledge. Additionally, they may encounter scalability issues with complex datasets due to inherent two-step information loss: first, during local training (from data to model), and second, when transferring knowledge to the server model (from model to inversed data). In this paper, we propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges. FedSD2C introduces a distiller to synthesize informative distillates directly from local data to reduce information loss and proposes sharing synthetic distillates instead of inconsistent local models to tackle data heterogeneity. Our empirical results demonstrate that FedSD2C consistently outperforms other one-shot FL methods with more complex and real datasets, achieving up to 2.6 $\times$ the performance of the best …
Poster
Akshay Mehra · Yunbei Zhang · Jihun Hamm

[ East Exhibit Hall A-C ]

Abstract
The growing popularity of transfer learning due to the availability of models pre-trained on vast amounts of data, makes it imperative to understand when the knowledge of these pre-trained models can be transferred to obtain high-performing models on downstream target tasks. However, the exact conditions under which transfer learning succeeds in a cross-domain cross-task setting are still poorly understood. To bridge this gap, we propose a novel analysis that analyzes the transferability of the representations of pre-trained models to downstream tasks in terms of their relatedness to a given reference task. Our analysis leads to an upper bound on transferability in terms of task-relatedness, quantified using the difference between the class priors, label sets, and features of the two tasks.Our experiments using state-of-the-art pre-trained models show the effectiveness of task-relatedness in explaining transferability on various vision and language tasks. The efficient computability of task-relatedness even without labels of the target task and its high correlation with the model's accuracy after end-to-end fine-tuning on the target task makes it a useful metric for transferability estimation. Our empirical results of using task-relatedness on the problem of selecting the best pre-trained model from a model zoo for a target task highlight its utility …
Poster
Zhuo Chen · Rumen Dangovski · Charlotte Loh · Owen Dugan · Di Luo · Marin Soljacic

[ East Exhibit Hall A-C ]

Abstract
We propose **Quan**tum-informed **T**ensor **A**daptation (**QuanTA**), a novel, easy-to-implement, fine-tuning method with no inference overhead for large-scale pre-trained language models. By leveraging quantum-inspired methods derived from quantum circuit structures, QuanTA enables efficient *high-rank* fine-tuning, surpassing the limitations of Low-Rank Adaptation (LoRA)---low-rank approximation may fail for complicated downstream tasks. Our approach is theoretically supported by the universality theorem and the rank representation theorem to achieve efficient high-rank adaptations. Experiments demonstrate that QuanTA significantly enhances commonsense reasoning, arithmetic reasoning, and scalability compared to traditional methods. Furthermore, QuanTA shows superior performance with fewer trainable parameters compared to other approaches and can be designed to integrate with existing fine-tuning algorithms for further improvement, providing a scalable and efficient solution for fine-tuning large language models and advancing state-of-the-art in natural language processing.
Poster
Ayush Jain · Andrea Montanari · Eren Sasoglu

[ East Exhibit Hall A-C ]

Abstract
Collecting large quantities of high-quality data can be prohibitively expensive or impractical, and a bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources, e.g. data collected under different circumstances or synthesized by generative models. We refer to such data as `surrogate data'. We study a weighted empirical risk minimization (ERM) approach for integrating surrogate data into training. We analyze mathematically this method under several classical statistical models, and validate our findings empirically on datasets from different domains. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution. Surprisingly, this can happen even when the surrogate data is unrelated to the original ones. We trace back this behavior to the classical Stein's paradox. $(ii)$ In order to reap the benefit of surrogate data, it is crucial to use optimally weighted ERM. $(iii)$ The test error of models trained on mixtures of real and surrogate data is approximately described by a scaling law. This scaling law can be used to predict the optimal weighting scheme, and to choose the amount of surrogate data to add.
Poster
Feng Xiao · Jicong Fan

[ East Exhibit Hall A-C ]

Abstract
Anomaly detection methods typically require fully observed data for model training and inference and cannot handle incomplete data, while the missing data problem is pervasive in science and engineering, leading to challenges in many important applications such as abnormal user detection in recommendation systems and novel or anomalous cell detection in bioinformatics, where the missing rates can be higher than 30\% or even 80\%. In this work, first, we construct and evaluate a straightforward strategy, ''impute-then-detect'', via combining state-of-the-art imputation methods with unsupervised anomaly detection methods, where the training data are composed of normal samples only. We observe that such two-stage methods frequently yield imputation bias from normal data, namely, the imputation methods are inclined to make incomplete samples ''normal", where the fundamental reason is that the imputation models learned only on normal data and cannot generalize well to abnormal data in the inference stage. To address this challenge, we propose an end-to-end method that integrates data imputation with anomaly detection into a unified optimization problem. The proposed model learns to generate well-designed pseudo-abnormal samples to mitigate the imputation bias and ensure the discrimination ability of both the imputation and detection processes. Furthermore, we provide theoretical guarantees for the effectiveness …
Poster
Jiachen Li · Xinyao Wang · Sijie Zhu · Chia-Wen Kuo · Lu XU · Fan Chen · Jitesh Jain · Humphrey Shi · Longyin Wen

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of efficiently improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixture-of-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with neglectable additional activated parameters during inference.CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage, with auxiliary losses to ensure a balanced loading of experts.CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks within each model size group, all while training exclusively on open-sourced datasets.
Poster
Chenyang Ma · Kai Lu · Ta-Ying Cheng · Niki Trigoni · Andrew Markham

[ East Exhibit Hall A-C ]

Abstract
Current state-of-the-art spatial reasoning-enhanced VLMs are trained to excel at spatial visual question answering (VQA). However, we believe that higher-level 3D-aware tasks, such as articulating dynamic scene changes and motion planning, require a fundamental and explicit 3D understanding beyond current spatial VQA datasets. In this work, we present SpatialPIN, a framework designed to enhance the spatial reasoning capabilities of VLMs through prompting and interacting with priors from multiple 3D foundation models in a zero-shot, training-free manner. Extensive experiments demonstrate that our spatial reasoning-imbued VLM performs well on various forms of spatial VQA and can extend to help in various downstream robotics tasks such as pick and stack and trajectory planning.
Poster
Ziang Zhang · Zehan Wang · Luping Liu · Rongjie Huang · Xize Cheng · Zhenhui Ye · wang lin · Huadai Liu · Haifeng Huang · Yang Zhao · Tao Jin · Siqi Zheng · Zhou Zhao

[ East Exhibit Hall A-C ]

Abstract
Multi-modal contrastive representation (MCR) of more than three modalities is critical in multi-modal learning. Although recent methods showcase impressive achievements, the high dependence on large-scale, high-quality paired data and the expensive training costs limit their further development. Inspired by recent C-MCR, this paper proposes $\textbf{Ex}$tending $\textbf{M}$ultimodal $\textbf{C}$ontrastive $\textbf{R}$epresentation (Ex-MCR), a training-efficient and paired-data-free method to build unified contrastive representation for many modalities. Since C-MCR is designed to learn a new latent space for the two non-overlapping modalities and projects them onto this space, a significant amount of information from their original spaces is lost in the projection process. To address this issue, Ex-MCR proposes to extend one modality's space into the other's, rather than mapping both modalities onto a completely new space. This method effectively preserves semantic alignment in the original space. Experimentally, we extend pre-trained audio-text and 3D-image representations to the existing vision-text space. Without using paired data, Ex-MCR achieves comparable performance to advanced methods on a series of audio-image-text and 3D-image-text tasks and achieves superior performance when used in parallel with data-driven methods. Moreover, semantic alignment also emerges between the extended modalities (e.g., audio and 3D).
Spotlight Poster
Mohammad Sadil Khan · Sankalp Sinha · Talha Uddin · Didier Stricker · Sk Aziz Ali · Muhammad Zeshan Afzal

[ East Exhibit Hall A-C ]

Abstract
Prototyping complex computer-aided design (CAD) models in modern softwares can be very time-consuming. This is due to the lack of intelligent systems that can quickly generate simpler intermediate parts. We propose Text2CAD, the first AI framework for generating text-to-parametric CAD models using designer-friendly instructions for all skill levels. Furthermore, we introduce a data annotation pipeline for generating text prompts based on natural language instructions for the DeepCAD dataset using Mistral and LLaVA-NeXT. The dataset contains $\sim170$K models and $\sim660$K text annotations, from abstract CAD descriptions (e.g., _generate two concentric cylinders_) to detailed specifications (e.g., _draw two circles with center_ $(x,y)$ and _radius_ $r_{1}$, $r_{2}$, \textit{and extrude along the normal by} $d$...). Within the Text2CAD framework, we propose an end-to-end transformer-based auto-regressive network to generate parametric CAD models from input texts. We evaluate the performance of our model through a mixture of metrics, including visual quality, parametric precision, and geometrical accuracy. Our proposed framework shows great potential in AI-aided design applications. Project page is available at https://sadilkhan.github.io/text2cad-project/.
Poster
Sunny Panchal · Apratim Bhattacharyya · Guillaume Berger · Antoine Mercier · Cornelius Böhm · Florian Dietrichkeit · Reza Pourreza · Xuanlin Li · Pulkit Madan · Mingu Lee · Mark Todorovich · Ingo Bax · Roland Memisevic

[ East Exhibit Hall A-C ]

Abstract
Vision-language models have shown impressive progress in recent years. However, existing models are largely limited to turn-based interactions, where each turn must be stepped (i.e., prompted) by the user. Open-ended, asynchronous interactions, where an AI model may proactively deliver timely responses or feedback based on the unfolding situation in real-time, are an open challenge. In this work, we present the QEVD benchmark and dataset, which explores human-AI interaction in the challenging, yet controlled, real-world domain of fitness coaching – a task which intrinsically requires monitoring live user activity and providing immediate feedback. The benchmark requires vision-language models to recognize complex human actions, identify possible mistakes, and provide appropriate feedback in real-time. Our experiments reveal the limitations of existing state-of-the-art vision-language models for such asynchronous situated interactions. Motivated by this, we propose a simple end-to-end streaming baseline that can respond asynchronously to human actions with appropriate feedback at the appropriate time.
Poster
Weiyun Wang · Shuibo Zhang · Yiming Ren · Yuchen Duan · Tiantong Li · Shuo Liu · Mengkang Hu · Zhe Chen · Kaipeng Zhang · Lewei Lu · Xizhou Zhu · Ping Luo · Yu Qiao · Jifeng Dai · Wenqi Shao · Wenhai Wang

[ East Exhibit Hall A-C ]

Abstract
With the rapid advancement of multimodal large language models (MLLMs), their evaluation has become increasingly comprehensive. However, understanding long multimodal content, as a foundational ability for real-world applications, remains underexplored. In this work, we present Needle In A Multimodal Haystack (MM-NIAH), the first benchmark specifically designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents. Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning. In each task, the model is required to answer the questions according to different key information scattered throughout the given multimodal document. Evaluating the leading MLLMs on MM-NIAH, we observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation. We hope this work can provide a platform for further research on long multimodal document comprehension and contribute to the advancement of MLLMs. Code and benchmark are released at https://github.com/OpenGVLab/MM-NIAH.
Poster
Anish Madan · Neehar Peri · Shu Kong · Deva Ramanan

[ East Exhibit Hall A-C ]

Abstract
The era of vision-language models (VLMs) trained on web-scale datasets challenges conventional formulations of “open-world" perception. In this work, we revisit the task of few-shot object detection (FSOD) in the context of recent foundational VLMs. First, we point out that zero-shot predictions from VLMs such as GroundingDINO significantly outperform state-of-the-art few-shot detectors (48 vs. 33 AP) on COCO. Despite their strong zero-shot performance, such foundation models may still be sub-optimal. For example, trucks on the web may be defined differently from trucks for a target applications such as autonomous vehicle perception. We argue that the task of few-shot recognition can be reformulated as aligning foundation models to target concepts using a few examples. Interestingly, such examples can be multi-modal, using both text and visual cues, mimicking instructions that are often given to human annotators when defining a target concept of interest. Concretely, we propose Foundational FSOD, a new benchmark protocol that evaluates detectors pre-trained on any external data and fine-tuned on multi-modal (text and visual) K-shot examples per target class. We repurpose nuImages for Foundational FSOD, benchmark several popular open-source VLMs, and provide an empirical analysis of state-of-the-art methods. Lastly, we discuss our recent CVPR 2024 Foundational FSOD competition and …
Poster
Qian Shao · Jiangrui Kang · Qiyuan Chen · Zepeng Li · Hongxia Xu · Yiwen Cao · JIAJUAN LIANG · Jian Wu

[ East Exhibit Hall A-C ]

Abstract
Semi-Supervised Learning (SSL) has become a preferred paradigm in many deep learning tasks, which reduces the need for human labor. Previous studies primarily focus on effectively utilising the labelled and unlabeled data to improve performance. However, we observe that how to select samples for labelling also significantly impacts performance, particularly under extremely low-budget settings. The sample selection task in SSL has been under-explored for a long time. To fill in this gap, we propose a Representative and Diverse Sample Selection approach (RDSS). By adopting a modified Frank-Wolfe algorithm to minimise a novel criterion $\alpha$-Maximum Mean Discrepancy ($\alpha$-MMD), RDSS samples a representative and diverse subset for annotation from the unlabeled data. We demonstrate that minimizing $\alpha$-MMD enhances the generalization ability of low-budget learning. Experimental results show that RDSS consistently improves the performance of several popular SSL frameworks and outperforms the state-of-the-art sample selection approaches used in Active Learning (AL) and Semi-Supervised Active Learning (SSAL), even with constrained annotation budgets. Our code is available at [RDSS](https://github.com/YanhuiAILab/RDSS).
Poster
Nimita Shinde · Tianjiao Ding · Daniel Robinson · Rene Vidal

[ East Exhibit Hall A-C ]

Abstract
Manifold clustering is an important problem in motion and video segmentation, natural image clustering, and other applications where high-dimensional data lie on multiple, low-dimensional, nonlinear manifolds. While current state-of-the-art methods on large-scale datasets such as CIFAR provide good empirical performance, they do not have any proof of theoretical correctness. In this work, we propose a method that clusters data belonging to a union of nonlinear manifolds. Furthermore, for a given input data sample $y$ belonging to the $l$th manifold $\mathcal{M}_l$, we provide geometric conditions that guarantee a manifold-preserving representation of $y$ can be recovered from the solution to the proposed model. The geometric conditions require that (i) $\mathcal{M}_l$ is well-sampled in the neighborhood of $y$, with the sampling density given as a function of the curvature, and (ii) $\mathcal{M}_l$ is sufficiently separated from the other manifolds. In addition to providing proof of correctness in this setting, a numerical comparison with state-of-the-art methods on CIFAR datasets shows that our method performs competitively although marginally worse than methods without
Poster
Chandra Sekhar Mukherjee · Nikhil Deorkar · Jiapeng Zhang

[ East Exhibit Hall A-C ]

Abstract
Principal component analysis (PCA) is one of the most fundamental tools in machine learning with broad use as a dimensionality reduction and denoising tool. In the later setting, while PCA is known to be effective at subspace recovery and is proven to aid clustering algorithms in some specific settings, its improvement of noisy data is still not well quantified in general. In this paper, we propose a novel metric called *compression ratio* to capture the effect of PCA on high-dimensional noisy data.We show that, for data with *underlying community structure*, PCA significantly reduces the distance of data points belonging to the same community while reducing inter-community distance relatively mildly. We explain this phenomenon through both theoretical proofs and experiments on real-world data. Building on this new metric, we design a straightforward algorithm that could be used to detect outliers. Roughly speaking, we argue that points that have a *lower variance of compression ratio* do not share a *common signal* with others (hence could be considered outliers).We provide theoretical justification for this simple outlier detection algorithm and use simulations to demonstrate that our method is competitive with popular outlier detection tools. Finally, we run experiments on real-world high-dimension noisy data (single-cell …
Poster
Wenhao Wang · Adam Dziedzic · Michael Backes · Franziska Boenisch

[ East Exhibit Hall A-C ]

Abstract
Recent work on studying memorization in self-supervised learning (SSL) suggests that even though SSL encoders are trained on millions of images, they still memorize individual data points. While effort has been put into characterizing the memorized data and linking encoder memorization to downstream utility, little is known about where the memorization happens inside SSL encoders. To close this gap, we propose two metrics for localizing memorization in SSL encoders on a per-layer (LayerMem) and per-unit basis (UnitMem). Our localization methods are independent of the downstream task, do not require any label information, and can be performed in a forward pass. By localizing memorization in various encoder architectures (convolutional and transformer-based) trained on diverse datasets with contrastive and non-contrastive SSL frameworks, we find that (1) while SSL memorization increases with layer depth, highly memorizing units are distributed across the entire encoder, (2) a significant fraction of units in SSL encoders experiences surprisingly high memorization of individual data points, which is in contrast to models trained under supervision, (3) atypical (or outlier) data points cause much higher layer and unit memorization than standard data points, and (4) in vision transformers, most memorization happens in the fully-connected layers. Finally, we show that localizing …
Poster
Xun Zhu · Ying Hu · Fanbin Mo · Miao Li · Ji Wu

[ East Exhibit Hall A-C ]

Abstract
Multi-modal large language models (MLLMs) have shown impressive capabilities as a general-purpose interface for various visual and linguistic tasks. However, building a unified MLLM for multi-task learning in the medical field remains a thorny challenge. To mitigate the tug-of-war problem of multi-modal multi-task optimization in MLLMs, recent advances primarily focus on improving the LLM components, while neglecting the connector that bridges the gap between modalities. In this paper, we introduce Uni-Med, a novel medical generalist foundation model which consists of a universal visual feature extraction module, a connector mixture-of-experts (CMoE) module, and an LLM. Benefiting from the proposed CMoE that leverages a well-designed router with a mixture of projection experts at the connector, Uni-Med achieves efficient solution to the tug-of-war problem and can perform six different medical tasks including question answering, visual question answering, report generation, referring expression comprehension, referring expression generation and image classification. To the best of our knowledge, Uni-Med is the first effort to tackle multi-task interference at the connector in MLLMs. Extensive ablation experiments validate the effectiveness of introducing CMoE under any configuration, with up to an average 8% performance gains. We further provide interpretation analysis of the tug-of-war problem from the perspective of gradient optimization …
Poster
Huatian Zhang · Lei Zhang · Yongdong Zhang · Zhendong Mao

[ East Exhibit Hall A-C ]

Abstract
Efficient transfer learning has shown remarkable performance in tuning large-scale vision-language models (VLMs) toward downstream tasks with limited data resources. The key challenge of efficient transfer lies in adjusting image-text alignment to be task-specific while preserving pre-trained general knowledge. However, existing methods adjust image-text alignment merely on a set of observed samples, e.g., data set and external knowledge base, which cannot guarantee to keep the correspondence of general concepts between image and text latent manifolds without being disrupted and thereby a weak generalization of the adjusted alignment. In this work, we propose a Homology Consistency (HC) constraint for efficient transfer on VLMs, which explicitly constrains the correspondence of image and text latent manifolds through structural equivalence based on persistent homology in downstream tuning. Specifically, we build simplicial complex on the top of data to mimic the topology of latent manifolds, then track the persistence of the homology classes of topological features across multiple scales, and guide the directions of persistence tracks in image and text manifolds to coincide each other, with a deviating perturbation additionally. For practical application, we tailor the implementation of our proposed HC constraint for two main paradigms of adapter tuning. Extensive experiments on few-shot learning over …
Poster
Bhavika Devnani · Skyler Seto · Zakaria Aldeneh · Alessandro Toso · Elena Menyaylenko · Barry-John Theobald · Jonathan Sheaffer · Miguel Sarabia

[ East Exhibit Hall A-C ]

Abstract
Humans can picture a sound scene given an imprecise natural language description. For example, it is easy to imagine an acoustic environment given a phrase like "the lion roar came from right behind me!". For a machine to have the same degree of comprehension, the machine must know what a lion is (semantic attribute), what the concept of "behind" is (spatial attribute) and how these pieces of linguistic information align with the semantic and spatial attributes of the sound (what a roar sounds like when its coming from behind). State-of-the-art audio foundation models, such as CLAP, which learn to map between audio scenes and natural textual descriptions, are trained on non-spatial audio and text pairs, and hence lack spatial awareness. In contrast, sound event localization and detection models are limited to recognizing sounds from a fixed number of classes, and they localize the source to absolute position (e.g., 0.2m) rather than a position described using natural language (e.g., "next to me"). To address these gaps, we present ELSA (Embeddings for Language and Spatial Audio), a spatially aware-audio and text embedding model trained using multimodal contrastive learning. ELSA supports non-spatial audio, spatial audio, and open vocabulary text captions describing both the …
Poster
Mingfei Chen · Eli Shlizerman

[ East Exhibit Hall A-C ]

Abstract
We propose a novel approach for rendering high-quality spatial audio for 3D scenes that is in synchrony with the visual stream but does not rely or explicitly conditioned on the visual rendering. We demonstrate that such an approach enables the experience of immersive virtual tourism - performing a real-time dynamic navigation within the scene, experiencing both audio and visual content. Current audio-visual rendering approaches typically rely on visual cues, such as images, and thus visual artifacts could cause inconsistency in the audio quality. Furthermore, when such approaches are incorporated with visual rendering, audio generation at each viewpoint occurs after the rendering of the image of the viewpoint and thus could lead to audio lag that affects the integration of audio and visual streams. Our proposed approach, AV-Cloud, overcomes these challenges by learning the representation of the audio-visual scene based on a set of sparse AV anchor points, that constitute the Audio-Visual Cloud, and are derived from the camera calibration. The Audio-Visual Cloud serves as an audio-visual representation from which the generation of spatial audio for arbitrary listener location can be generated. In particular, we propose a novel module Audio-Visual Cloud Splatting which decodes AV anchor points into a spatial audio …
Oral Poster
Christopher Wang · Adam Yaari · Aaditya Singh · Vighnesh Subramaniam · Dana Rosenfarb · Jan DeWitt · Pranav Misra · Joseph Madsen · Scellig Stone · Gabriel Kreiman · Boris Katz · Ignacio Cases · Andrei Barbu

[ East Exhibit Hall A-C ]

Abstract
We present the Brain Treebank, a large-scale dataset of electrophysiological neural responses, recorded from intracranial probes while 10 subjects watched one or more Hollywood movies. Subjects watched on average 2.6 Hollywood movies, for an average viewing time of 4.3 hours, and a total of 43 hours. The audio track for each movie was transcribed with manual corrections. Word onsets were manually annotated on spectrograms of the audio track for each movie. Each transcript was automatically parsed and manually corrected into the universal dependencies (UD) formalism, assigning a part of speech to every word and a dependency parse to every sentence. In total, subjects heard over 38,000 sentences (223,000 words), while they had on average 168 electrodes implanted. This is the largest dataset of intracranial recordings featuring grounded naturalistic language, one of the largest English UD treebanks in general, and one of only a few UD treebanks aligned to multimodal features. We hope that this dataset serves as a bridge between linguistic concepts, perception, and their neural representations. To that end, we present an analysis of which electrodes are sensitive to language features while also mapping out a rough time course of language processing across these electrodes. The Brain Treebank is …
Poster
Yiqi Jiang · Hakki Akengin · Ji Zhou · Mehmet Aslihak · Yang Li · Radoslaw Chrapkiewicz · Oscar Hernandez · sadegh ebrahimi · Omar Jaidar · Yanping Zhang · Hakan Inan · Christopher Miranda · Fatih Dinc · Marta Pozo · Mark Schnitzer

[ East Exhibit Hall A-C ]

Abstract
Recent advances in calcium imaging enable simultaneous recordings of up to a million neurons in behaving animals, producing datasets of unprecedented scales. Although individual neurons and their activity traces can be extracted from these videos with automated algorithms, the results often require human curation to remove false positives, a laborious process called \emph{cell sorting}. To address this challenge, we introduce ActSort, an active-learning algorithm for sorting large-scale datasets that integrates features engineered by domain experts together with data formats with minimal memory requirements. By strategically bringing outlier cell candidates near the decision boundary up for annotation, ActSort reduces human labor to about 1–3\% of cell candidates and improves curation accuracy by mitigating annotator bias. To facilitate the algorithm's widespread adoption among experimental neuroscientists, we created a user-friendly software and conducted a first-of-its-kind benchmarking study involving about 160,000 annotations. Our tests validated ActSort's performance across different experimental conditions and datasets from multiple animals. Overall, ActSort addresses a crucial bottleneck in processing large-scale calcium videos of neural activity and thereby facilitates systems neuroscience experiments at previously inaccessible scales. (\url{https://github.com/schnitzer-lab/ActSort-public})
Spotlight Poster
Aditi Jha · Diksha Gupta · Carlos Brody · Jonathan Pillow

[ East Exhibit Hall A-C ]

Abstract
Latent dynamical systems have been widely used to characterize the dynamics of neural population activity in the brain. However, these models typically ignore the fact that the brain contains multiple cell types. This limits their ability to capture the functional roles of distinct cell classes, and to predict the effects of cell-specific perturbations on neural activity or behavior. To overcome these limitations, we introduce the `"cell-type dynamical systems" (CTDS) model. This model extends latent linear dynamical systems to contain distinct latent variables for each cell class, with biologically inspired constraints on both dynamics and emissions. To illustrate our approach, we consider neural recordings with distinct excitatory (E) and inhibitory (I) populations. The CTDS model defines separate latents for both cell types, and constrains the dynamics so that E (I) latents have a strictly positive (negative) effects on other latents. We applied CTDS to recordings from rat frontal orienting fields (FOF) and anterior dorsal striatum (ADS) during an auditory decision-making task. The model achieved higher accuracy than a standard linear dynamical system (LDS), and revealed that the animal's choice can be decoded from both E and I latents and thus is not restricted to a single cell-class. We also performed in-silico …
Poster
Jiahang Cao · Mingyuan Sun · Ziqing Wang · Hao Cheng · Qiang Zhang · shibo zhou · Renjing Xu

[ East Exhibit Hall A-C ]

Abstract
Event-based cameras are attracting significant interest as they provide rich edge information, high dynamic range, and high temporal resolution. Many state-of-the-art event-based algorithms rely on splitting the events into fixed groups, resulting in the omission of crucial temporal information, particularly when dealing with diverse motion scenarios (e.g., high/low speed). In this work, we propose SpikeSlicer, a novel-designed event processing framework capable of splitting events stream adaptively. SpikeSlicer utilizes a low-energy spiking neural network (SNN) to trigger event slicing. To guide the SNN to fire spikes at optimal time steps, we propose the Spiking Position-aware Loss (SPA-Loss) to modulate the neuron's state. Additionally, we develop a Feedback-Update training strategy that refines the slicing decisions using feedback from the downstream artificial neural network (ANN). Extensive experiments demonstrate that our method yields significant performance improvements in event-based object tracking and recognition. Notably, SpikeSlicer provides a brand-new SNN-ANN cooperation paradigm, where the SNN acts as an efficient, low-energy data processor to assist the ANN in improving downstream performance, injecting new perspectives and potential avenues of exploration.
Poster
Jeonghwan Cheon · Sang Wan Lee · Se-Bum Paik

[ East Exhibit Hall A-C ]

Abstract
The brain prepares for learning even before interacting with the environment, by refining and optimizing its structures through spontaneous neural activity that resembles random noise. However, the mechanism of such a process has yet to be understood, and it is unclear whether this process can benefit the algorithm of machine learning. Here, we study this issue using a neural network with a feedback alignment algorithm, demonstrating that pretraining neural networks with random noise increases the learning efficiency as well as generalization abilities without weight transport. First, we found that random noise training modifies forward weights to match backward synaptic feedback, which is necessary for teaching errors by feedback alignment. As a result, a network with pre-aligned weights learns notably faster and reaches higher accuracy than a network without random noise training, even comparable to the backpropagation algorithm. We also found that the effective dimensionality of weights decreases in a network pretrained with random noise. This pre-regularization allows the network to learn simple solutions of a low rank, reducing the generalization error during subsequent training. This also enables the network to robustly generalize a novel, out-of-distribution dataset. Lastly, we confirmed that random noise pretraining reduces the amount of meta-loss, enhancing the …
Poster
Xuan-Hao Liu · Yan-Kai Liu · Yansen Wang · Kan Ren · Hanwen Shi · Zilong Wang · Dongsheng Li · Bao-Liang Lu · Wei-Long Zheng

[ East Exhibit Hall A-C ]

Abstract
Our visual experience in daily life are dominated by dynamic change. Decoding such dynamic information from brain activity can enhance the understanding of the brain’s visual processing system. However, previous studies predominately focus on reconstructing static visual stimuli. In this paper, we explore to decode dynamic visual perception from electroencephalography (EEG), a neuroimaging technique able to record brain activity with high temporal resolution (1000 Hz) for capturing rapid changes in brains. Our contributions are threefold: Firstly, we develop a large dataset recording signals from 20 subjects while they were watching 1400 dynamic video clips of 40 concepts. This dataset fills the gap in the lack of EEG-video pairs. Secondly, we annotate each video clips to investigate the potential for decoding some specific meta information (e.g., color, dynamic, human or not) from EEG. Thirdly, we propose a novel baseline EEG2Video for video reconstruction from EEG signals that better aligns dynamic movements with high temporal resolution brain signals by Seq2Seq architecture. EEG2Video achieves a 2-way accuracy of 79.8% in semantic classification tasks and 0.256 in structural similarity index (SSIM). Overall, our works takes an important step towards decoding dynamic visual perception from EEG signals. Our dataset and code will be released soon.
Poster
William Redman · Francisco Acosta · Santiago Acosta-Mendoza · Nina Miolane

[ East Exhibit Hall A-C ]

Abstract
Success in collaborative and competitive environments, where agents must work with or against each other, requires individuals to encode the position and trajectory of themselves and others. Decades of neurophysiological experiments have shed light on how brain regions [e.g., medial entorhinal cortex (MEC), hippocampus] encode the self's position and trajectory. However, it has only recently been discovered that MEC and hippocampus are modulated by the positions and trajectories of others. To understand how encoding spatial information of multiple agents shapes neural representations, we train a recurrent neural network (RNN) model that captures properties of MEC to path integrate trajectories of two agents simultaneously navigating the same environment. We find significant differences between these RNNs and those trained to path integrate only a single agent. At the individual unit level, RNNs trained to path integrate more than one agent develop weaker grid responses, stronger border responses, and tuning for the relative position of the two agents. At the population level, they develop more distributed and robust representations, with changes in network dynamics and manifold topology. Our results provide testable predictions and open new directions with which to study the neural computations supporting spatial navigation.
Poster
Eli Sennesh · Hao Wu · Tommaso Salvatori

[ East Exhibit Hall A-C ]

Abstract
Unexpected stimuli induce "error" or "surprise" signals in the brain. The theory of predictive coding promises to explain these observations in terms of Bayesian inference by suggesting that the cortex implements variational inference in a probabilistic graphical model. However, when applied to machine learning tasks, this family of algorithms has yet to perform on par with other variational approaches in high-dimensional, structured inference problems. To address this, we introduce a novel predictive coding algorithm for structured generative models, that we call divide-and-conquer predictive coding (DCPC); it differs from other formulations of predictive coding, as it respects the correlation structure of the generative model and provably performs maximum-likelihood updates of model parameters, all without sacrificing biological plausibility. Empirically, DCPC achieves better numerical performance than competing algorithms and provides accurate inference in a number of problems not previously addressed with predictive coding. We provide an open implementation of DCPC in Pyro on Github.
Oral Poster
Nicholas Gao · Stephan Günnemann

[ East Exhibit Hall A-C ]

Abstract
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the `gold-standard' CCSD(T) CBS reference energies by 1.9m$E_h$ and reduce energy errors compared to previous generalized neural wave functions by up to an order of magnitude.
Poster
Daniel Hothem · Ashe Miller · Timothy Proctor

[ East Exhibit Hall A-C ]

Abstract
Quantum computers have the potential to revolutionize diverse fields, including quantum chemistry, materials science, and machine learning. However, contemporary quantum computers experience errors that often cause quantum programs run on them to fail. Until quantum computers can reliably execute large quantum programs, stakeholders will need fast and reliable methods for assessing a quantum computer’s capability—i.e., the programs it can run and how well it can run them. Previously, off-the-shelf neural network architectures have been used to model quantum computers' capabilities, but with limited success, because these networks fail to learn the complex quantum physics that determines real quantum computers' errors. We address this shortcoming with a new quantum-physics-aware neural network architecture for learning capability models. Our scalable architecture combines aspects of graph neural networks with efficient approximations to the physics of errors in quantum programs. This approach achieves up to $\sim50\%$ reductions in mean absolute error on both experimental and simulated data, over state-of-the-art models based on convolutional neural networks, and scales to devices with 100+ qubits.
Poster
Niloufar Zakariaei · Siddharth Rout · Eldad Haber · Moshe Eliasof

[ East Exhibit Hall A-C ]

Abstract
Many problems in physical sciences are characterized by the prediction of space-time sequences. Such problems range from weather prediction to the analysis of disease propagation and video prediction. Modern techniques for the solution of these problems typically combine Convolution Neural Networks (CNN) architecture with a time prediction mechanism. However, oftentimes, such approaches underperform in the long-range propagation of information and lack explainability. In this work, we introduce a physically inspired architecture for the solution of such problems. Namely, we propose to augment CNNs with advection by designing a novel semi-Lagrangian push operator. We show that the proposed operator allows for the non-local transformation of information compared with standard convolutional kernels. We then complement it with Reaction and Diffusion neural components to form a network that mimics the Reaction-Advection-Diffusion equation, in high dimensions. We demonstrate the effectiveness of our network on a number of spatio-temporal datasets that show their merit. Our code is available at https://github.com/Siddharth-Rout/deepADRnet.
Poster
Tian Wang · Chuang Wang

[ East Exhibit Hall A-C ]

Abstract
Neural operators effectively solve PDE problems from data without knowing the explicit equations, which learn the map from the input sequences of observed samples to the predicted values. Most existing works build the model in the original geometric space, leading to high computational costs when the number of sample points is large. We present the Latent Neural Operator (LNO) solving PDEs in the latent space. In particular, we first propose Physics-Cross-Attention (PhCA) transforming representation from the geometric space to the latent space, then learn the operator in the latent space, and finally recover the real-world geometric space via the inverse PhCA map. Our model retains flexibility that can decode values in any position not limited to locations defined in the training set, and therefore can naturally perform interpolation and extrapolation tasks particularly useful for inverse problems. Moreover, the proposed LNO improves both prediction accuracy and computational efficiency. Experiments show that LNO reduces the GPU memory by 50%, speeds up training 1.8 times, and reaches state-of-the-art accuracy on four out of six benchmarks for forward problems and a benchmark for inverse problem. Code is available at https://github.com/L-I-M-I-T/LatentNeuralOperator.
Poster
Guglielmo Gattiglio · Lyudmila Grigoryeva · Massimiliano Tamborrino

[ East Exhibit Hall A-C ]

Abstract
Parallel-in-time (PinT) techniques have been proposed to solve systems of time-dependent differential equations by parallelizing the temporal domain. Among them, Parareal computes the solution sequentially using an inaccurate (fast) solver, and then ``corrects'' it using an accurate (slow) integrator that runs in parallel across temporal subintervals. This work introduces RandNet-Parareal, a novel method to learn the discrepancy between the coarse and fine solutions using random neural networks (RandNets). RandNet-Parareal achieves speed gains up to x125 and x22 compared to the fine solver run serially and Parareal, respectively. Beyond theoretical guarantees of RandNets as universal approximators, these models are quick to train, allowing the PinT solution of partial differential equations on a spatial mesh of up to $10^5$ points with minimal overhead, dramatically increasing the scalability of existing PinT approaches. RandNet-Parareal's numerical performance is illustrated on systems of real-world significance, such as the viscous Burgers' equation, the Diffusion-Reaction equation, the two- and three-dimensional Brusselator, and the shallow water equation.
Poster
Tassilo Wald · Constantin Ulrich · Priyank Jaini · Gregor Koehler · David Zimmerer · Stefan Denner · Fabian Isensee · Michael Baumgartner · Klaus Maier-Hein

[ East Exhibit Hall A-C ]

Abstract
What representation do deep neural networks learn? How similar are images to each other for neural networks? Despite the overwhelming success of deep learning methods key questions about their internal workings still remain largely unanswered, due to their internal high dimensionality and complexity. To address this, one approach is to measure the similarity of activation responses to various inputs.Representational Similarity Matrices (RSMs) distill this similarity into scalar values for each input pair.These matrices encapsulate the entire similarity structure of a system, indicating which input lead to similar responses.While the similarity between images is ambiguous, we argue that the spatial location of semantic objects does neither influence human perception nor deep learning classifiers. Thus this should be reflected in the definition of similarity between image responses for computer vision systems. Revisiting the established similarity calculations for RSMs we expose their sensitivity to spatial alignment. In this paper we propose to solve this through _semantic RSMs_, which are invariant to spatial permutation. We measure semantic similarity between input responses by formulating it as a set-matching problem. Further, we quantify the superiority of _semantic_ RSMs over _spatio-semantic_ RSMs through image retrieval and by comparing the similarity between representations to the similarity between predicted …
Poster
Yamin Li · Ange Lou · Ziyuan Xu · Shengchao Zhang · Shiyu Wang · Dario Englot · Soheil Kolouri · Daniel Moyer · Roza Bayrak · Catie Chang

[ East Exhibit Hall A-C ]

Abstract
Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern neuroscience, providing a non-invasive window into whole-brain dynamics at millimeter-scale spatial resolution. However, fMRI is constrained by issues such as high operation costs and immobility. With the rapid advancements in cross-modality synthesis and brain decoding, the use of deep neural networks has emerged as a promising solution for inferring whole-brain, high-resolution fMRI features directly from electroencephalography (EEG), a more widely accessible and portable neuroimaging modality. Nonetheless, the complex projection from neural activity to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial challenges both in modeling and interpretability. Relatively few studies to date have developed approaches for EEG-fMRI translation, and although they have made significant strides, the inference of fMRI signals in a given study has been limited to a small set of brain areas and to a single condition (i.e., either resting-state or a specific task). The capability to predict fMRI signals in other brain areas, as well as to generalize across conditions, remain critical gaps in the field. To tackle these challenges, we introduce a novel and generalizable framework: NeuroBOLT, i.e., Neuro-to-BOLD Transformer, which leverages multi-dimensional representation learning from temporal, spatial, and spectral domains to …
Spotlight Poster
Apolline Mellot · Antoine Collas · Sylvain Chevallier · Alex Gramfort · Denis Engemann

[ East Exhibit Hall A-C ]

Abstract
Electroencephalography (EEG) data is often collected from diverse contexts involving different populations and EEG devices. This variability can induce distribution shifts in the data $X$ and in the biomedical variables of interest $y$, thus limiting the application of supervised machine learning (ML) algorithms. While domain adaptation (DA) methods have been developed to mitigate the impact of these shifts, such methods struggle when distribution shifts occur simultaneously in $X$ and $y$. As state-of-the-art ML models for EEG represent the data by spatial covariance matrices, which lie on the Riemannian manifold of Symmetric Positive Definite (SPD) matrices, it is appealing to study DA techniques operating on the SPD manifold. This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA for situations in which source domains have distinct $y$ distributions. GOPSA exploits the geodesic structure of the Riemannian manifold to jointly learn a domain-specific re-centering operator representing site-specific intercepts and the regression model. We performed empirical benchmarks on the cross-site generalization of age-prediction models with resting-state EEG data from a large multi-national dataset (HarMNqEEG), which included $14$ recording sites and more than $1500$ human participants. Compared to state-of-the-art methods, our results showed that GOPSA …
Poster
David Lipshutz · Eero Simoncelli

[ East Exhibit Hall A-C ]

Abstract
Efficient coding theory posits that sensory circuits transform natural signals into neural representations that maximize information transmission subject to resource constraints. Local interneurons are thought to play an important role in these transformations, shaping patterns of circuit activity to facilitate and direct information flow. However, the relationship between these coordinated, nonlinear, circuit-level transformations and the properties of interneurons (e.g., connectivity, activation functions) remains unknown. Here, we propose a normative computational model that establishes such a relationship. Our model is derived from an optimal transport objective that conceptualizes the circuit's input-response function as transforming the inputs to achieve a target response distribution. The circuit, which is comprised of primary neurons that are recurrently connected to a set of local interneurons, continuously optimizes this objective by dynamically adjusting both the synaptic connections between neurons as well as the interneuron activation functions. In an application motivated by redundancy reduction theory, we demonstrate that when the inputs are natural image statistics and the target distribution is a spherical Gaussian, the circuit learns a nonlinear transformation that significantly reduces statistical dependencies in neural responses. Overall, our results provide a framework in which the distribution of circuit responses is systematically and nonlinearly controlled by adjustment of …
Poster
David Bell · Alison Duffy · Adrienne Fairhall

[ East Exhibit Hall A-C ]

Abstract
Intrinsic dynamics within the brain can accelerate learning by providing a prior scaffolding for dynamics aligned with task objectives. Such intrinsic dynamics would ideally self-organize and self-sustain in the face of biological noise including synaptic turnover and cell death. An example of such dynamics is the formation of sequences, a ubiquitous motif in neural activity. The sequence-generating circuit in zebra finch HVC provides a reliable timing scaffold for motor output in song and demonstrates a remarkable capacity for unsupervised recovery following perturbation. Inspired by HVC, we seek a local plasticity rule capable of organizing and maintaining sequence-generating dynamics despite continual network perturbations. We adopt a meta-learning approach introduced by Confavreux et al, which parameterizes a learning rule using basis functions constructed from pre- and postsynaptic activity and synapse size, with tunable time constants. Candidate rules are simulated within initially random networks, and their fitness is evaluated according to a loss function that measures the fidelity with which the resulting dynamics encode time. We use this approach to introduce biological noise, forcing meta-learning to find robust solutions. We first show that, in the absence of perturbations, meta-learning identifies a temporally asymmetric generalization of Oja's rule that reliably organizes sparse sequential activity. …
Poster
Francesco Damiani · Akiyuki Anzai · Jan Drugowitsch · Gregory DeAngelis · Ruben Moreno Bote

[ East Exhibit Hall A-C ]

Abstract
A pivotal brain computation relies on the ability to sustain perception-action loops. Stochastic optimal control theory offers a mathematical framework to explain these processes at the algorithmic level through optimality principles. However, incorporating a realistic noise model of the sensorimotor system — accounting for multiplicative noise in feedback and motor output, as well as internal noise in estimation — makes the problem challenging. Currently, the algorithm that is commonly used is the one proposed in the seminal study in (Todorov, 2005). After discovering some pitfalls in the original derivation, i.e., unbiased estimation does not hold, we improve the algorithm by proposing an efficient gradient descent-based optimization that minimizes the cost-to-go while only imposing linearity of the control law. The optimal solution is obtained by iteratively propagating in closed form the sufficient statistics to compute the expected cost and then minimizing this cost with respect to the filter and control gains. We demonstrate that this approach results in a significantly lower overall cost than current state-of-the-art solutions, particularly in the presence of internal noise, though the improvement is present in other circumstances as well, with theoretical explanations for this enhanced performance. Providing the optimal control law is key for inverse control …
Poster
Zhaoze Wang · Ronald Di Tullio · Spencer Rooke · Vijay Balasubramanian

[ East Exhibit Hall A-C ]

Abstract
The vertebrate hippocampus is thought to use recurrent connectivity in area CA3 to support episodic memory recall from partial cues. This brain area also contains place cells, whose location-selective firing fields implement maps supporting spatial memory. Here we show that place cells emerge in networks trained to remember temporally continuous sensory episodes. We model CA3 as a recurrent autoencoder that recalls and reconstructs sensory experiences from noisy and partially occluded observations by agents traversing simulated arenas. The agents move in realistic trajectories modeled from rodents and environments are modeled as continuously varying, high-dimensional, sensory experience maps (spatially smoothed Gaussian random fields). Training our autoencoder to accurately pattern-complete and reconstruct sensory experiences with a constraint on total activity causes spatially localized firing fields, i.e., place cells, to emerge in the encoding layer. The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network’s hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and (d) slow representational drift of …
Poster
Yue Li · Yi Sun · Shida Sun · Juntian Ye · Yueyi Zhang · Feihu Xu · Zhiwei Xiong

[ East Exhibit Hall A-C ]

Abstract
Dynamic reconstruction in confocal non-line-of-sight imaging encounters great challenges since the dense raster-scanning manner limits the practical frame rate. A fewer pioneer works reconstruct high-resolution volumes from the under-scanning transient measurements but overlook temporal consistency among transient frames. To fully exploit multi-frame information, we propose the first spatial-temporal Mamba (ST-Mamba) based method tailored for dynamic reconstruction of transient videos. Our method capitalizes on neighbouring transient frames to aggregate the target 3D hidden volume. Specifically, the interleaved features extracted from the input transient frames are fed to the proposed ST-Mamba blocks, which leverage the time-resolving causality in transient measurement. The cross ST-Mamba blocks are then devised to integrate the adjacent transient features. The target high-resolution transient frame is subsequently recovered by the transient spreading module. After transient fusion and recovery, a physical-based network is employed to reconstruct the hidden volume. To tackle the substantial noise inherent in transient videos, we propose a wave-based loss function to impose constraints within the phasor field. Besides, we introduce a new dataset, comprising synthetic videos for training and real-world videos for evaluation. Extensive experiments showcase the superior performance of our method on both synthetic data and real world data captured by different imaging setups. The …
Poster
Yifei Zhang · Huan-ang Gao · zhou jiang · Hao Zhao

[ East Exhibit Hall A-C ]

Abstract
3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow, one of the most challenging computational problems of our century. At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they heavily depend on large volumes of labeled data. In this paper, we introduce a new method that is **completely self-supervised and notably outperforms its fully-supervised counterparts while requiring only 1\% of the training samples (without labels) used by previous methods.** Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains. Code, data and models are available at [https://github.com/Forrest-110/FluidMotionNet](https://github.com/Forrest-110/FluidMotionNet).
Poster
Zijie Huang · Wanjia Zhao · Jingdong Gao · Ziniu Hu · Xiao Luo · Yadi Cao · Yuanzhou Chen · Yizhou Sun · Wei Wang

[ East Exhibit Hall A-C ]

Abstract
Learning complex physical dynamics purely from data is challenging due to the intrinsic properties of systems to be satisfied. Incorporating physics-informed priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision modeling for energy-conservative systems. However, real-world systems often deviate from strict energy conservation and follow different physical priors. To address this, we present a framework that achieves high-precision modeling for a wide range of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a novel regularization term. It helps preserve energies for conservative systems while serving as a strong inductive bias for non-conservative, reversible systems. While TRS is a domain-specific physical prior, we present the first theoretical proof that TRS loss can universally improve modeling accuracy by minimizing higher-order Taylor terms in ODE integration, which is numerically beneficial to various systems regardless of their properties, even for irreversible systems. By integrating the TRS loss within neural ordinary differential equation models, the proposed model TREAT demonstrates superior performance on diverse physical systems. It achieves a significant 11.5% MSE improvement in a challenging chaotic triple-pendulum scenario, underscoring TREAT’s broad applicability and effectiveness.
Poster
Yusong Wang · Chaoran Cheng · Shaoning Li · Yuxuan Ren · Bin Shao · Ge Liu · Pheng-Ann Heng · Nanning Zheng

[ East Exhibit Hall A-C ]

Abstract
Geometric graph neural networks (GNNs) have emerged as powerful tools for modeling molecular geometry. However, they encounter limitations in effectively capturing long-range interactions in large molecular systems. To address this challenge, we introduce **Neural P$^3$M**, a versatile enhancer of geometric GNNs to expand the scope of their capabilities by incorporating mesh points alongside atoms and reimaging traditional mathematical operations in a trainable manner. Neural P$^3$M exhibits flexibility across a wide range of molecular systems and demonstrates remarkable accuracy in predicting energies and forces, outperforming on benchmarks such as the MD22 dataset. It also achieves an average improvement of 22% on the OE62 dataset while integrating with various architectures. Codes are available at https://github.com/OnlyLoveKFC/Neural_P3M.
Poster
YIDI SHAO · Chen Change Loy · Bo Dai

[ East Exhibit Hall A-C ]

Abstract
Garment animation is ubiquitous in various applications, such as virtual reality, gaming, and film producing. Recently, learning-based approaches obtain compelling performance in animating diverse garments under versatile scenarios. Nevertheless, to mimic the deformations of the observed garments, data-driven methods require large scale of garment data, which are both resource-wise expensive and time-consuming. In addition, forcing models to match the dynamics of observed garment animation may hinder the potentials to generalize to unseen cases. In this paper, instead of using garment-wise supervised-learning we adopt a disentangled scheme to learn how to animate observed garments: 1). learning constitutive behaviors from the observed cloth; 2). dynamically animate various garments constrained by the learned constitutive laws. Specifically, we propose Energy Unit network (EUNet) to model the constitutive relations in the format of energy. Without the priors from analytical physics models and differentiable simulation engines, EUNet is able to directly capture the constitutive behaviors from the observed piece of cloth and uniformly describes the change of energy caused by deformations, such as stretching and bending. We further apply the pre-trained EUNet to animate various garments based on energy optimizations. The disentangled scheme alleviates the need of garment data and enables us to utilize the dynamics …
Poster
Andreas Maurer

[ East Exhibit Hall A-C ]

Abstract
A method to prove generalization results for a class of stochastic learning algorithms is presented. It applies whenever the algorithm generates a distribution, which is absolutely continuous distribution relative to some a-priori measure, and the logarithm of its density is exponentially concentrated about its mean. Applications include bounds for the Gibbs algorithm and randomizations of stable deterministic algorithms, combinations thereof and PAC-Bayesian bounds with data-dependent priors.
Poster
Tiago Silva · Eliezer de Souza da Silva · Diego Mesquita

[ East Exhibit Hall A-C ]

Abstract
Generative Flow Networks (GFlowNets) are amortized samplers of unnormalized distributions over compositional objects with applications to causal discovery, NLP, and drug design. Recently, it was shown that GFlowNets can be framed as a hierarchical variational inference (HVI) method for discrete distributions. Despite this equivalence, attempts to train GFlowNets using traditional divergence measures as learning objectives were unsuccessful. Instead, current approaches for training these models rely on minimizing the log-squared difference between a proposal (forward policy) and a target (backward policy) distributions. In this work, we first formally extend the relationship between GFlowNets and HVI to distributions on arbitrary measurable topological spaces. Then, we empirically show that the ineffectiveness of divergence-based learning of GFlowNets is due to large gradient variance of the corresponding stochastic objectives. To address this issue, we devise a collection of provably variance-reducing control variates for gradient estimation based on the REINFORCE leave-one-out estimator. Our experimental results suggest that the resulting algorithms often accelerate training convergence when compared against previous approaches. All in all, our work contributes by narrowing the gap between GFlowNet training and HVI, paving the way for algorithmic advancements inspired by the divergence minimization viewpoint.
Poster
Lennert De Smet · Pedro Zuidberg Dos Martires

[ East Exhibit Hall A-C ]

Abstract
As illustrated by the success of integer linear programming, linear integer arithmetics is a powerful tool for modelling combinatorial problems. Furthermore, the probabilistic extension of linear programming has been used to formulate problems in neurosymbolic AI. However, two key problems persist that prevent the adoption of neurosymbolic techniques beyond toy problems. First, probabilistic inference is inherently hard, #P-hard to be precise. Second, the discrete nature of integers renders the construction of meaningful gradients challenging, which is problematic for learning. In order to mitigate these issues, we formulate linear arithmetics over integer-valued random variables as tensor manipulations that can be implemented in a straightforward fashion using modern deep learning libraries. At the core of our formulation lies the observation that the addition of two integer-valued random variables can be performed by adapting the fast Fourier transform to probabilities in the log-domain. By relying on tensor operations we obtain a differentiable data structure, which unlocks, virtually for free, gradient-based learning. In our experimental validation we show that tensorising probabilistic integer linear arithmetics and leveraging the fast Fourier transform allows us to push the state of the art by several orders of magnitude in terms of inference and learning times.
Poster
Ali Younis · Erik Sudderth

[ East Exhibit Hall A-C ]

Abstract
For challenging state estimation problems arising in domains like vision and robotics, particle-based representations attractively enable temporal reasoning about multiple posterior modes. Particle smoothers offer the potential for more accurate offline data analysis by propagating information both forward and backward in time, but have classically required human-engineered dynamics and observation models. Extending recent advances in discriminative training of particle filters, we develop a framework for low-variance propagation of gradients across long time sequences when training particle smoothers. Our "two-filter" smoother integrates particle streams that are propagated forward and backward in time, while incorporating stratification and importance weights in the resampling step to provide low-variance gradient estimates for neural network dynamics and observation models. The resulting mixture density particle smoother is substantially more accurate than state-of-the-art particle filters, as well as search-based baselines, for city-scale global vehicle localization from real-world videos and maps.
Poster
James Allingham · Bruno Mlodozeniec · Shreyas Padhy · Javier Antorán · David Krueger · Richard Turner · Eric Nalisnick · José Miguel Hernández-Lobato

[ East Exhibit Hall A-C ]

Abstract
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though methods incorporating symmetries often require prior knowledge.While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting.In this paper, we take inspiration from group theoretic ideas to construct a generative model that explicitly aims to capture the data's approximate symmetries. This results in a model that, given a prespecified broad set of possible symmetries, learns to what extent, if at all, those symmetries are actually present.Our model can be seen as a generative process for data augmentation.We provide a simple algorithm for learning our generative model and empirically demonstrate its ability to capture symmetries under affine and color transformations, in an interpretable way.Combining our symmetry model with standard generative models results in higher marginal test-log-likelihoods and improved data efficiency.
Spotlight Poster
Yanlin Qu · Jose Blanchet · Peter W Glynn

[ East Exhibit Hall A-C ]

Abstract
Convergence rate analysis for general state-space Markov chains is fundamentally important in operations research (stochastic systems) and machine learning (stochastic optimization). This problem, however, is notoriously difficult because traditional analytical methods often do not generate practically useful convergence bounds for realistic Markov chains. We propose the Deep Contractive Drift Calculator (DCDC), the first general-purpose sample-based algorithm for bounding the convergence of Markov chains to stationarity in Wasserstein distance. The DCDC has two components. First, inspired by the new convergence analysis framework in (Qu et.al, 2023), we introduce the Contractive Drift Equation (CDE), the solution of which leads to an explicit convergence bound. Second, we develop an efficient neural-network-based CDE solver. Equipped with these two components, DCDC solves the CDE and converts the solution into a convergence bound. We analyze the sample complexity of the algorithm and further demonstrate the effectiveness of the DCDC by generating convergence bounds for realistic Markov chains arising from stochastic processing networks as well as constant step-size stochastic optimization.
Poster
Shiyue Zhang · Longlin Yu · Ziheng Cheng · Cheng Zhang

[ East Exhibit Hall A-C ]

Abstract
Recently, through a unified gradient flow perspective of Markov chain Monte Carlo (MCMC) and variational inference (VI), particle-based variational inference methods (ParVIs) have been proposed that tend to combine the best of both worlds. While typical ParVIs such as Stein Variational Gradient Descent (SVGD) approximate the gradient flow within a reproducing kernel Hilbert space (RKHS), many attempts have been made recently to replace RKHS with more expressive function spaces, such as neural networks. While successful, these methods are mainly designed for sampling from unconstrained domains. In this paper, we offer a general solution to constrained sampling by introducing a boundary condition for the gradient flow which would confine the particles within the specific domain. This allows us to propose a new functional gradient ParVI method for constrained sampling, called *constrained functional gradient flow* (CFG), with provable continuous-time convergence in total variation (TV). We also present novel numerical strategies to handle the boundary integral term arising from the domain constraints. Our theory and experiments demonstrate the effectiveness of the proposed framework.
Poster
Benjie Wang · Denis Mauá · Guy Van den Broeck · YooJung Choi

[ East Exhibit Hall A-C ]

Abstract
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queriesas compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries—including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment—correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
Spotlight Poster
Gennaro Gala · Cassio de Campos · Antonio Vergari · Erik Quaeghebeur

[ East Exhibit Hall A-C ]

Abstract
Probabilistic integral circuits (PICs) have been recently introduced as probabilistic models enjoying the key ingredient behind expressive generative models: continuous latent variables (LVs). PICs are symbolic computational graphs defining continuous LV models as hierarchies of functions that are summed and multiplied together, or integrated over some LVs. They are tractable if LVs can be analytically integrated out, otherwise they can be approximated by tractable probabilistic circuits (PC) encoding a hierarchical numerical quadrature process, called QPCs.So far, only tree-shaped PICs have been explored, and training them via numerical quadrature requires memory-intensive processing at scale. In this paper, we address these issues, and present: (i) a pipeline for building DAG-shaped PICs out of arbitrary variable decompositions, (ii) a procedure for training PICs using tensorized circuit architectures, and (iii) neural functional sharing techniques to allow scalable training. In extensive experiments, we showcase the effectiveness of functional sharing and the superiority of QPCs over traditional PCs.
Poster
Ye He · Alireza Mousavi-Hosseini · Krishnakumar Balasubramanian · Murat Erdogdu

[ East Exhibit Hall A-C ]

Abstract
We study the complexity of heavy-tailed sampling and present a separation result in terms of obtaining high-accuracy versus low-accuracy guarantees i.e., samplers that require only $\mathcal{O}(\log(1/\varepsilon))$ versus $\Omega(\text{poly}(1/\varepsilon))$ iterations to output a sample which is $\varepsilon$-close to the target in $\chi^2$-divergence. Our results are presented for proximal samplers that are based on Gaussian versus stable oracles. We show that proximal samplers based on the Gaussian oracle have a fundamental barrier in that they necessarily achieve only low-accuracy guarantees when sampling from a class of heavy-tailed targets. In contrast, proximal samplers based on the stable oracle exhibit high-accuracy guarantees, thereby overcoming the aforementioned limitation. We also prove lower bounds for samplers under the stable oracle and show that our upper bounds cannot be fundamentally improved.
Poster
Yunyue Wei · Vincent Zhuang · Saraswati Soedarmadji · Yanan Sui

[ East Exhibit Hall A-C ]

Abstract
Bayesian optimization is an effective technique for black-box optimization, but its applicability is typically limited to low-dimensional and small-budget problems due to the cubic complexity of computing the Gaussian process (GP) surrogate. While various approximate GP models have been employed to scale Bayesian optimization to larger sample sizes, most suffer from overly-smooth estimation and focus primarily on problems that allow for large online samples. In this work, we argue that Bayesian optimization algorithms with sparse GPs can more efficiently allocate their representational power to relevant regions of the search space. To achieve this, we propose focalized GP, which leverages a novel variational loss function to achieve stronger local prediction, as well as FocalBO, which hierarchically optimizes the focalized GP acquisition function over progressively smaller search spaces. Experimental results demonstrate that FocalBO can efficiently leverage large amounts of offline and online data to achieve state-of-the-art performance on robot morphology design and to control a 585-dimensional musculoskeletal system.
Poster
Alexander Terenin · David Burt · Artem Artemev · Seth Flaxman · Mark van der Wilk · Carl Edward Rasmussen · Hong Ge

[ East Exhibit Hall A-C ]

Abstract

Gaussian processes are frequently deployed as part of larger machine learning and decision-making systems, for instance in geospatial modeling, Bayesian optimization, or in latent Gaussian models. Within a system, the Gaussian process model needs to perform in a stable and reliable manner to ensure it interacts correctly with other parts of the system. In this work, we study the numerical stability of scalable sparse approximations based on inducing points. To do so, we first review numerical stability, and illustrate typical situations in which Gaussian process models can be unstable. Building on stability theory originally developed in the interpolation literature, we derive sufficient and in certain cases necessary conditions on the inducing points for the computations performed to be numerically stable. For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions. This is done via a modification of the cover tree data structure, which is of independent interest. We additionally propose an alternative sparse approximation for regression with a Gaussian likelihood which trades off a small amount of performance to further improve stability. We provide illustrative examples showing the relationship between stability of calculations and predictive performance of inducing point methods on …

Poster
David Huk · Yuanhe Zhang · Ritabrata Dutta · Mark Steel

[ East Exhibit Hall A-C ]

Abstract
Recently developed quasi-Bayesian (QB) methods \cite{fong2023martingale} proposed a stimulating change of paradigm in Bayesian computation by directly constructing the Bayesian predictive distribution through recursion, removing the need for expensive computations involved in sampling the Bayesian posterior distribution. This has proved to be data-efficient for univariate predictions, however, existing constructions for higher dimensional densities are only possible by relying on restrictive assumptions on the model's multivariate structure. Here, we propose a wholly different approach to extend Quasi-Bayesian prediction to high dimensions through the use of Sklar's theorem, by decomposing the predictive distribution into one-dimensional predictive marginals and a high-dimensional copula. We use the efficient recursive QB construction for the one-dimensional marginals and model the dependence using highly expressive vine copulas. Further, we tune hyperparameters using robust divergences (eg. energy score) and show that our proposed Quasi-Bayesian Vine (QB-Vine) is a fully non-parametric density estimator with \emph{an analytical form} and convergence rate independent of the dimension of the data in some situations. Our experiments illustrate that the QB-Vine is appropriate for high dimensional distributions ($\sim$64), needs very few samples to train ($\sim$200) and outperforms state-of-the-art methods with analytical forms for density estimation and supervised tasks by a considerable margin.
Poster
Trevor Campbell

[ East Exhibit Hall A-C ]

Abstract
Bayesian coresets speed up posterior inference in the large-scale data regime by approximating the full-data log-likelihood function with a surrogate log-likelihood based on a small, weighted subset of the data. But while Bayesian coresets and methods for construction are applicable in a wide range of models, existing theoretical analysis of the posterior inferential error incurred by coreset approximations only apply in restrictive settings---i.e., exponential family models, or models with strong log-concavity and smoothness assumptions. This work presents general upper and lower bounds on the Kullback-Leibler (KL) divergence of coreset approximations that reflect the full range of applicability of Bayesian coresets. The lower bounds require only mild model assumptions typical of Bayesian asymptotic analyses, while the upper bounds require the log-likelihood functions to satisfy a generalized subexponentiality criterion that is weaker than conditions used in earlier work. The lower bounds are applied to obtain fundamental limitations on the quality of coreset approximations, and to provide a theoretical explanation for the previously-observed poor empirical performance of importance sampling-based construction methods. The upper bounds are used to analyze the performance of recent subsample-optimize methods. The flexibility of the theory is demonstrated in validation experiments involving multimodal, unidentifiable, heavy-tailed Bayesian posterior distributions.
Poster
Marco Miani · Lorenzo Beretta · Søren Hauberg

[ East Exhibit Hall A-C ]

Abstract
Current uncertainty quantification is memory and compute expensive, which hinders practical uptake. To counter, we develop Sketched Lanczos Uncertainty (SLU): an architecture-agnostic uncertainty score that can be applied to pre-trained neural networks with minimal overhead. Importantly, the memory use of SLU only grows logarithmically with the number of model parameters. We combine Lanczos' algorithm with dimensionality reduction techniques to compute a sketch of the leading eigenvectors of a matrix. Applying this novel algorithm to the Fisher information matrix yields a cheap and reliable uncertainty score. Empirically, SLU yields well-calibrated uncertainties, reliably detects out-of-distribution examples, and consistently outperforms existing methods in the low-memory regime.
Poster
Lang Yin · Han Zhao

[ East Exhibit Hall A-C ]

Abstract
Probabilistic circuits (PCs) have emerged as a powerful framework compactly representing probability distributions for efficient and exact probabilistic inference. It has been shown that PCs with general directed acyclic graph (DAG) structure can be understood as a mixture of exponentially (in its height) many components, each of which is a product distributions over univariate marginals. However, existing structure learning algorithms for PCs often generate tree-structured circuits, or using tree-structured circuits as intermediate steps to compress them into DAG-structured circuits. This leads to an intriguing question on whether there exists an exponential gap between DAGs and trees for the PC structure.In this paper, we provide a negative answer to this conjecture by proving that, for $n$ variables, there is a quasi-polynomial upper bound $n^{O(\log n)}$ on the size of an equivalent tree computing the same probability distribution. On the other hand, we will also show that given a depth restriction on the tree, there is a super-polynomial separation between tree and DAG-structured PCs. Our work takes an important step towards understanding the expressive power of tree-structured PCs, and our techniques may be of independent interest in the study of structure learning algorithms for PCs.
Poster
Alvaro Correia · Fabio Valerio Massoli · Christos Louizos · Arash Behboodi

[ East Exhibit Hall A-C ]

Abstract
Conformal Prediction (CP) is a distribution-free uncertainty estimation framework that constructs prediction sets guaranteed to contain the true answer with a user-specified probability. Intuitively, the size of the prediction set encodes a general notion of uncertainty, with larger sets associated with higher degrees of uncertainty. In this work, we leverage information theory to connect conformal prediction to other notions of uncertainty. More precisely, we prove three different ways to upper bound the intrinsic uncertainty, as described by the conditional entropy of the target variable given the inputs, by combining CP with information theoretical inequalities. Moreover, we demonstrate two direct and useful applications of such connection between conformal prediction and information theory: (i) more principled and effective conformal training objectives that generalize previous approaches and enable end-to-end training of machine learning models from scratch, and (ii) a natural mechanism to incorporate side information into conformal prediction. We empirically validate both applications in centralized and federated learning settings, showing our theoretical results translate to lower inefficiency (average prediction set size) for popular CP methods.
Spotlight Poster
Diana Cai · Chirag Modi · Charles Margossian · Robert Gower · David Blei · Lawrence Saul

[ East Exhibit Hall A-C ]

Abstract
We develop EigenVI, an eigenvalue-based approach for black-box variational inference (BBVI). EigenVI constructs its variational approximations from orthogonal function expansions. For distributions over $\mathbb{R}^D$, the lowest order term in these expansions provides a Gaussian variational approximation, while higher-order terms provide a systematic way to model non-Gaussianity. These approximations are flexible enough to model complex distributions (multimodal, asymmetric), but they are simple enough that one can calculate their low-order moments and draw samples from them. EigenVI can also model other types of random variables (e.g., nonnegative, bounded) by constructing variational approximations from different families of orthogonal functions. Within these families, EigenVI computes the variational approximation that best matches the score function of the target distribution by minimizing a stochastic estimate of the Fisher divergence. Notably, this optimization reduces to solving a minimum eigenvalue problem, so that EigenVI effectively sidesteps the iterative gradient-based optimizations that are required for many other BBVI algorithms. (Gradient-based methods can be sensitive to learning rates, termination criteria, and other tunable hyperparameters.) We use EigenVI to approximate a variety of target distributions, including a benchmark suite of Bayesian models from posteriordb. On these distributions, we find that EigenVI is more accurate than existing methods for Gaussian BBVI.
Poster
Yipu Chen · Haotian Xue · Yongxin Chen

[ East Exhibit Hall A-C ]

Abstract
Diffusion models have emerged as a promising approach for behavior cloning (BC), leveraging their exceptional ability to model multi-modal distributions. Diffusion policies (DP) have elevated BC performance to new heights, demonstrating robust efficacy across diverse tasks, coupled with their inherent flexibility and ease of implementation. Despite the increasing adoption of Diffusion Policies (DP) as a foundation for policy generation, the critical issue of safety remains largely unexplored. While previous attempts have targeted deep policy networks, DP used diffusion models as the policy network, making it ineffective to be attacked using previous methods because of its chained structure and randomness injected. In this paper, we undertake a comprehensive examination of DP safety concerns by introducing adversarial scenarios, encompassing offline and online attacks, global and patch-based attacks. We propose DP-Attacker, a suite of algorithms that can craft effective adversarial attacks across all aforementioned scenarios. We conduct attacks on pre-trained diffusion policies across various manipulation tasks. Through extensive experiments, we demonstrate that DP-Attacker has the capability to significantly decrease the success rate of DP for all scenarios. Particularly in offline scenarios, we exhibit the generation of highly transferable perturbations applicable to all frames. Furthermore, we illustrate the creation of adversarial physical patches that, …
Spotlight Poster
Nan Song · Bozhou Zhang · Xiatian Zhu · Li Zhang

[ East Exhibit Hall A-C ]

Abstract
Motion forecasting for agents in autonomous driving is highly challenging due to the numerous possibilities for each agent's next action and their complex interactions in space and time. In real applications, motion forecasting takes place repeatedly and continuously as the self-driving car moves. However, existing forecasting methods typically process each driving scene within a certain range independently, totally ignoring the situational and contextual relationships between successive driving scenes. This significantly simplifies the forecasting task, making the solutions suboptimal and inefficient to use in practice. To address this fundamental limitation, we propose a novel motion forecasting framework for continuous driving, named RealMotion.It comprises two integral streams both at the scene level:(1) The scene context stream progressively accumulates historical scene information until the present moment, capturing temporal interactive relationships among scene elements.(2) The agent trajectory stream optimizes current forecasting by sequentially relaying past predictions.Besides, a data reorganization strategy is introduced to narrow the gap between existing benchmarks and real-world applications, consistent with our network. These approaches enable exploiting more broadly the situational and progressive insights of dynamic motion across space and time. Extensive experiments on Argoverse series with different settings demonstrate that our RealMotion achieves state-of-the-art performance, along with the advantage of …
Poster
Bozhou Zhang · Nan Song · Li Zhang

[ East Exhibit Hall A-C ]

Abstract
Accurate motion forecasting for traffic agents is crucial for ensuring the safety and efficiency of autonomous driving systems in dynamically changing environments. Mainstream methods adopt a one-query-one-trajectory paradigm, where each query corresponds to a unique trajectory for predicting multi-modal trajectories. While straightforward and effective, the absence of detailed representation of future trajectories may yield suboptimal outcomes, given that the agent states dynamically evolve over time. To address this problem, we introduce DeMo, a framework that decouples multi-modal trajectory queries into two types: mode queries capturing distinct directional intentions and state queries tracking the agent's dynamic states over time. By leveraging this format, we separately optimize the multi-modality and dynamic evolutionary properties of trajectories. Subsequently, the mode and state queries are integrated to obtain a comprehensive and detailed representation of the trajectories. To achieve these operations, we additionally introduce combined Attention and Mamba techniques for global information aggregation and state sequence modeling, leveraging their respective strengths. Extensive experiments on both the Argoverse 2 and nuScenes benchmarks demonstrate that our DeMo achieves state-of-the-art performance in motion forecasting. In addition, we will make our code and models publicly available.
Poster
Fan-Yun Sun · Harini S I · Angela Yi · Yihan Zhou · Alex Zook · Jonathan Tremblay · Logan Cross · Jiajun Wu · Nick Haber

[ East Exhibit Hall A-C ]

Abstract
Generating simulations to train intelligent agents in game-playing and robotics from natural language input, user input, or task documentation remains an open-ended challenge. Existing approaches focus on parts of this challenge, such as generating reward functions or task hyperparameters. Unlike previous work, we introduce FACTORSIM that generates full simulations in code from language input that can be used to train agents. Exploiting the structural modularity specific to coded simulations, we propose to use a factored partially observable Markov decision process representation that allows us to reduce context dependence during each step of the generation. For evaluation, we introduce a generative simulation benchmark that assesses the generated simulation code’s accuracy and effectiveness in facilitating zero-shot transfers in reinforcement learning settings. We show that FACTORSIM outperforms existing methods in generating simulations regarding prompt alignment (i.e., accuracy), zero-shot transfer abilities, and human evaluation. We also demonstrate its effectiveness in generating robotic tasks.
Poster
Cheng Li · Damien Teney · Linyi Yang · Qingsong Wen · Xing Xie · Jindong Wang

[ East Exhibit Hall A-C ]

Abstract
Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures.Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media.However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale.Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures.It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs.We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education.Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on $41$ datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework.Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive …
Poster
Celestine Mendler-Dünner · Gabriele Carovano · Moritz Hardt

[ East Exhibit Hall A-C ]

Abstract
The power of digital platforms is at the center of major ongoing policy and regulatory efforts. To advance existing debates, we designed and executed an experiment to measure the performative power of online search providers. Instantiated in our setting, performative power quantifies the ability of a search engine to steer web traffic by rearranging results. To operationalize this definition we developed a browser extension that performs unassuming randomized experiments in the background. These randomized experiments emulate updates to the search algorithm and identify the causal effect of different content arrangements on clicks. Analyzing tens of thousands of clicks, we discuss what our robust quantitative findings say about the power of online search engines, using the Google Shopping antitrust investigation as a case study. More broadly, we envision our work to serve as a blueprint for how the recent definition of performative power can help integrate quantitative insights from online experiments with future investigations into the economic power of digital platforms.
Poster
Qinghua Liu · John Paparrizos

[ East Exhibit Hall A-C ]

Abstract
Time-series anomaly detection is a fundamental task across scientific fields and industries. However, the field has long faced the ``elephant in the room:'' critical issues including flawed datasets, biased evaluation measures, and inconsistent benchmarking practices that have remained largely ignored and unaddressed. We introduce the TSB-AD to systematically tackle these issues in the following three aspects: (i) Dataset Integrity: with 1070 high-quality time series from a diverse collection of 40 datasets (doubling the size of the largest collection and four times the number of existing curated datasets), we provide the first large-scale, heterogeneous, meticulously curated dataset that combines the effort of human perception and model interpretation; (ii) Measure Reliability: by revealing issues and biases in evaluation measures, we identify the most reliable and accurate measure, namely, VUS-PR for anomaly detection in time series to address concerns from the community; and (iii) Comprehensive Benchmarking: with a broad spectrum of 40 detection algorithms, from statistical methods to the latest foundation models, we perform a comprehensive evaluation that includes a thorough hyperparameter tuning and a unified setup for a fair and reproducible comparison. Our findings challenge the conventional wisdom regarding the superiority of advanced neural network architectures, revealing that simpler architectures and statistical …
Poster
Haoxin Liu · Shangqing Xu · Zhiyuan Zhao · Lingkai Kong · Harshavardhan Prabhakar Kamarthi · Aditya Sasanur · Megha Sharma · Jiaming Cui · Qingsong Wen · Chao Zhang · B. Aditya Prakash

[ East Exhibit Hall A-C ]

Abstract
Time series data are ubiquitous across a wide range of real-world domains. Whilereal-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSAmodels rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potentialof textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the firstmulti-domain, multimodal time series dataset covering 9 primary data domains.Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, thefirst-cut multimodal time-series forecasting (TSF) library, seamlessly pipeliningmultimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensiveexperiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality,evidenced by over 15% mean squared error reduction in general, and up to 40%in domains with rich textual data. More importantly, our datasets and libraryrevolutionize broader applications, impacts, research topics to advance TSA. Thedataset is available at https://github.com/AdityaLab/Time-MMD.
Spotlight Poster
Mingtian Tan · Mike Merrill · Vinayak Gupta · Tim Althoff · Tom Hartvigsen

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) are being applied to time series forecasting. But are language models actually useful for time series? In a series of ablation studies on three recent and popular LLM-based time series forecasting methods, we find that removing the LLM component or replacing it with a basic attention layer does not degrade forecasting performance---in most cases, the results even improve! We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch, do not represent the sequential dependencies in time series, and do not assist in few-shot settings. Additionally, we explore time series encoders and find that patching and attention structures perform similarly to LLM-based forecasters. All resources needed to reproduce our work are available: https://github.com/BennyTMT/LLMsForTimeSeries.
Poster
Songkai Xue · Yuekai Sun

[ East Exhibit Hall A-C ]

Abstract
Performative prediction aims to model scenarios where predictive outcomes subsequently influence the very systems they target. The pursuit of a performative optimum (PO)—minimizing performative risk—is generally reliant on modeling of the distribution map, which characterizes how a deployed ML model alters the data distribution. Unfortunately, inevitable misspecification of the distribution map can lead to a poor approximation of the true PO. To address this issue, we introduce a novel framework of distributionally robust performative prediction and study a new solution concept termed as distributionally robust performative optimum (DRPO). We show provable guarantees for DRPO as a robust approximation to the true PO when the nominal distribution map is different from the actual one. Moreover, distributionally robust performative prediction can be reformulated as an augmented performative prediction problem, enabling efficient optimization. The experimental results demonstrate that DRPO offers potential advantages over traditional PO approach when the distribution map is misspecified at either micro- or macro-level.
Poster
Shengfang ZHAI · Huanran Chen · Yinpeng Dong · Jiajun Li · Qingni Shen · Yansong Gao · Hang Su · Yang Liu

[ East Exhibit Hall A-C ]

Abstract
Text-to-image diffusion models have achieved tremendous success in the field of controllable image generation, while also coming along with issues of privacy leakage and data copyrights. Membership inference arises in these contexts as a potential auditing method for detecting unauthorized data usage. While some efforts have been made on diffusion models, they are not applicable to text-to-image diffusion models due to the high computation overhead and enhanced generalization capabilities. In this paper, we first identify a conditional overfitting phenomenon in text-to-image diffusion models, indicating that these models tend to overfit the conditional distribution of images given the corresponding text rather than the marginal distribution of images only. Based on this observation, we derive an analytical indicator, namely Conditional Likelihood Discrepancy (CLiD), to perform membership inference, which reduces the stochasticity in estimating memorization of individual samples. Experimental results demonstrate that our method significantly outperforms previous methods across various data distributions and dataset scales. Additionally, our method shows superior resistance to overfitting mitigation strategies, such as early stopping and data augmentation.
Poster
Haibo Jin · Andy Zhou · Joe Menke · Haohan Wang

[ East Exhibit Hall A-C ]

Abstract
Large Language Models (LLMs) are typically harmless but remain vulnerable to carefully crafted prompts known as ``jailbreaks'', which can bypass protective measures and induce harmful behavior. Recent advancements in LLMs have incorporated moderation guardrails that can filter outputs, which trigger processing errors for certain malicious questions. Existing red-teaming benchmarks often neglect to include questions that trigger moderation guardrails, making it difficult to evaluate jailbreak effectiveness. To address this issue, we introduce JAMBench, a harmful behavior benchmark designed to trigger and evaluate moderation guardrails. JAMBench involves 160 manually crafted instructions covering four major risk categories at multiple severity levels. Furthermore, we propose a jailbreak method, JAM (Jailbreak Against Moderation), designed to attack moderation guardrails using jailbreak prefixes to bypass input-level filters and a fine-tuned shadow model functionally equivalent to the guardrail model to generate cipher characters to bypass output-level filters. Our extensive experiments on four LLMs demonstrate that JAM achieves higher jailbreak success ($\sim$ $\times$ 19.88) and lower filtered-out rates ($\sim$ $\times$ 1/6) than baselines.
Poster
Edwige Cyffers · Muni Sreenivas Pydi · Jamal Atif · Olivier Cappé

[ East Exhibit Hall A-C ]

Abstract
Performative learning addresses the increasingly pervasive situations in which algorithmic decisions may induce changes in the data distribution as a consequence of their public deployment. We propose a novel view in which these performative effects are modelled as push forward measures. This general framework encompasses existing models and enables novel performative gradient estimation methods, leading to more efficient and scalable learning strategies. For distribution shifts, unlike previous models which require full specification of the data distribution, we only assume knowledge of the shift operator that represents the performative changes. This approach can also be integrated into various change-of-variable-based models, such as VAEs or normalizing flows. Focusing on classification with a linear-in-parameters performative effect, we prove the convexity of the performative risk under a new set of assumptions. Notably, we do not limit the strength of performative effects but rather their direction, requiring only that classification becomes harder when deploying more accurate models. In this case, we also establish a connection with adversarially robust classification by reformulating the performative risk as a min-max variational problem. Finally, we illustrate our approach on synthetic and real datasets.
Poster
Hui Wei · Zhixiang Wang · Kewei Zhang · Jiaqi Hou · Yuanwei Liu · Hao Tang · Zheng Wang

[ East Exhibit Hall A-C ]

Abstract
Physical adversarial attacks can deceive deep neural networks (DNNs), leading to erroneous predictions in real-world scenarios. To uncover potential security risks, attacking the safety-critical task of person detection has garnered significant attention. However, we observe that existing attack methods overlook the pivotal role of the camera, involving capturing real-world scenes and converting them into digital images, in the physical adversarial attack workflow. This oversight leads to instability and challenges in reproducing these attacks. In this work, we revisit patch-based attacks against person detectors and introduce a camera-agnostic physical adversarial attack to mitigate this limitation. Specifically, we construct a differentiable camera Image Signal Processing (ISP) proxy network to compensate for the physical-to-digital transition gap. Furthermore, the camera ISP proxy network serves as a defense module, forming an adversarial optimization framework with the attack module. The attack module optimizes adversarial patches to maximize effectiveness, while the defense module optimizes the conditional parameters of the camera ISP proxy network to minimize attack effectiveness. These modules engage in an adversarial game, enhancing cross-camera stability. Experimental results demonstrate that our proposed Camera-Agnostic Patch (CAP) attack effectively conceals persons from detectors across various imaging hardware, including two distinct cameras and four smartphones.
Spotlight Poster
Hoin Jung · Taeuk Jang · Xiaoqian Wang

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in Vision-Language Models (VLMs) have enabled complex multimodal tasks by processing text and image data simultaneously, significantly enhancing the field of artificial intelligence. However, these models often exhibit biases that can skew outputs towards societal stereotypes, thus necessitating debiasing strategies. Existing debiasing methods focus narrowly on specific modalities or tasks, and require extensive retraining. To address these limitations, this paper introduces Selective Feature Imputation for Debiasing (SFID), a novel methodology that integrates feature pruning and low confidence imputation (LCI) to effectively reduce biases in VLMs. SFID is versatile, maintaining the semantic integrity of outputs and costly effective by eliminating the need for retraining. Our experimental results demonstrate SFID's effectiveness across various VLMs tasks including zero-shot classification, text-to-image retrieval, image captioning, and text-to-image generation, by significantly reducing gender biases without compromising performance. This approach not only enhances the fairness of VLMs applications but also preserves their efficiency and utility across diverse scenarios.
Poster
Chaochao Chen · Jiaming Zhang · Yizhao Zhang · Li Zhang · Lingjuan Lyu · Yuyuan Li · Biao Gong · Chenggang Yan

[ East Exhibit Hall A-C ]

Abstract
With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in models, particularly in recommender systems where historical data contains sensitive user information. Despite recent advances in recommendation unlearning, evaluating unlearning methods comprehensively remains challenging due to the absence of a unified evaluation framework and overlooked aspects of deeper influence, e.g., fairness. To address these gaps, we propose CURE4Rec, the first comprehensive benchmark for recommendation unlearning evaluation. CURE4Rec covers four aspects, i.e., unlearning Completeness, recommendation Utility, unleaRning efficiency, and recommendation fairnEss, under three data selection strategies, i.e., core data, edge data, and random data. Specifically, we consider the deeper influence of unlearning on recommendation fairness and robustness towards data with varying impact levels. We construct multiple datasets with CURE4Rec evaluation and conduct extensive experiments on existing recommendation unlearning methods. Our code is released at https://github.com/xiye7lai/CURE4Rec.
Poster
Yibo Miao · Yifan Zhu · Lijia Yu · Jun Zhu · Xiao-Shan Gao · Yinpeng Dong

[ East Exhibit Hall A-C ]

Abstract
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its safety risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover limited aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, the first comprehensive benchmark for conducting safety-critical assessments of text-to-video models. We define 4 primary categories with 14 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts, and jailbreak attack-based prompts. We then conduct a thorough safety evaluation on 9 recently released T2V models. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative …
Poster
Kun Yi · Jingru Fei · Qi Zhang · Hui He · Shufeng Hao · Defu Lian · Wei Fan

[ East Exhibit Hall A-C ]

Abstract
Given the ubiquitous presence of time series data across various domains, precise forecasting of time series holds significant importance and finds widespread real-world applications such as energy, weather, healthcare, etc. While numerous forecasters have been proposed using different network architectures, the Transformer-based models have state-of-the-art performance in time series forecasting. However, forecasters based on Transformers are still suffering from vulnerability to high-frequency signals, efficiency in computation, and bottleneck in full-spectrum utilization, which essentially are the cornerstones for accurately predicting time series with thousands of points. In this paper, we explore a novel perspective of enlightening signal processing for deep time series forecasting. Inspired by the filtering process, we introduce one simple yet effective network, namely FilterNet, built upon our proposed learnable frequency filters to extract key informative temporal patterns by selectively passing or attenuating certain components of time series signals. Concretely, we propose two kinds of learnable filters in the FilterNet: (i) Plain shaping filter, that adopts a universal frequency kernel for signal filtering and temporal modeling; (ii) Contextual shaping filter, that utilizes filtered frequencies examined in terms of its compatibility with input signals fordependency learning. Equipped with the two filters, FilterNet can approximately surrogate the linear and attention mappings …
Poster
Jiaxi Hu · Yuehong HU · Wei Chen · Ming Jin · Shirui Pan · Qingsong Wen · Yuxuan Liang

[ East Exhibit Hall A-C ]

Abstract
In long-term time series forecasting (LTSF) tasks, an increasing number of works have acknowledged that discrete time series originate from continuous dynamic systems and have attempted to model their underlying dynamics. Recognizing the chaotic nature of real-world data, our model, Attraos, incorporates chaos theory into LTSF, perceiving real-world time series as low-dimensional observations from unknown high-dimensional chaotic dynamical systems. Under the concept of attractor invariance, Attraos utilizes non-parametric Phase Space Reconstruction embedding along with a novel multi-resolution dynamic memory unit to memorize historical dynamical structures, and evolves by a frequency-enhanced local evolution strategy. Detailed theoretical analysis and abundant empirical evidence consistently show that Attraos outperforms various LTSF methods on mainstream LTSF datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
Spotlight Poster
Shengsheng Lin · Weiwei Lin · Xinyi HU · Wentai Wu · Ruichao Mo · Haocheng Zhong

[ East Exhibit Hall A-C ]

Abstract
The stable periodic patterns present in time series data serve as the foundation for conducting long-horizon forecasts. In this paper, we pioneer the exploration of explicitly modeling this periodicity to enhance the performance of models in long-term time series forecasting (LTSF) tasks. Specifically, we introduce the Residual Cycle Forecasting (RCF) technique, which utilizes learnable recurrent cycles to model the inherent periodic patterns within sequences, and then performs predictions on the residual components of the modeled cycles. Combining RCF with a Linear layer or a shallow MLP forms the simple yet powerful method proposed in this paper, called CycleNet. CycleNet achieves state-of-the-art prediction accuracy in multiple domains including electricity, weather, and energy, while offering significant efficiency advantages by reducing over 90% of the required parameter quantity. Furthermore, as a novel plug-and-play technique, the RCF can also significantly improve the prediction accuracy of existing models, including PatchTST and iTransformer. The source code is available at: https://github.com/ACAT-SCUT/CycleNet.
Poster
Zhaomin Wu · Junyi Hou · Yiqun Diao · Bingsheng He

[ East Exhibit Hall A-C ]

Abstract
Federated Learning (FL) is an evolving paradigm that enables multiple parties to collaboratively train models without sharing raw data. Among its variants, Vertical Federated Learning (VFL) is particularly relevant in real-world, cross-organizational collaborations, where distinct features of a shared instance group are contributed by different parties. In these scenarios, parties are often linked using fuzzy identifiers, leading to a common practice termed as _multi-party fuzzy VFL_. Existing models generally address either multi-party VFL or fuzzy VFL between two parties. Extending these models to practical multi-party fuzzy VFL typically results in significant performance degradation and increased costs for maintaining privacy. To overcome these limitations, we introduce the _Federated Transformer (FeT)_, a novel framework that supports multi-party VFL with fuzzy identifiers. FeT innovatively encodes these identifiers into data representations and employs a transformer architecture distributed across different parties, incorporating three new techniques to enhance performance. Furthermore, we have developed a multi-party privacy framework for VFL that integrates differential privacy with secure multi-party computation, effectively protecting local representations while minimizing associated utility costs. Our experiments demonstrate that the FeT surpasses the baseline models by up to 46\% in terms of accuracy when scaled to 50 parties. Additionally, in two-party fuzzy VFL settings, FeT …
Poster
Andy Zou · Long Phan · Justin Wang · Derek Duenas · Maxwell Lin · Maksym Andriushchenko · J. Zico Kolter · Matt Fredrikson · Dan Hendrycks

[ East Exhibit Hall A-C ]

Abstract
AI systems can take harmful actions and are highly vulnerable to adversarial attacks. We present an approach, inspired by recent advances in representation engineering, that interrupts the models as they respond with harmful outputs with "circuit breakers." Existing techniques aimed at improving alignment, such as refusal training, are often bypassed. Techniques such as adversarial training try to plug these holes by countering specific attacks. As an alternative to refusal training and adversarial training, circuit-breaking directly controls the representations that are responsible for harmful outputs in the first place. Our technique can be applied to both text-only and multimodal language models to prevent the generation of harmful outputs without sacrificing utility -- even in the presence of powerful unseen attacks. Notably, while adversarial robustness in standalone image recognition remains an open challenge, circuit breakers allow the larger multimodal system to reliably withstand image "hijacks" that aim to produce harmful content. Finally, we extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack. Our approach represents a significant step forward in the development of reliable safeguards to harmful behavior and adversarial attacks.
Poster
Keyi Kong · Xilie Xu · Di Wang · Jingfeng ZHANG · Mohan Kankanhalli

[ East Exhibit Hall A-C ]

Abstract
Alignment techniques are critical in ensuring that large language models (LLMs) output helpful and harmless content by enforcing the LLM-generated content to align with human preferences. However, the existence of noisy preferences (NPs), where the responses are mistakenly labelled as chosen or rejected, could spoil the alignment, thus making the LLMs generate useless and even malicious content. Existing methods mitigate the issue of NPs from the loss perspective by adjusting the alignment loss based on a clean validation dataset.Orthogonal to these loss-oriented methods, we propose perplexity-aware correction (PerpCorrect) from the data perspective for robust alignment which detects and corrects NPs based on the differences between the perplexity of the chosen and rejected responses (dubbed as PPLDiff). Intuitively, a higher PPLDiff indicates a higher probability of the NP because a rejected/chosen response which is mistakenly labelled as chosen/rejected is less preferable to be generated by an aligned LLM, thus having a higher/lower perplexity.PerpCorrect works in three steps: (1) PerpCorrect aligns a surrogate LLM using the clean validation data to make the PPLDiff able to distinguish clean preferences (CPs) and NPs. (2) PerpCorrect further aligns the surrogate LLM by incorporating the reliable clean training data whose PPLDiff is extremely small and reliable …
Poster
Tiansheng Huang · Sihao Hu · Fatih Ilhan · Selim Tekin · Ling Liu

[ East Exhibit Hall A-C ]

Abstract
Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. For the first time in the literature, we show that the jail-break effect can be mitigated by separating two states in the fine-tuning stage to respectively optimize over the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the \textit{excess drift} towards the switching iterates of the two states could be a probable reason for the instability. To remedy this issue, we propose \textbf{L}azy(\textbf{i}) \textbf{s}afety \textbf{a}lignment (\textbf{Lisa}), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream fine-tuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa.
Spotlight Poster
Frederik Hoppe · Claudio Mayrink Verdun · Hannah Laus · Felix Krahmer · Holger Rauhut

[ East Exhibit Hall A-C ]

Abstract
Uncertainty quantification (UQ) is a crucial but challenging task in many high-dimensional learning problems to increase the confidence of a given predictor. We develop a new data-driven approach for UQ in regression that applies both to classical optimization approaches such as the LASSO as well as to neural networks. One of the most notable UQ techniques is the debiased LASSO, which modifies the LASSO to allow for the construction of asymptotic confidence intervals by decomposing the estimation error into a Gaussian and an asymptotically vanishing bias component. However, in real-world problems with finite-dimensional data, the bias term is often too significant to disregard, resulting in overly narrow confidence intervals. Our work rigorously addresses this issue and derives a data-driven adjustment that corrects the confidence intervals for a large class of predictors by estimating the means and variances of the bias terms from training data, exploiting high-dimensional concentration phenomena. This gives rise to non-asymptotic confidence intervals, which can help avoid overestimating certainty in critical applications such as MRI diagnosis. Importantly, our analysis extends beyond sparse regression to data-driven predictors like neural networks, enhancing the reliability of model-based deep learning. Our findings bridge the gap between established theory and the practical applicability …
Poster
Yong-Hyun Park · Sangdoo Yun · Jin-Hwa Kim · Junho Kim · Geonhui Jang · Yonghyun Jeong · Junghyo Jo · Gayoung Lee

[ East Exhibit Hall A-C ]

Abstract
Recent advancements in text-to-image (T2I) models have greatly benefited from large-scale datasets, but they also pose significant risks due to the potential generation of unsafe content. To mitigate this issue, researchers proposed unlearning techniques that attempt to induce the model to unlearn potentially harmful prompts. However, these methods are easily bypassed by adversarial attacks, making them unreliable for ensuring the safety of generated images. In this paper, we propose Direct Unlearning Optimization (DUO), a novel framework for removing NSFW content from T2I models while preserving their performance on unrelated topics. DUO employs a preference optimization approach using curated paired image data, ensuring that the model learns to remove unsafe visual concepts while retain unrelated features. Furthermore, we introduce an output-preserving regularization term to maintain the model's generative capabilities on safe content. Extensive experiments demonstrate that DUO can robustly defend against various state-of-the-art red teaming methods without significant performance degradation on unrelated topics, as measured by FID and CLIP scores. Our work contributes to the development of safer and more reliable T2I models, paving the way for their responsible deployment in both closed-source and open-source scenarios.
Poster
Zhaorun Chen · Zhen Xiang · Chaowei Xiao · Dawn Song · Bo Li

[ East Exhibit Hall A-C ]

Abstract
LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory orRAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, resilience, and stealthiness. Extensive experiments demonstrate …
Spotlight Poster
Deepak Ravikumar · Efstathia Soufleri · Kaushik Roy

[ East Exhibit Hall A-C ]

Abstract
In this paper, we explore the properties of loss curvature with respect to input data in deep neural networks. Curvature of loss with respect to input (termed input loss curvature) is the trace of the Hessian of the loss with respect to the input. We investigate how input loss curvature varies between train and test sets, and its implications for train-test distinguishability. We develop a theoretical framework that derives an upper bound on the train-test distinguishability based on privacy and the size of the training set. This novel insight fuels the development of a new black box membership inference attack utilizing input loss curvature. We validate our theoretical findings through experiments in computer vision classification tasks, demonstrating that input loss curvature surpasses existing methods in membership inference effectiveness. Our analysis highlights how the performance of membership inference attack (MIA) methods varies with the size of the training set, showing that curvature-based MIA outperforms other methods on sufficiently large datasets. This condition is often met by real datasets, as demonstrated by our results on CIFAR10, CIFAR100, and ImageNet. These findings not only advance our understanding of deep neural network behavior but also improve the ability to test privacy-preserving techniques in machine …
Poster
Paulius Rauba · Nabeel Seedat · Krzysztof Kacprzyk · Mihaela van der Schaar

[ East Exhibit Hall A-C ]

Abstract
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process (DGP). Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their *reason-agnostic* nature. By choosing from a pre-defined set of actions, such methods implicitly assume that the causes of model degradation are irrelevant to what actions should be taken, limiting their ability to select appropriate adaptations. In this paper, we propose an alternative paradigm to overcome these limitations, called *self-healing machine learning* (SHML). Contrary to previous approaches, SHML autonomously diagnoses the reason for degradation and proposes diagnosis-based corrective actions. We formalize SHML as an optimization problem over a space of adaptation actions to minimize the expected risk under the shifted DGP. We introduce a theoretical framework for self-healing systems and build an agentic self-healing solution *$\mathcal{H}$-LLM* which uses large language models to perform self-diagnosis by reasoning about the structure underlying the DGP, and self-adaptation by proposing and evaluating corrective actions. Empirically, we analyze different components of *$\mathcal{H}$-LLM* to understand *why* and *when* it works, demonstrating the potential of self-healing ML.
Poster
Zelei Cheng · Xian Wu · Jiahao Yu · Shuo Han · Xin-Qiang Cai · Xinyu Xing

[ East Exhibit Hall A-C ]

Abstract
Toxicity classification in textual content remains a significant problem. Data with labels from a single annotator fall short of capturing the diversity of human perspectives. Therefore, there is a growing need to incorporate crowdsourced annotations for training an effective toxicity classifier. Additionally, the standard approach to training a classifier using empirical risk minimization (ERM) may fail to address the potential shifts between the training set and testing set due to exploiting spurious correlations. This work introduces a novel bi-level optimization framework that integrates crowdsourced annotations with the soft-labeling technique and optimizes the soft-label weights by Group Distributionally Robust Optimization (GroupDRO) to enhance the robustness against out-of-distribution (OOD) risk. We theoretically prove the convergence of our bi-level optimization algorithm. Experimental results demonstrate that our approach outperforms existing baseline methods in terms of both average and worst-group accuracy, confirming its effectiveness in leveraging crowdsourced annotations to achieve more effective and robust toxicity classification.
Poster
Shai Feldman · Yaniv Romano

[ East Exhibit Hall A-C ]

Abstract
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data, such as missing or noisy variables. Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption. Importantly, naively applying conformal prediction does not provide reliable predictions in this setting, due to the distribution shift induced by the corruptions. To account for the distribution shift, we assume access to privileged information (PI). The PI is formulated as additional features that explain the distribution shift, however, they are only available during training and absent at test time.We approach this problem by introducing a novel generalization of weighted conformal prediction and support our method with theoretical coverage guarantees. Empirical experiments on both real and synthetic datasets indicate that our approach achieves a valid coverage rate and constructs more informative predictions compared to existing methods, which are not supported by theoretical guarantees.
Poster
Liwei Jiang · Kavel Rao · Seungju Han · Allyson Ettinger · Faeze Brahman · Sachin Kumar · Niloofar Mireshghallah · Ximing Lu · Maarten Sap · Yejin Choi · Nouha Dziri

[ East Exhibit Hall A-C ]

Abstract
We introduce WildTeaming, an automatic red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes selections of multiple mined tactics for systematic exploration of novel and even more challenging jailbreaks.Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with large language models (LLMs), our work investigates jailbreaks from chatbot users in-the-wild who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in more diverse and successful adversarial attacks compared to state-of-the-art jailbreaking methods. While there exist many datasets for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed among all frontier models even when their weights are open. Therefore, with WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. In order to mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (both vanilla and adversarial) and 2) benign queries that resemble harmful queries in form but contain no harmful intent. As WildJailbreak considerably upgrades the quality and scale of existing safety …
Poster
Gowthami Somepalli · Arkabandhu Chowdhury · Jonas Geiping · Ronen Basri · Tom Goldstein · David Jacobs

[ East Exhibit Hall A-C ]

Abstract
The recent emergence of powerful Vision-Language models (VLMs) has significantly improved image captioning. Some of these models are extended to caption videos as well. However, their capabilities to understand complex scenes are limited, and the descriptions they provide for scenes tend to be overly verbose and focused on the superficial appearance of objects. Scene descriptions, especially in movies, require a deeper contextual understanding, unlike general-purpose video captioning. To address this challenge, we propose a model, CALVIN, a specialized video LLM that leverages previous movie context to generate fully "contextual" scene descriptions. To achieve this, we train our model on a suite of tasks that integrate both image-based question-answering and video captioning within a unified framework, before applying instruction tuning to refine the model's ability to provide scene captions. Lastly, we observe that our model responds well to prompt engineering and few-shot in-context learning techniques, enabling the user to adapt it to any new movie with very little additional annotation.
Poster
Zeng Tao · Tong Yang · Junxiong Lin · Xinji Mai · Haoran Wang · Beining Wang · Enyu Zhou · Yan Wang · Wenqiang Zhang

[ East Exhibit Hall A-C ]

Abstract
The Janus Problem is a common issue in SDS-based text-to-3D methods. Due to view encoding approach and 2D diffusion prior guidance, the 3D representation model tends to learn content with higher certainty from each perspective, leading to view inconsistency. In this work, we first model and analyze the problem, visualizing the specific causes of the Janus Problem, which are associated with discrete view encoding and shared priors in 2D lifting. Based on this, we further propose the LCGen method, which guides text-to-3D to obtain different priors with different certainty from various viewpoints, aiding in view-consistent generation. Experiments have proven that our LCGen method can be directly applied to different SDS-based text-to-3D methods, alleviating the Janus Problem without introducing additional information, increasing excessive training burden, or compromising the generation effect.
Spotlight Poster
Ilias Diakonikolas · Nikos Zarifis

[ East Exhibit Hall A-C ]

Abstract
We study the problem of PAC learning $\gamma$-margin halfspaces in the presence of Massart noise. Without computational considerations, the sample complexity of this learning problem is known to be $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. Prior computationally efficient algorithms for the problem incur sample complexity $\tilde{O}(1/(\gamma^4 \epsilon^3))$ and achieve 0-1 error of $\eta+\epsilon$, where $\eta<1/2$ is the upper bound on the noise rate.Recent work gave evidence of an information-computation tradeoff, suggesting that a quadratic dependence on $1/\epsilon$ is required for computationally efficient algorithms. Our main result is a computationally efficient learner with sample complexity $\widetilde{\Theta}(1/(\gamma^2 \epsilon^2))$, nearly matching this lower bound. In addition, our algorithm is simple and practical, relying on online SGD on a carefully selected sequence of convex losses.
Spotlight Poster
Yubao Tang · Ruqing Zhang · Jiafeng Guo · Maarten Rijke · Wei Chen · Xueqi Cheng

[ East Exhibit Hall A-C ]

Abstract
Generative retrieval represents a novel approach to information retrieval, utilizing an encoder-decoder architecture to directly produce relevant document identifiers (docids) for queries. While this method offers benefits, current implementations are limited to scenarios with binary relevance data, overlooking the potential for documents to have multi-graded relevance. Extending generative retrieval to accommodate multi-graded relevance poses challenges, including the need to reconcile likelihood probabilities for docid pairs and the possibility of multiple relevant documents sharing the same identifier. To address these challenges, we introduce a new framework called GRaded Generative Retrieval (GR$^2$). Our approach focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training. Firstly, we aim to create identifiers that are both semantically relevant and sufficiently distinct to represent individual documents effectively. This is achieved by jointly optimizing the relevance and distinctness of docids through a combination of docid generation and autoencoder models. Secondly, we incorporate information about the relationship between relevance grades to guide the training process. Specifically, we leverage a constrained contrastive training strategy to bring the representations of queries and the identifiers of their relevant documents closer together, based on their respective relevance grades.Extensive experiments on datasets with both multi-graded and binary …
Spotlight Poster
Ilias Diakonikolas · Lisheng Ren · Nikos Zarifis

[ East Exhibit Hall A-C ]

Abstract
We study the problem of PAC learning halfspaces in the reliable agnostic model of Kalai et al. (2012).The reliable PAC model captures learning scenarios where one type of error is costlier than the others. Our main positive result is a new algorithm for reliable learning of Gaussian halfspaces on $\mathbb{R}^d$ with sample and computational complexity $d^{O(\log (\min\{1/\alpha, 1/\epsilon\}))}\min (2^{\log(1/\epsilon)^{O(\log (1/\alpha))}},2^{\mathrm{poly}(1/\epsilon)})$, where $\epsilon$ is the excess error and $\alpha$ is the bias of the optimal halfspace. We complement our upper bound with a Statistical Query lower bound suggesting that the $d^{\Omega(\log (1/\alpha))}$ dependence is best possible. Conceptually, our results imply a strong computational separation between reliable agnostic learning and standard agnostic learning of halfspaces in the Gaussian setting.
Poster
Xian Wu · Yutian Zhao · Yunyan Zhang · Jiageng Wu · Zhihong Zhu · Yingying Zhang · Yi Ouyang · Ziheng Zhang · Huimin WANG · zhenxi Lin · Jie Yang · Shuang Zhao · Yefeng Zheng

[ East Exhibit Hall A-C ]

Abstract
Large language models (LLMs) have demonstrated remarkable capabilities in language understanding and generation, leading to their widespread adoption across various fields. Among these, the medical field is particularly well-suited for LLM applications, as many medical tasks can be enhanced by LLMs. Despite the existence of benchmarks for evaluating LLMs in medical question-answering and exams, there remains a notable gap in assessing LLMs' performance in supporting patients throughout their entire hospital visit journey in real-world clinical practice. In this paper, we address this gap by dividing a typical patient's clinical journey into four stages: planning, access, delivery and ongoing care. For each stage, we introduce multiple tasks and corresponding datasets, resulting in a comprehensive benchmark comprising 12 datasets, of which five are newly introduced, and seven are constructed from existing datasets. This proposed benchmark facilitates a thorough evaluation of LLMs' effectiveness across the entire patient journey, providing insights into their practical application in clinical settings. Additionally, we evaluate three categories of LLMs against this benchmark: 1) proprietary LLM services such as GPT-4; 2) public LLMs like QWen; and 3) specialized medical LLMs, like HuatuoGPT2. Through this extensive evaluation, we aim to provide a better understanding of LLMs' performance in the medical …
Spotlight Poster
John Arevalo · Ellen Su · Anne Carpenter · Shantanu Singh

[ East Exhibit Hall A-C ]

Abstract
Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics and detecting mechanisms of action. While structure-based methods accurately model physical interactions between a drug and its protein target, cell-based assays such as Cell Painting can better capture complex DTI interactions. This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds, along with their relationships extracted from seven publicly available databases. We provide random, cold-source (new drugs), and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases. Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone, feature-based models, and topological heuristics. MOTIVE accelerates both graph ML research and drug discovery by promoting the development of more reliable DTI prediction models. MOTIVE resources are available at https://github.com/carpenter-singh-lab/motive.
Poster
Zhongkai Shangguan · Zanming Huang · Eshed Ohn-Bar · Ola Ozernov-Palchik · Derek Kosty · Michael Stoolmiller · Hank Fien

[ East Exhibit Hall A-C ]

Abstract
Models for student reading performance can empower educators and institutions to proactively identify at-risk students, thereby enabling early and tailored instructional interventions. However, there are no suitable publicly available educational datasets for modeling and predicting future reading performance. In this work, we introduce the Enhanced Core Reading Instruction (ECRI) dataset, a novel large-scale longitudinal tabular dataset collected across 44 schools with 6,916 students and 172 teachers. We leverage the dataset to empirically evaluate the ability of state-of-the-art machine learning models to recognize early childhood educational patterns in multivariate and partial measurements. Specifically, we demonstrate a simple self-supervised strategy in which a Multi-Layer Perception (MLP) network is pre-trained over masked inputs to outperform several strong baselines while generalizing over diverse educational settings. To facilitate future developments in precise modeling and responsible use of models for individualized and early intervention strategies, our data and code are available at https://ecri-data.github.io/.
Poster
hanzhe li · Jiaran Zhou · Yuezun Li · Baoyuan Wu · Bin Li · Junyu Dong

[ East Exhibit Hall A-C ]

Abstract
Generating synthetic fake faces, known as pseudo-fake faces, is an effective way to improve the generalization of DeepFake detection. Existing methods typically generate these faces by blending real or fake faces in spatial domain. While these methods have shown promise, they overlook the simulation of frequency distribution in pseudo-fake faces, limiting the learning of generic forgery traces in-depth. To address this, this paper introduces {\em FreqBlender}, a new method that can generate pseudo-fake faces by blending frequency knowledge. Concretely, we investigate the major frequency components and propose a Frequency Parsing Network to adaptively partition frequency components related to forgery traces. Then we blend this frequency knowledge from fake faces into real faces to generate pseudo-fake faces. Since there is no ground truth for frequency components, we describe a dedicated training strategy by leveraging the inner correlations among different frequency knowledge to instruct the learning process. Experimental results demonstrate the effectiveness of our method in enhancing DeepFake detection, making it a potential plug-and-play strategy for other methods.
Poster
Gaochao Song · Chong Cheng · Hao Wang

[ East Exhibit Hall A-C ]

Abstract
In this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas.To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.
Poster
Aymeric Capitaine · Etienne Boursier · Antoine Scheid · Eric Moulines · Michael Jordan · El-Mahdi El-Mhamdi · Alain Durmus

[ East Exhibit Hall A-C ]

Abstract
Collaborative learning offers a promising avenue for leveraging decentralized data. However, collaboration in groups of strategic learners is not a given. In this work, we consider strategic agents who wish to train a model together but have sampling distributions of different quality. The collaboration is organized by a benevolent aggregator who gathers samples so as to maximize total welfare, but is unaware of data quality. This setting allows us to shed light on the deleterious effect of adverse selection in collaborative learning. More precisely, we demonstrate that when data quality indices are private, the coalition may undergo a phenomenon known as unravelling, wherein it shrinks up to the point that it becomes empty or solely comprised of the worst agent. We show how this issue can be addressed without making use of external transfers, by proposing a novel method inspired by probabilistic verification. This approach makes the grand coalition a Nash equilibrium with high probability despite information asymmetry, thereby breaking unravelling.
Poster
Xuweiyi Chen · Ziqiao Ma · Xuejun Zhang · Sihan Xu · Shengyi Qian · Jianing Yang · David Fouhey · Joyce Chai

[ East Exhibit Hall A-C ]

Abstract
Large vision language models (LVLMs) often suffer from object hallucination, producing objects not present in the given images. While current benchmarks for object hallucination primarily concentrate on the presence of a single object class rather than individual entities, this work systematically investigates multi-object hallucination, examining how models misperceive (e.g., invent nonexistent objects or become distracted) when tasked with focusing on multiple objects simultaneously.We introduce Recognition-based Object Probing Evaluation (ROPE), an automated evaluation protocol that considers the distribution of object classes within a single image during testing and uses visual referring prompts to eliminate ambiguity. With comprehensive empirical studies and analysis of potential factors leading to multi-object hallucination, we found that (1) LVLMs suffer more hallucinations when focusing on multiple objects compared to a single object. (2) The tested object class distribution affects hallucination behaviors, indicating that LVLMs may follow shortcuts and spurious correlations.(3) Hallucinatory behaviors are influenced by data-specific factors, salience and frequency, and model intrinsic behaviors.We hope to enable LVLMs to recognize and reason about multiple objects that often occur in realistic visual scenes, provide insights, and quantify our progress towards mitigating the issues.
Poster
Vinod Raman · Unique Subedi · Ambuj Tewari

[ East Exhibit Hall A-C ]

Abstract
We study online classification under smoothed adversaries. In this setting, at each time point, the adversary draws an example from a distribution that has a bounded density with respect to a fixed base measure, which is known apriori to the learner. For binary classification and scalar-valued regression, previous works [Haghtalab et al., 2020, Block et al., 2022] have shown that smoothed online learning is as easy as learning in the iid batch setting under PAC model. However, we show that smoothed online classification can be harder than the iid batch classification when the label space is unbounded. In particular, we construct a hypothesis class that is learnable in the iid batch setting under the PAC model but is not learnable under the smoothed online model. Finally, we identify a condition that ensures that the PAC learnability of a hypothesis class is sufficient for its smoothed online learnability.
Poster
Jinzhu Luo · Dingyang Chen · Qi Zhang

[ East Exhibit Hall A-C ]

Abstract
Data augmentation creates new data points by transforming the original ones for an reinforcement learning (RL) agent to learn from, which has been shown to be effective for the objective of improving data efficiency of RL for continuous control. Prior work towards this objective has been largely restricted to perturbation-based data augmentation where new data points are created by perturbing the original ones,which has been impressively effective for tasks where the RL agent observe control states as images with perturbations including random cropping, shifting, etc. This work focuses on state-based control, where the RL agent can directly observe raw kinematic and task features, and considers an alternative data augmentation applied to these features based on Euclidean symmetries under transformations like rotations. We show that the default state features used in exiting benchmark tasks that are based on joint configurations are not amenable to Euclidean transformations. We therefore advocate using state features based on configurations of the limbs (i.e., rigid bodies connected by joints) that instead provides rich augmented data under Euclidean transformations. With minimal hyperparameter tuning, we show this new Euclidean data augmentation strategy significantly improve both data efficiency and asymptotic performance of RL on a wide range of continuous …
Poster
Ziqi Gao · Zijing Liu · Yu Li · Jia Li

[ East Exhibit Hall A-C ]

Abstract
The knowledge of protein interactions is crucial but challenging for drug discovery applications. This work focuses on protein interface prediction, which aims to determine whether a pair of residues from different proteins interact. Existing data-driven methods have made significant progress in effectively learning protein structures. Nevertheless, they overlook the conformational changes (i.e., flexibility) within proteins upon binding, leading to poor generalization ability. In this paper, we regard the protein flexibility as an attack on the trained model and aim to defend against it for improved generalization. To fulfill this purpose, we propose ATProt, an adversarial training framework for protein representations to robustly defend against the attack of protein flexibility. ATProt can theoretically guarantee protein representation stability under complicated protein flexibility. Experiments on various benchmarks demonstrate that ATProt consistently improves the performance for protein interface prediction. Moreover, our method demonstrates broad applicability, performing the best even when provided with testing structures from structure prediction models like ESMFold and AlphaFold2.
Poster
Yi Ma · Jianye Hao · Xiaohan Hu · YAN ZHENG · Chenjun Xiao

[ East Exhibit Hall A-C ]

Abstract
One of the fundamental challenges for offline reinforcement learning (RL) is ensuring robustness to data distribution. Whether the data originates from a near-optimal policy or not, we anticipate that an algorithm should demonstrate its ability to learn an effective control policy that seamlessly aligns with the inherent distribution of offline data. Unfortunately, behavior regularization, a simple yet effective offline RL algorithm, tends to struggle in this regard. In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration. Our key observation is that by iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement, while also implicitly avoiding querying out-of-sample actions to prevent catastrophic learning failures. We prove that in the tabular setting this algorithm is capable of learning the optimal policy covered by the offline dataset, commonly referred to as the in-sample optimal policy. We then explore several implementation details of the algorithm when function approximations are applied. The resulting algorithm is easy to implement, requiring only a few lines of code modification to existing methods. Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks, clearly demonstrate its superiority over …
Poster
Yan-Feng Xie · Peng Zhao · Zhi-Hua Zhou

[ East Exhibit Hall A-C ]

Abstract
Gradient-variation online learning aims to achieve regret guarantees that scale with variations in the gradients of online functions, which is crucial for attaining fast convergence in games and robustness in stochastic optimization, hence receiving increased attention. Existing results often require the smoothness condition by imposing a fixed bound on gradient Lipschitzness, which may be unrealistic in practice. Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms. In this paper, we systematically study gradient-variation online learning under generalized smoothness. We extend the classic optimistic mirror descent algorithm to derive gradient-variation regret by analyzing stability over the optimization trajectory and exploiting smoothness locally. Then, we explore universal online learning, designing a single algorithm with the optimal gradient-variation regrets for convex and strongly convex functions simultaneously, without requiring prior knowledge of curvature. This algorithm adopts a two-layer structure with a meta-algorithm running over a group of base-learners. To ensure favorable guarantees, we design a new Lipschitz-adaptive meta-algorithm, capable of handling potentially unbounded gradients while ensuring a second-order bound to effectively ensemble the base-learners. Finally, we provide the applications for fast-rate convergence in games and stochastic extended adversarial optimization.
Poster
Beier Zhu · Jiequan Cui · Hanwang Zhang

[ East Exhibit Hall A-C ]

Abstract
When fine-tuning zero-shot models like CLIP, our desideratum is for the fine-tuned model to excel in both in-distribution (ID) and out-of-distribution (OOD). Recently, ensemble-based models (ESM) have been shown to offer significant robustness improvement, while preserving high ID accuracy. However, our study finds that ESMs do not solve the ID-OOD trade-offs: they achieve peak performance for ID and OOD accuracy at different mixing coefficients. When optimized for OOD accuracy, the ensemble model exhibits a noticeable decline in ID accuracy, and vice versa. In contrast, we propose a sample-wise ensembling technique that can simultaneously attain the best ID and OOD accuracy without the trade-offs. Specifically, we construct a Zero-Shot Failure (ZSF) set containing training samples incorrectly predicted by the zero-shot model. For each test sample, we calculate its distance to the ZSF set and assign a higher weight to the fine-tuned model in the ensemble if the distance is small. We term our method Variance Reduction Fine-tuning (VRF), as it effectively reduces the variance in ensemble predictions, thereby decreasing residual error. On ImageNet and five derived distribution shifts, our VRF further improves the OOD accuracy by 1.5 - 2.0 pp over the ensemble baselines while maintaining or increasing ID accuracy. VRF …
Poster
Huayu Chen · Kaiwen Zheng · Hang Su · Jun Zhu

[ East Exhibit Hall A-C ]

Abstract
Drawing upon recent advances in language model alignment, we formulate offline Reinforcement Learning as a two-stage optimization problem: First pretraining expressive generative policies on reward-free behavior datasets, then finetuning these policies to align with task-specific annotations like Q-values. This strategy allows us to leverage abundant and diverse behavior data to enhance generalization and enable rapid adaptation to downstream tasks using minimal annotations. In particular, we introduce Efficient Diffusion Alignment (EDA) for solving continuous control problems. EDA utilizes diffusion models for behavior modeling. However, unlike previous approaches, we represent diffusion policies as the derivative of a scalar neural network with respect to action inputs. This representation is critical because it enables direct density calculation for diffusion models, making them compatible with existing LLM alignment theories. During policy fine-tuning, we extend preference-based alignment methods like Direct Preference Optimization (DPO) to align diffusion behaviors with continuous Q-functions. Our evaluation on the D4RL benchmark shows that EDA exceeds all baseline methods in overall performance. Notably, EDA maintains about 95\% of performance and still outperforms several baselines given only 1\% of Q-labelled data during fine-tuning.
Poster
Xiang Yue · Tianyu Zheng · Ge Zhang · Wenhu Chen

[ East Exhibit Hall A-C ]

Abstract
Instruction tuning improves the reasoning abilities of large language models (LLMs), with data quality and scalability being the crucial factors. Most instruction tuning data come from human crowd-sourcing or GPT-4 distillation. We propose a paradigm to efficiently harvest 10 million naturally existing instruction data from the pre-training web corpus to enhance LLM reasoning. Our approach involves (1) recalling relevant documents, (2) extracting instruction-response pairs, and (3) refining the extracted pairs using open-source LLMs. Fine-tuning base LLMs on this dataset, we build MAmmoTH2 models, which significantly boost performance on reasoning benchmarks. Notably, MAmmoTH2-7B’s (Mistral) performance increases from 11% to 36.7% on MATH and from 36% to 68.4% on GSM8K without training on any in-domain data. Further training MAmmoTH2 on public instruction tuning datasets yields MAmmoTH2-Plus, achieving state-of-the-art performance on several reasoning and chatbot benchmarks. Our work demonstrates how to harvest large-scale, high-quality instruction data without costly human annotation or GPT-4 distillation, providing a new paradigm for building better instruction tuning data.
Poster
Enrique Nueve · Dhamma Kimpara · Bo Waggoner · Jessica Finocchiaro

[ East Exhibit Hall A-C ]

Abstract
In multiclass classification over $n$ outcomes, we typically optimize some surrogate loss $L: \mathbb{R}^d \times\mathcal{Y} \to \mathbb{R}$ assigning real-valued error to predictions in $\mathbb{R}^d$. In this paradigm, outcomes must be embedded into the reals with dimension $d \approx n$ in order to design a consistent surrogate loss. Consistent losses are well-motivated theoretically, yet for large $n$, such as in information retrieval and structured prediction tasks, their optimization may be computationally infeasible. In practice, outcomes are typically embedded into some $\mathbb{R}^d$ for $d \ll n$, with little known about their suitability for multiclass classification. We investigate two approaches for trading off consistency and dimensionality in multiclass classification while using a convex surrogate loss. We first formalize partial consistency when the optimized surrogate has dimension $d \ll n$. We then check if partial consistency holds under a given embedding and low-noise assumption, providing insight into when to use a particular embedding into $\mathbb{R}^d$. Finally, we present a new method to construct (fully) consistent losses with $d \ll n$ out of multiple problem instances. Our practical approach leverages parallelism to sidestep lower bounds on $d$.
Poster
Xiaochuan Gong · Jie Hao · Mingrui Liu

[ East Exhibit Hall A-C ]

Abstract
This paper investigates a class of stochastic bilevel optimization problems where the upper-level function is nonconvex with potentially unbounded smoothness and the lower-level problem is strongly convex. These problems have significant applications in sequential data learning, such as text classification using recurrent neural networks. The unbounded smoothness is characterized by the smoothness constant of the upper-level function scaling linearly with the gradient norm, lacking a uniform upper bound. Existing state-of-the-art algorithms require $\widetilde{O}(\epsilon^{-4})$ oracle calls of stochastic gradient or Hessian/Jacobian-vector product to find an $\epsilon$-stationary point. However, it remains unclear if we can further improve the convergence rate when the assumptions for the function in the population level also hold for each random realization almost surely (e.g., Lipschitzness of each realization of the stochastic gradient). To address this issue, we propose a new Accelerated Bilevel Optimization algorithm named AccBO. The algorithm updates the upper-level variable by normalized stochastic gradient descent with recursive momentum and the lower-level variable by the stochastic Nesterov accelerated gradient descent algorithm with averaging. We prove that our algorithm achieves an oracle complexity of $\widetilde{O}(\epsilon^{-3})$ to find an $\epsilon$-stationary point, when the lower-level stochastic gradient has a small variance $O(\epsilon)$. Our proof relies on a novel lemma …
Poster
Xing Cui · Peipei Li · Zekun Li · Xuannan Liu · Yueying Zou · Zhaofeng He

[ East Exhibit Hall A-C ]

Abstract
Flexible and accurate drag-based editing is a challenging task that has recently garnered significant attention. Current methods typically model this problem as automatically learning "how to drag" through point dragging and often produce one deterministic estimation, which presents two key limitations: 1) Overlooking the inherently ill-posed nature of drag-based editing, where multiple results may correspond to a given input, as illustrated in Fig.1; 2) Ignoring the constraint of image quality, which may lead to unexpected distortion.To alleviate this, we propose LucidDrag, which shifts the focus from "how to drag" to "what-then-how" paradigm. LucidDrag comprises an intention reasoner and a collaborative guidance sampling mechanism. The former infers several optimal editing strategies, identifying what content and what semantic direction to be edited. Based on the former, the latter addresses "how to drag" by collaboratively integrating existing editing guidance with the newly proposed semantic guidance and quality guidance.Specifically, semantic guidance is derived by establishing a semantic editing direction based on reasoned intentions, while quality guidance is achieved through classifier guidance using an image fidelity discriminator.Both qualitative and quantitative comparisons demonstrate the superiority of LucidDrag over previous methods.
Poster
Jingyang Yuan · Gongbo Sun · Zhiping Xiao · Hang Zhou · Xiao Luo · Junyu Luo · Yusheng Zhao · Wei Ju · Ming Zhang

[ East Exhibit Hall A-C ]

Abstract
This paper studies the problem of rigid dynamics modeling, which has a wide range of applications in robotics, graphics, and mechanical design. The problem is partly solved by graph neural network (GNN) simulators. However, these approaches cannot effectively handle the relationship between intrinsic continuity and instantaneous changes in rigid dynamics. Moreover, they usually neglect hierarchical structures across mesh nodes and objects in systems. In this paper, we propose a novel approach named Event-attend Graph ODE (EGODE) for effective rigid dynamics modeling. In particular, we describe the rigid system using both mesh node representations and object representations. To model continuous dynamics across hierarchical structures, we use a coupled graph ODE framework for the evolution of both types of representations over a long period. In addition, to capture instantaneous changes during the collision, we introduce an event module, which can effectively estimate the occurrence of the collision and update the states of both mesh node and object representations during evolution. Extensive experiments on a range of benchmark datasets validate the superiority of the proposed EGODE compared to various state-of-the-art baselines. The source code can be found at https://github.com/yuanjypku/EGODE.
Poster
Yuhan Li · Hao Zhou · Wenxiang Shang · Ran Lin · Xuanhong Chen · Bingbing Ni

[ East Exhibit Hall A-C ]

Abstract
While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit’s impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
Poster
Yi Zhu · Zhou Yanpeng · Chunwei Wang · Yang Cao · Jianhua Han · Lu Hou · Hang Xu

[ East Exhibit Hall A-C ]

Abstract
Currently, vision encoder models like Vision Transformers (ViTs) typically excel at image recognition tasks but cannot simultaneously support text recognition like human visual recognition. To address this limitation, we propose UNIT, a novel training framework aimed at UNifying Image and Text recognition within a single model. Starting with a vision encoder pre-trained with image recognition tasks, UNIT introduces a lightweight language decoder for predicting text outputs and a lightweight vision decoder to prevent catastrophic forgetting of the original image encoding capabilities. The training process comprises two stages: intra-scale pretraining and inter-scale finetuning. During intra-scale pretraining, UNIT learns unified representations from multi-scale inputs, where images and documents are at their commonly used resolution, to enable fundamental recognition capability. In the inter-scale finetuning stage, the model introduces scale-exchanged data, featuring images and documents at resolutions different from the most commonly used ones, to enhance its scale robustness. Notably, UNIT retains the original vision encoder architecture, making it cost-free in terms of inference and deployment. Experiments across multiple benchmarks confirm that our method significantly outperforms existing methods on document-related tasks (e.g., OCR and DocQA) while maintaining the performances on natural images, demonstrating its ability to substantially enhance text recognition without compromising its core …

Poster Session 6 West Fri 13 Dec 04:30 p.m.  

Poster
Kasra Jalaldoust · Alexis Bellot · Elias Bareinboim

[ West Ballroom A-D ]

Abstract
A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifiers, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
Spotlight Poster
Raj Agrawal · Sam Witty · Andy Zane · Elias Bingham

[ West Ballroom A-D ]

Abstract
Many practical problems involve estimating low dimensional statistical quantities with high-dimensional models and datasets. Several approaches address these estimation tasks based on the theory of influence functions, such as debiased/double ML or targeted minimum loss estimation. We introduce \textit{Monte Carlo Efficient Influence Functions} (MC-EIF), a fully automated technique for approximating efficient influence functions that integrates seamlessly with existing differentiable probabilistic programming systems. MC-EIF automates efficient statistical estimation for a broad class of models and functionals that previously required rigorous custom analysis. We prove that MC-EIF is consistent, and that estimators using MC-EIF achieve optimal $\sqrt{N}$ convergence rates. We show empirically that estimators using MC-EIF are at parity with estimators using analytic EIFs. Finally, we present a novel capstone example using MC-EIF for optimal portfolio selection.
Poster
Philipp Froehlich · Heinz Koeppl

[ West Ballroom A-D ]

Abstract
Detecting dependencies among variables is a fundamental task across scientific disciplines. We propose a novel neural network model for graph structure inference, which aims to learn a mapping from observational data to the corresponding underlying dependence structures. The model is trained with variably shaped and coupled simulated input data and requires only a single forward pass through the trained network for inference. Central to our approach is a novel bilinear attention mechanism (BAM) operating on covariance matrices of transformed data while respecting the geometry of the manifold of symmetric positive definite (SPD) matrices. Inspired by graphical lasso methods, our model optimizes over continuous graph representations in the SPD space, where inverse covariance matrices encode conditional independence relations. Empirical evaluations demonstrate the robustness of our method in detecting diverse dependencies, excelling in undirected graph estimation and showing competitive performance in completed partially directed acyclic graph estimation via a novel two-step approach. The trained model effectively detects causal relationships and generalizes well across different functional forms of nonlinear dependencies.
Poster
Kurt Butler · Daniel Waxman · Petar Djuric

[ West Ballroom A-D ]

Abstract
Causal discovery with time series data remains a challenging yet increasingly important task across many scientific domains. Convergent cross mapping (CCM) and related methods have been proposed to study time series that are generated by dynamical systems, where traditional approaches like Granger causality are unreliable. However, CCM often yields inaccurate results depending upon the quality of the data. We propose the Tangent Space Causal Inference (TSCI) method for detecting causalities in dynamical systems. TSCI works by considering vector fields as explicit representations of the systems' dynamics and checks for the degree of synchronization between the learned vector fields. The TSCI approach is model-agnostic and can be used as a drop-in replacement for CCM and its generalizations. We first present a basic version of the TSCI algorithm, which is shown to be more effective than the basic CCM algorithm with very little additional computation. We additionally present augmented versions of TSCI that leverage the expressive power of latent variable models and deep learning. We validate our theory on standard systems, and we demonstrate improved causal inference performance across a number of benchmark tasks.
Poster
Jiyuan Tan · Jose Blanchet · Vasilis Syrgkanis

[ West Ballroom A-D ]

Abstract
Recent progress in Neural Causal Models (NCMs) showcased how identification and partial identification of causal effects can be automatically carried out via training of neural generative models that respect the constraints encoded in a given causal graph [Xia et al. 2022, Balazadeh et al. 2022]. However, formal consistency of these methods has only been proven for the case of discrete variables or only for linear causal models. In this work, we prove the consistency of partial identification via NCMs in a general setting with both continuous and categorical variables. Further, our results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity as well as the importance of applying Lipschitz regularization in the training phase. In particular, we provide a counterexample showing that without Lipschitz regularization this method may not be asymptotically consistent. Our results are enabled by new results on the approximability of Structural Causal Models (SCMs) via neural generative models, together with an analysis of the sample complexity of the resulting architectures and how that translates into an error in the constrained optimization problem that defines the partial identification bounds.
Spotlight Poster
Yizuo Chen · Adnan Darwiche

[ West Ballroom A-D ]

Abstract
We study the identification of causal effects, motivated by two improvements to identifiability which can be attained if one knows that some variables in a causal graph are functionally determined by their parents (without needing to know the specific functions). First, an unidentifiable causal effect may become identifiable when certain variables are functional. Second, certain functional variables can be excluded from being observed without affecting the identifiability of a causal effect, which may significantly reduce the number of needed variables in observational data. Our results are largely based on an elimination procedure which removes functional variables from a causal graph while preserving key properties in the resulting causal graph, including the identifiability of causal effects.
Poster
Julian Dörfler · Benito van der Zander · Markus Bläser · Maciej Liskiewicz

[ West Ballroom A-D ]

Abstract
Learning the unknown causal parameters of a linear structural causal model is a fundamental task in causal analysis. The task, known as the problem of identification, asks to estimate the parameters of the model from acombination of assumptions on the graphical structure of the model and observational data, represented as a non-causal covariance matrix.In this paper, we give a new sound and complete algorithm for generic identification which runs in polynomial space. By a standard simulation result, namely $\mathsf{PSPACE} \subseteq \mathsf{EXP}$,this algorithm has exponential running time which vastly improves the state-of-the-art double exponential time method using a Gröbner basis approach. The paper also presents evidence that parameter identification is computationally hard in general. In particular, we prove, that the taskasking whether, for a given feasible correlation matrix, there are exactly one or two or more parameter sets explaining the observed matrix, is hard for $\forall \mathbb{R}$, the co-class of the existential theory of the reals. In particular, this problem is $\mathsf{coNP}$-hard.To our best knowledge, this is the first hardness result for some notion of identifiability.
Poster
Mingjia Li · Shuo Liu · Hong Qian · Aimin Zhou

[ West Ballroom A-D ]

Abstract
In modern telecommunication networks, faults manifest as alarms, generating thousands of events daily. Network operators need an efficient method to identify the root causes of these alarms to mitigate potential losses. This task is challenging due to the increasing scale of telecommunication networks and the interconnected nature of devices, where one fault can trigger a cascade of alarms across multiple devices within a topological network. Recent years have seen a growing focus on causal approaches to addressing this problem, emphasizing the importance of learning a Granger causal graph from topological event sequences. Such causal graphs delineate the relations among alarms and can significantly aid engineers in identifying and rectifying faults. However, existing methods either ignore the topological relationships among devices or suffer from relatively low scalability and efficiency, failing to deliver high-quality responses in a timely manner. To this end, this paper proposes $S^2GCSL$, a simple yet scalable Granger causal structural learning approach for topological event sequences. $S^2GCSL$ utilizes a linear kernel to model activation interactions among various event types within a topological network, and employs gradient descent to efficiently optimize the likelihood function. Notably, it can seamlessly incorporate expert knowledge as constraints within the optimization process, which enhances the …
Poster
Samuele Bortolotti · Emanuele Marconato · Tommaso Carraro · Paolo Morettin · Emile van Krieken · Antonio Vergari · Stefano Teso · Andrea Passerini

[ West Ballroom A-D ]

Abstract
The advent of powerful neural classifiers has increased interest in problems that require both learning and reasoning.These problems are critical for understanding important properties of models, such as trustworthiness, generalization, interpretability, and compliance to safety and structural constraints. However, recent research observed that tasks requiring both learning and reasoning on background knowledge often suffer from reasoning shortcuts (RSs): predictors can solve the downstream reasoning task without associating the correct concepts to the high-dimensional data. To address this issue, we introduce rsbench, a comprehensive benchmark suite designed to systematically evaluate the impact of RSs on models by providing easy access to highly customizable tasks affected by RSs. Furthermore, rsbench implements common metrics for evaluating concept quality and introduces novel formal verification procedures for assessing the presence of RSs in learning tasks. Using rsbench, we highlight that obtaining high quality concepts in both purely neural and neuro-symbolic models is a far-from-solved problem. rsbench is available at: https://unitn-sml.github.io/rsbench.
Poster
Yiheng Wang · Tianyu Wang · YuYing Zhang · Hongji Zhang · Haoyu Zheng · Guanjie Zheng · Linghe Kong

[ West Ballroom A-D ]

Abstract
The rapid progression of urbanization has generated a diverse array of urban data, facilitating significant advancements in urban science and urban computing. Current studies often work on separate problems case by case using diverse data, e.g., air quality prediction, and built-up areas classification. This fragmented approach hinders the urban research field from advancing at the pace observed in Computer Vision and Natural Language Processing, due to two primary reasons. On the one hand, the diverse data processing steps lead to the lack of large-scale benchmarks and therefore decelerate iterative methodology improvement on a single problem. On the other hand, the disparity in multi-modal data formats hinders the combination of the related modal data to stimulate more research findings. To address these challenges, we propose UrbanDataLayer (UDL), a suite of standardized data structures and pipelines for city data engineering, providing a unified data format for researchers. This allows researchers to easily build up large-scale benchmarks and combine multi-modal data, thus expediting the development of multi-modal urban foundation models. To verify the effectiveness of our work, we present four distinct urban problem tasks utilizing the proposed data layer. UrbanDataLayer aims to enhance standardization and operational efficiency within the urban science research community. …
Poster
Huaiyuan Ying · Zijian Wu · Yihan Geng · JIayu Wang · Dahua Lin · Kai Chen

[ West Ballroom A-D ]

Abstract
Large language models have demonstrated impressive capabilities across various natural language processing tasks, especially in solving mathematical problems. However, large language models are not good at math theorem proving using formal languages like Lean. A significant challenge in this area is the scarcity of training data available in these formal languages. To address this issue, we propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements, and vice versa. Our results indicate that the synthetic data pipeline can provide useful training data and improve the performance of LLMs in translating and understanding complex mathematical problems and proofs. Our final dataset contains about 57K formal-informal question pairs along with searched proof from the math contest forum and 21 new IMO questions. We open-source our code at \url{https://github.com/InternLM/InternLM-Math} and our data at \url{https://huggingface.co/datasets/InternLM/Lean-Workbook}.
Poster
Rudolf Laine · Bilal Chughtai · Jan Betley · Kaivalya Hariharan · Mikita Balesni · Jérémy Scheurer · Marius Hobbhahn · Alexander Meinke · Owain Evans

[ West Ballroom A-D ]

Abstract
AI assistants such as ChatGPT are trained to respond to users by saying, "I am a large language model”.This raises questions. Do such models "know'' that they are LLMs and reliably act on this knowledge? Are they "aware" of their current circumstances, such as being deployed to the public?We refer to a model's knowledge of itself and its circumstances as **situational awareness**.To quantify situational awareness in LLMs, we introduce a range of behavioral tests, based on question answering and instruction following. These tests form the **Situational Awareness Dataset (SAD)**, a benchmark comprising 7 task categories and over 13,000 questions.The benchmark tests numerous abilities, including the capacity of LLMs to (i) recognize their own generated text, (ii) predict their own behavior, (iii) determine whether a prompt is from internal evaluation or real-world deployment, and (iv) follow instructions that depend on self-knowledge.We evaluate 16 LLMs on SAD, including both base (pretrained) and chat models.While all models perform better than chance, even the highest-scoring model (Claude 3 Opus) is far from a human baseline on certain tasks. We also observe that performance on SAD is only partially predicted by metrics of general knowledge. Chat models, which are finetuned to serve as AI assistants, …
Poster
Zengzhi Wang · Xuefeng Li · Rui Xia · Pengfei Liu

[ West Ballroom A-D ]

Abstract
High-quality, large-scale corpora are the cornerstone of building foundation models. In this work, we introduce MathPile, a diverse and high-quality math-centric corpus comprising about 9.5 billion tokens. Throughout its creation, we adhered to the principle of “less is more”, firmly believing in the supremacy of data quality over quantity, even in the pre-training phase. Our meticulous data collection and processing efforts included a complex suite of preprocessing, prefiltering, language identification, cleaning, filtering, and deduplication, ensuring the high quality of our corpus. Furthermore, we performed data contamination detection on downstream benchmark test sets to eliminate duplicates and conducted continual pre-training experiments, booting the performance on common mathematical reasoning benchmarks. We aim for our MathPile to boost language models’ mathematical reasoning abilities and open-source its different versions and processing scripts to advance the field.
Poster
Xiao Yang · Kai Sun · Hao Xin · Yushi Sun · Nikita Bhalla · Xiangsen Chen · Sajal Choudhary · Rongze Gui · Ziran Jiang · Ziyu Jiang · Lingkun Kong · Brian Moran · Jiaqi Wang · Yifan Xu · An Yan · Chenyu Yang · Eting Yuan · Hanwen Zha · Nan Tang · Lei Chen · Nicolas Scheffer · Yue Liu · Nirav Shah · Rakesh Wanga · Anuj Kumar · Scott Yih · Xin Dong

[ West Ballroom A-D ]

Abstract
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)’s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve $\le 34\%$ accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracted thousands of participants and submissions. We commit to maintaining CRAG to serve research communities in …
Poster
Hexuan Deng · Wenxiang Jiao · Xuebo Liu · Min Zhang · Zhaopeng Tu

[ West Ballroom A-D ]

Abstract
Despite their remarkable abilities in various tasks, large language models (LLMs) still struggle with real-time information (e.g., new facts and terms) due to the knowledge cutoff in their development process. However, existing benchmarks focus on outdated content and limited fields, facing difficulties in real-time updating and leaving new terms unexplored. To address this problem, we propose an adaptive benchmark, NewTerm, for real-time evaluation of new terms. We design a highly automated construction method to ensure high-quality benchmark construction with minimal human effort, allowing flexible updates for real-time information. Empirical results on various LLMs demonstrate over 20% performance reduction caused by new terms. Additionally, while updates to the knowledge cutoff of LLMs can cover some of the new terms, they are unable to generalize to more distant new terms. We also analyze which types of terms are more challenging and why LLMs struggle with new terms, paving the way for future research. Finally, we construct NewTerm 2022 and 2023 to evaluate the new terms updated each year and will continue updating annually. The benchmark and codes can be found at https://anonymous.4open.science/r/NewTerms.
Poster
Mahmoud Ahmed · Xiang Li · Arpit Prajapati · Mohamed Elhoseiny

[ West Ballroom A-D ]

Abstract
Understanding objects in 3D at the part level is essential for humans and robots to navigate and interact with the environment. Current datasets for part-level 3D object understanding encompass a limited range of categories. For instance, the ShapeNet-Part and PartNet datasets only include 16, and 24 object categories respectively. The 3DCoMPaT dataset, specifically designed for compositional understanding of parts and materials, contains only 42 object categories. To foster richer and fine-grained part-level 3D understanding, we introduce 3DCoMPaT200, a large-scale dataset tailored for compositional understanding of object parts and materials, with 200 object categories with approximately 5 times larger object vocabulary compared to 3DCoMPaT and almost 4 times larger part categories. Concretely, 3DCoMPaT200 significantly expands upon 3DCoMPaT, featuring 1,031 fine-grained part categories and 293 distinct material classes for compositional application to 3D object parts. Additionally, to address the complexities of compositional 3D modeling, we propose a novel task of Compositional Part Shape Retrieval using ULIP to provide a strong 3D foundational model for 3D Compositional Understanding. This method evaluates the model shape retrieval performance given one, three, or six parts described in text format. These results show that the model's performance improves with an increasing number of style compositions, highlighting the …
Poster
Cristobal Eyzaguirre · Eric Tang · Shyamal Buch · Adrien Gaidon · Jiajun Wu · Juan Carlos Niebles

[ West Ballroom A-D ]

Abstract
Robotics, autonomous driving, augmented reality, and many embodied computer vision applications must quickly react to user-defined events unfolding in real time. We address this setting by proposing a novel task for multimodal video understanding---Streaming Detection of Queried Event Start (SDQES).The goal of SDQES is to identify the beginning of a complex event as described by a natural language query, with high accuracy and low latency. We introduce a new benchmark based on the Ego4D dataset, as well as new task-specific metrics to study streaming multimodal detection of diverse events in an egocentric video setting.Inspired by parameter-efficient fine-tuning methods in NLP and for video tasks, we propose adapter-based baselines that enable image-to-video transfer learning, allowing for efficient online video modeling.We evaluate three vision-language backbones and three adapter architectures on both short-clip and untrimmed video settings.
Spotlight Poster
Zhenbang Wu · Anant Dadu · Michael Nalls · Faraz Faghri · Jimeng Sun

[ West Ballroom A-D ]

Abstract
Large language models (LLMs) have shown impressive capabilities in solving a wide range of tasks based on human instructions. However, developing a conversational AI assistant for electronic health record (EHR) data remains challenging due to (1) the lack of large-scale instruction-following datasets and (2) the limitations of existing model architectures in handling complex and heterogeneous EHR data.In this paper, we introduce MIMIC-Instr, a dataset comprising over 400K open-ended instruction-following examples derived from the MIMIC-IV EHR database. This dataset covers various topics and is suitable for instruction-tuning general-purpose LLMs for diverse clinical use cases. Additionally, we propose Llemr, a general framework that enables LLMs to process and interpret EHRs with complex data structures. Llemr demonstrates competitive performance in answering a wide range of patient-related questions based on EHR data.Furthermore, our evaluations on clinical predictive modeling benchmarks reveal that the fine-tuned Llemr achieves performance comparable to state-of-the-art (SOTA) baselines using curated features. The dataset and code are available at \url{https://github.com/zzachw/llemr}.
Poster
Nemin Wu · Qian Cao · Zhangyu Wang · Zeping Liu · Yanlin Qi · Jielu Zhang · Joshua Ni · X. Yao · Hongxu Ma · Lan Mu · Stefano Ermon · Tanuja Ganu · Akshay Nambi · Ni Lao · Gengchen Mai

[ West Ballroom A-D ]

Abstract
Spatial representation learning (SRL) aims at learning general-purpose neural network representations from various types of spatial data (e.g., points, polylines, polygons, networks, images, etc.) in their native formats. Learning good spatial representations is a fundamental problem for various downstream applications such as species distribution modeling, weather forecasting, trajectory generation, geographic question answering, etc. Even though SRL has become the foundation of almost all geospatial artificial intelligence (GeoAI) research, we have not yet seen significant efforts to develop an extensive deep learning framework and benchmark to support SRL model development and evaluation. To fill this gap, we propose TorchSpatial, a learning framework and benchmark for location (point) encoding,which is one of the most fundamental data types of spatial representation learning. TorchSpatial contains three key components: 1) a unified location encoding framework that consolidates 15 commonly recognized location encoders, ensuring scalability and reproducibility of the implementations; 2) the LocBench benchmark tasks encompassing 7 geo-aware image classification and 10 geo-aware imageregression datasets; 3) a comprehensive suite of evaluation metrics to quantify geo-aware models’ overall performance as well as their geographic bias, with a novel Geo-Bias Score metric. Finally, we provide a detailed analysis and insights into the model performance and geographic bias of …
Poster
Jeffrey Li · Alex Fang · Georgios Smyrnis · Maor Ivgi · Matt Jordan · Samir Yitzhak Gadre · Hritik Bansal · Etash Guha · Sedrick Scott Keh · Kushal Arora · Saurabh Garg · Rui Xin · Niklas Muennighoff · Reinhard Heckel · Jean Mercat · Mayee Chen · Suchin Gururangan · Mitchell Wortsman · Alon Albalak · Yonatan Bitton · Marianna Nezhurina · Amro Abbas · Cheng-Yu Hsieh · Dhruba Ghosh · Josh Gardner · Maciej Kilian · Hanlin Zhang · Rulin Shao · Sarah Pratt · Sunny Sanyal · Gabriel Ilharco · Giannis Daras · Kalyani Marathe · Aaron Gokaslan · Jieyu Zhang · Khyathi Chandu · Thao Nguyen · Igor Vasiljevic · Sham Kakade · Shuran Song · Sujay Sanghavi · Fartash Faghri · Sewoong Oh · Luke Zettlemoyer · Kyle Lo · Alaaeldin El-Nouby · Hadi Pouransari · Alexander Toshev · Stephanie Wang · Dirk Groeneveld · Luca Soldaini · Pang Wei Koh · Jenia Jitsev · Thomas Kollar · Alex Dimakis · Yair Carmon · Achal Dave · Ludwig Schmidt · Vaishaal Shankar

[ West Ballroom A-D ]

Abstract
We introduce DataComp for Language Models, a testbed for controlled dataset experiments with the goal of improving language models.As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations.Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing atmodel scales ranging from 412M to 7B parameters.As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set.The resulting dataset, DCLM-Baseline, enables training a 7B parameter language model from scratch to 63% 5-shot accuracy on MMLU with 2T training tokens.Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6 percentage point improvement on MMLU while being trained with half the compute.Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation. We release the \dclm benchmark, framework, models, and datasets at https://www.datacomp.ai/dclm/
Spotlight Poster
Roman Bushuiev · Anton Bushuiev · Niek de Jonge · Adamo Young · Fleming Kretschmer · Raman Samusevich · Janne Heirman · Fei Wang · Luke Zhang · Kai Dührkop · Marcus Ludwig · Nils Haupt · Apurva Kalia · Corinna Brungs · Robin Schmid · Russell Greiner · Bo Wang · David Wishart · Liping Liu · Juho Rousu · Wout Bittremieux · Hannes Rost · Tytus Mak · Soha Hassoun · Florian Huber · Justin J.J. van der Hooft · Michael Stravs · Sebastian Böcker · Josef Sivic · Tomáš Pluskal

[ West Ballroom A-D ]

Abstract
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality MS/MS spectra and defines three MS/MS annotation challenges: \textit{de novo} molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at \url{https://github.com/pluskal-lab/MassSpecGym}.
Poster
Joshua Robinson · Rishabh Ranjan · Weihua Hu · Kexin Huang · Jiaqi Han · Alejandro Dobles · Matthias Fey · Jan Eric Lenssen · Yiwen Yuan · Zecheng Zhang · Xinwei He · Jure Leskovec

[ West Ballroom A-D ]

Abstract
We present RelBench, a public benchmark for solving predictive tasks in relational databases with deep learning. RelBench provides databases and tasks spanning diverse domains, scales, and database dimensions, and is intended to be a foundational infrastructure for future research in this direction. We use RelBench to conduct the first comprehensive empirical study of graph neural network (GNN) based predictive models on relational data, as recently proposed by Fey et al. 2024. End-to-end learned GNNs are capable fully exploiting the predictive signal encoded in links between entities, marking a significant shift away from the dominant paradigm of manual feature engineering combined with tabular machine learning. To thoroughly evaluate GNNs against the prior gold-standard we conduct a user study, where an experienced data scientist manually engineers features for each task. In this study, GNNs learn better models whilst reducing human work needed by more than an order of magnitude. This result demonstrates the power of GNNs for solving predictive tasks in relational databases, opening up new research opportunities.
Poster
Neil Ashton · Jordan Angel · Aditya Ghate · Gaetan Kenway · Man Long Wong · Cetin Kiris · Astrid Walle · Danielle Maddix · Gary Page

[ West Ballroom A-D ]

Abstract
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume \& boundary data as well as the geometry and force \& moment coefficients. This paper discusses the validation of the underlying CFD methods as well as contents and structure of the dataset. To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA).
Spotlight Poster
Edoardo Debenedetti · Javier Rando · Daniel Paleka · Silaghi Florin · Dragos Albastroiu · Niv Cohen · Yuval Lemberg · Reshmi Ghosh · Rui Wen · Ahmed Salem · Giovanni Cherubin · Santiago Zanella-Beguelin · Robin Schmid · Victor Klemm · Takahiro Miki · Chenhao Li · Stefan Kraft · Mario Fritz · Florian Tramer · Sahar Abdelnabi · Lea Schönherr

[ West Ballroom A-D ]

Abstract
Large language model systems face significant security risks from maliciously crafted messages that aim to overwrite the system's original instructions or leak private data. To study this problem, we organized a capture-the-flag competition at IEEE SaTML 2024, where the flag is a secret string in the LLM system prompt. The competition was organized in two phases. In the first phase, teams developed defenses to prevent the model from leaking the secret. During the second phase, teams were challenged to extract the secrets hidden for defenses proposed by the other teams. This report summarizes the main insights from the competition. Notably, we found that all defenses were bypassed at least once, highlighting the difficulty of designing a successful defense and the necessity for additional research to protect LLM systems. To foster future research in this direction, we compiled a dataset with over 137k multi-turn attack chats and open-sourced the platform.
Poster
Juntao Dai · Tianle Chen · Xuyao Wang · Ziran Yang · Taiye Chen · Jiaming Ji · Yaodong Yang

[ West Ballroom A-D ]

Abstract
To mitigate the risk of harmful outputs from large vision models (LVMs), we introduce the *SafeSora* dataset to promote research on aligning text-to-video generation with human values. This dataset encompasses human preferences in text-to-video generation tasks along two primary dimensions: helpfulness and harmlessness. To capture in-depth human preferences and facilitate structured reasoning by crowdworkers, we subdivide helpfulness into 4 sub-dimensions and harmlessness into 12 sub-categories, serving as the basis for pilot annotations. The *SafeSora* dataset includes 14,711 unique prompts, 57,333 unique videos generated by 4 distinct LVMs, and 51,691 pairs of preference annotations labeled by humans. We further demonstrate the utility of the *SafeSora* dataset through several applications, including training the text-video moderation model and aligning LVMs with human preference by fine-tuning a prompt augmentation module or the diffusion model. These applications highlight its potential as the foundation for text-to-video alignment research, such as human preference modeling and the development and validation of alignment algorithms. Our project is available at https://sites.google.com/view/safe-sora.Warning: this paper contains example data that may be offensive or harmful.
Poster
Rachel Longjohn · Markelle Kelly · Sameer Singh · Padhraic Smyth

[ West Ballroom A-D ]

Abstract
In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for---and levies criticisms at---data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these _benchmark data repositories_ and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning.
Poster
Peng Xia · Ze Chen · Juanxi Tian · Yangrui Gong · Ruibo Hou · Yue Xu · Zhenbang Wu · Zhiyuan Fan · Yiyang Zhou · Kangyu Zhu · Wenhao Zheng · Zhaoyang Wang · Xiao Wang · Xuchao Zhang · Chetan Bansal · Marc Niethammer · Junzhou Huang · Hongtu Zhu · Yun Li · Jimeng Sun · Zongyuan Ge · Gang Li · James Zou · Huaxiu Yao

[ West Ballroom A-D ]

Abstract
Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In this paper, we introduce CARES and aim to comprehensively evaluate the Trustworthiness of Med-LVLMs across the medical domain. We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness. CARES comprises about 41K question-answer pairs in both closed and open-ended formats, covering 16 medical image modalities and 27 anatomical regions. Our analysis reveals that the models consistently exhibit concerns regarding trustworthiness, often displaying factual inaccuracies and failing to maintain fairness across different demographic groups. Furthermore, they are vulnerable to attacks and demonstrate a lack of privacy awareness. We publicly release our benchmark and code in https://github.com/richard-peng-xia/CARES.
Poster
Chunhui Zhang · Li Liu · Guanjie Huang · Hao Wen · XI ZHOU · Yanfeng Wang

[ West Ballroom A-D ]

Abstract
Underwater Object Tracking (UOT) is essential for identifying and tracking submerged objects in underwater videos, but existing datasets are limited in scale, diversity of target categories and scenarios covered, impeding the development of advanced tracking algorithms. To bridge this gap, we take the first step and introduce WebUOT-1M, \ie, the largest public UOT benchmark to date, sourced from complex and realistic underwater environments. It comprises 1.1 million frames across 1,500 video clips filtered from 408 target categories, largely surpassing previous UOT datasets, \eg, UVOT400. Through meticulous manual annotation and verification, we provide high-quality bounding boxes for underwater targets. Additionally, WebUOT-1M includes language prompts for video sequences, expanding its application areas, \eg, underwater vision-language tracking. Given that most existing trackers are designed for open-air conditions and perform poorly in underwater environments due to domain gaps, we propose a novel framework that uses omni-knowledge distillation to train a student Transformer model effectively. To the best of our knowledge, this framework is the first to effectively transfer open-air domain knowledge to the UOT model through knowledge distillation, as demonstrated by results on both existing UOT datasets and the newly proposed WebUOT-1M. We have thoroughly tested WebUOT-1M with 30 deep trackers, showcasing its potential …
Poster
Yutao Dou · Huimin Yu · Wei Li · Jingyang Li · Fei Xia · Jian Xiao

[ West Ballroom A-D ]

Abstract
Over half of cancer patients experience long-term pain management challenges. Recently, interest has grown in systems for cancer pain treatment effectiveness assessment (TEA) and medication recommendation (MR) to optimize pharmacological care. These systems aim to improve treatment effectiveness by recommending personalized medication plans based on comprehensive patient information. Despite progress, current systems lack multidisciplinary treatment (MDT) team assessments of treatment and the patient's perception of medication, crucial for effective cancer pain management. Moreover, managing cancer pain medication requires multiple adjustments to the treatment plan based on the patient's evolving condition, a detail often missing in existing datasets. To tackle these issues, we designed the PEACE dataset specifically for cancer pain medication research. It includes detailed pharmacological care records for over 38,000 patients, covering demographics, clinical examination, treatment outcomes, medication plans, and patient self-perceptions. Unlike existing datasets, PEACE records not only long-term and multiple follow-ups both inside and outside hospitals but also includes patients' self-assessments of medication effects and the impact on their lives. We conducted a proof-of-concept study with 13 machine learning algorithms on the PEACE dataset for the TEA (classification task) and MR (regression task). These experiments provide valuable insights into the potential of the PEACE dataset for advancing …
Poster
Dominik Hollidt · Paul Streli · Jiaxi Jiang · Yasaman Haghighi · Changlin Qian · Xintong Liu · Christian Holz

[ West Ballroom A-D ]

Abstract
Research on egocentric tasks in computer vision has mostly focused on head-mounted cameras, such as fisheye cameras or embedded cameras inside immersive headsets.We argue that the increasing miniaturization of optical sensors will lead to the prolific integration of cameras into many more body-worn devices at various locations.This will bring fresh perspectives to established tasks in computer vision and benefit key areas such as human motion tracking, body pose estimation, or action recognition---particularly for the lower body, which is typically occluded.In this paper, we introduce EgoSim, a novel simulator of body-worn cameras that generates realistic egocentric renderings from multiple perspectives across a wearer's body.A key feature of EgoSim is its use of real motion capture data to render motion artifacts, which are especially noticeable with arm- or leg-worn cameras.In addition, we introduce MultiEgoView, a dataset of egocentric footage from six body-worn cameras and ground-truth full-body 3D poses during several activities:119 hours of data are derived from AMASS motion sequences in four high-fidelity virtual environments, which we augment with 5 hours of real-world motion data from 13 participants using six GoPro cameras and 3D body pose references from an Xsens motion capture suit.We demonstrate EgoSim's effectiveness by training an end-to-end video-only 3D …
Poster
Theodore Tsesmelis · Luca Palmieri · Marina Khoroshiltseva · Adeela Islam · Gur Elkin · Ofir I Shahar · Gianluca Scarpellini · Stefano Fiorini · Yaniv Ohayon · Nadav Alali · Sinem Aslan · Pietro Morerio · Sebastiano Vascon · Elena gravina · Maria Napolitano · Giuseppe Scarpati · Gabriel zuchtriegel · Alexandra Spühler · Michel Fuchs · Stuart James · Ohad Ben-Shahar · Marcello Pelillo · Alessio Del Bue

[ West Ballroom A-D ]

Abstract
This paper proposes the RePAIR dataset that represents a challenging benchmark to test modern computational and data driven methods for puzzle-solving and reassembly tasks. Our dataset has unique properties that are uncommon to current benchmarks for 2D and 3D puzzle solving. The fragments and fractures are realistic, caused by a collapse of a fresco during a World War II bombing at the Pompeii archaeological park. The fragments are also eroded and have missing pieces with irregular shapes and different dimensions, challenging further the reassembly algorithms. The dataset is multi-modal providing high resolution images with characteristic pictorial elements, detailed 3D scans of the fragments and meta-data annotated by the archaeologists. Ground truth has been generated through several years of unceasing fieldwork, including the excavation and cleaning of each fragment, followed by manual puzzle solving by archaeologists of a subset of approx. 1000 pieces among the 16000 available. After digitizing all the fragments in 3D, a benchmark was prepared to challenge current reassembly and puzzle-solving methods that often solve more simplistic synthetic scenarios. The tested baselines show that there clearly exists a gap to fill in solving this computationally complex problem.
Poster
Haider Al-Tahan · Quentin Garrido · Randall Balestriero · Diane Bouchacourt · Caner Hazirbas · Mark Ibrahim

[ West Ballroom A-D ]

Abstract
Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks,researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress.To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a range of carefully categorized vision-centric capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations. Surprisingly, we also discover today's best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST, which much simpler networks can solve. Where scale falls short, we find that more precise interventions, such as data quality or tailored-learning objectives offer more promise. For practitioners, we also offer guidance on selecting a suitable VLM for a given application. Finally, we release an easy-to-run UniBench code-base …
Spotlight Poster
Wei Li · William Bishop · Alice Li · Christopher Rawles · Folawiyo Campbell-Ajala · Divya Tyamagundlu · Oriana Riva

[ West Ballroom A-D ]

Abstract
Autonomous agents that control user interfaces to accomplish human tasks are emerging. Leveraging LLMs to power such agents has been of special interest, but unless fine-tuned on human-collected task demonstrations, performance is still relatively low. In this work we study whether fine-tuning alone is a viable approach for building real-world UI control agents. To this end we collect and release a new dataset, AndroidControl, consisting of 15,283 demonstrations of everyday tasks with Android apps. Compared to existing datasets, each AndroidControl task instance includes both high and low-level human-generated instructions, allowing us to explore the level of task complexity an agent can handle. Moreover, AndroidControl is the most diverse computer control dataset to date, including 14,548 unique tasks over 833 Android apps, thus allowing us to conduct in-depth analysis of the model performance in and out of the domain of the training data. Using the dataset, we find that when tested in domain fine-tuned models outperform zero and few-shot baselines and scale in such a way that robust performance might feasibly be obtained simply by collecting more data. Out of domain, performance scales significantly more slowly and suggests that in particular for high-level tasks, fine-tuning on more data alone may be …
Spotlight Poster
Ge Yang · Changyi He · Jinyang Guo · Jianyu Wu · Yifu Ding · Aishan Liu · Haotong Qin · Pengliang Ji · Xianglong Liu

[ West Ballroom A-D ]

Abstract
Although large language models (LLMs) have demonstrated their strong intelligence ability, the high demand for computation and storage hinders their practical application. To this end, many model compression techniques are proposed to increase the efficiency of LLMs. However, current researches only validate their methods on limited models, datasets, metrics, etc, and still lack a comprehensive evaluation under more general scenarios. So it is still a question of which model compression approach we should use under a specific case. To mitigate this gap, we present the Large Language Model Compression Benchmark (LLMCBench), a rigorously designed benchmark with an in-depth analysis for LLM compression algorithms. We first analyze the actual model production requirements and carefully design evaluation tracks and metrics. Then, we conduct extensive experiments and comparison using multiple mainstream LLM compression approaches. Finally, we perform an in-depth analysis based on the evaluation and provide useful insight for LLM compression design. We hope our LLMCBench can contribute insightful suggestions for LLM compression algorithm design and serve as a foundation for future research.
Poster
Luca Barsellotti · Roberto Bigazzi · Marcella Cornia · Lorenzo Baraldi · Rita Cucchiara

[ West Ballroom A-D ]

Abstract
In the last years, the research interest in visual navigation towards objects in indoor environments has grown significantly. This growth can be attributed to the recent availability of large navigation datasets in photo-realistic simulated environments, like Gibson and Matterport3D. However, the navigation tasks supported by these datasets are often restricted to the objects present in the environment at acquisition time. Also, they fail to account for the realistic scenario in which the target object is a user-specific instance that can be easily confused with similar objects and may be found in multiple locations within the environment. To address these limitations, we propose a new task denominated Personalized Instance-based Navigation (PIN), in which an embodied agent is tasked with locating and reaching a specific personal object by distinguishing it among multiple instances of the same category. The task is accompanied by PInNED, a dedicated new dataset composed of photo-realistic scenes augmented with additional 3D objects. In each episode, the target object is presented to the agent using two modalities: a set of visual reference images on a neutral background and manually annotated textual descriptions. Through comprehensive evaluations and analyses, we showcase the challenges of the PIN task as well as the …
Poster
Ziyu Liu · Tao Chu · Yuhang Zang · Xilin Wei · Xiaoyi Dong · Pan Zhang · Zijian Liang · Yuanjun Xiong · Yu Qiao · Dahua Lin · Jiaqi Wang

[ West Ballroom A-D ]

Abstract
Generating natural and meaningful responses to communicate with multi-modal human inputs is a fundamental capability of Large Vision-Language Models (LVLMs). While current open-source LVLMs demonstrate promising performance in simplified scenarios such as single-turn single-image input, they fall short in real-world conversation scenarios such as following instructions in a long context history with multi-turn and multi-images. Existing LVLM benchmarks primarily focus on single-choice questions or short-form responses, which do not adequately assess the capabilities of LVLMs in real-world human-AI interaction applications. Therefore, we introduce MMDU, a comprehensive benchmark, and MMDU-45k, a large-scale instruction tuning dataset, designed to evaluate and improve LVLMs' abilities in multi-turn and multi-image conversations. We employ the clustering algorithm to find the relevant images and textual descriptions from the open-source Wikipedia and construct the question-answer pairs by human annotators with the assistance of the GPT-4o model.MMDU has a maximum of 18k image+text tokens, 20 images, and 27 turns, which is at least 5x longer than previous benchmarks and poses challenges to current LVLMs. Our in-depth analysis of 15 representative LVLMs using MMDU reveals that open-source LVLMs lag behind closed-source counterparts due to limited conversational instruction tuning data.We demonstrate that fine-tuning open-source LVLMs on MMDU-45k significantly address this gap, …
Oral Poster
Juan Nathaniel · Yongquan Qu · Tung Nguyen · Sungduk Yu · Julius Busecke · Aditya Grover · Pierre Gentine

[ West Ballroom A-D ]

Abstract
Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster preparedness and robust decision making amidst climate change. Yet, forecasting beyond the weather timescale is challenging because it deals with problems other than initial condition, including boundary interaction, butterfly effect, and our inherent lack of physical understanding. At present, existing benchmarks tend to have shorter forecasting range of up-to 15 days, do not include a wide range of operational baselines, and lack physics-based constraints for explainability. Thus, we propose ChaosBench, a challenging benchmark to extend the predictability range of data-driven weather emulators to S2S timescale. First, ChaosBench is comprised of variables beyond the typical surface-atmospheric ERA5 to also include ocean, ice, and land reanalysis products that span over 45 years to allow for full Earth system emulation that respects boundary conditions. We also propose physics-based, in addition to deterministic and probabilistic metrics, to ensure a physically-consistent ensemble that accounts for butterfly effect. Furthermore, we evaluate on a diverse set of physics-based forecasts from four national weather agencies as baselines to our data-driven counterpart such as ViT/ClimaX, PanguWeather, GraphCast, and FourCastNetV2. Overall, we find methods originally developed for weather-scale applications fail on S2S task: their performance simply collapse to …
Poster
Xingming Long · Jie Zhang · Shiguang Shan · Xilin Chen

[ West Ballroom A-D ]

Abstract
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data. However, some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox. In this paper, we construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue, in which we divide the test samples into subsets with different semantic and covariate shift degrees relative to the ID dataset. The data division is achieved through a shift measuring method based on our proposed Language Aligned Image feature Decomposition (LAID). Moreover, we construct a Synthetic Incremental Shift (Syn-IS) dataset that contains high-quality generated images with more diverse covariate contents to complement the IS-OOD benchmark. We evaluate current OOD detection methods on our benchmark and find several important insights: (1) The performance of most OOD detection methods significantly improves as the semantic shift increases; (2) Some methods like GradNorm may have different OOD detection mechanisms as they rely less on semantic shifts to make decisions; (3) Excessive covariate shifts in the image are also likely to be considered as OOD for some methods. Our code and data are released in https://github.com/qqwsad5/IS-OOD.
Poster
Jia Li · Ge Li · Xuanming Zhang · YunFei Zhao · Yihong Dong · Zhi Jin · Binhua Li · Fei Huang · Yongbin Li

[ West Ballroom A-D ]

Abstract
How to evaluate Large Language Models (LLMs) in code generation remains an open question. Many benchmarks have been proposed, but they have two limitations, i.e., data leakage and lack of domain-specific evaluation.The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains.To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories.(2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. EvoCodeBench provides a broad platform for domain-specific evaluations.(3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs.Besides, EvoCodeBench is collected by a rigorous pipeline and aligns with real-world repositories in multiple aspects (e.g., code distributions).We evaluate 8 popular …
Poster
Andrej Tschalzev · Sascha Marton · Stefan Lüdtke · Christian Bartelt · Heiner Stuckenschmidt

[ West Ballroom A-D ]

Abstract
Tabular data is prevalent in real-world machine learning applications, and new models for supervised learning of tabular data are frequently proposed. Comparative studies assessing performance differences typically have model-centered evaluation setups with overly standardized data preprocessing. This limits the external validity of these studies, as in real-world modeling pipelines, models are typically applied after dataset-specific preprocessing and feature engineering. We address this gap by proposing a data-centric evaluation framework. We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset. We conduct experiments with different preprocessing pipelines and hyperparameter optimization (HPO) regimes to quantify the impact of model selection, HPO, feature engineering, and test-time adaptation. Our main findings reveal: 1) After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces. 2) Recent models, despite their measurable progress, still significantly benefit from manual feature engineering. This holds true for both tree-based models and neural networks. 3) While tabular data is typically considered static, samples are often collected over time, and adapting to distribution shifts can be important even in supposedly static data. These insights suggest that research efforts should be directed toward a data-centric perspective, acknowledging that tabular …
Poster
Jae-Yong Baek · Yong-Sang Yoo · Seung-Hwan Bae

[ West Ballroom A-D ]

Abstract
This paper addresses a multi-source light detection (LD) problem from vehicles, traffic signals, and streetlights under driving scenarios. Albeit it is crucial for autonomous driving and night vision, this problem has not been yet focused on as much as other object detection (OD). One of the main reasons is the absence of a public available LD benchmark dataset. Therefore, we construct a new large LD dataset consisting of different light sources via heavy annotation: YouTube Driving Light Detection dataset (YDLD). Compared to the existing LD datasets, our dataset has much more images and box annotations for multi-source lights. We also provide rigorous statistical analysis and transfer learning comparison of other well-known detection benchmark datasets to prove the generality of our YDLD.For the recent object detectors, we achieve the extensive comparison results on YDLD. However, they tend to yield the low mAP scores due to the intrinsic challenges of LD caused by very tiny size and similar appearance. To resolve those, we design a novel lightness focal loss which penalizes miss-classified samples more and a lightness spatial attention prior by reflecting a global scene context. In addition, we develop a semi-supervised focal light detection (SS-FLD) by embedding our lightness focal loss …
Poster
Cheng Gao · Yuan Cao · Zihao Li · Yihan He · Mengdi Wang · Han Liu · Jason Klusowski · Jianqing Fan

[ West Ballroom A-D ]

Abstract
Despite the widespread success of Transformers across various domains, their optimization guarantees in large-scale model settings are not well-understood. This paper rigorously analyzes the convergence properties of gradient flow in training Transformers with weight decay regularization. First, we construct the mean-field limit of large-scale Transformers, showing that as the model width and depth go to infinity, gradient flow converges to the Wasserstein gradient flow, which is represented by a partial differential equation. Then, we demonstrate that the gradient flow reaches a global minimum consistent with the PDE solution when the weight decay regularization parameter is sufficiently small. Our analysis is based on a series of novel mean-field techniques that adapt to Transformers. Compared with existing tools for deep networks (Lu et al., 2020) that demand homogeneity and global Lipschitz smoothness, we utilize a refined analysis assuming only $\textit{partial homogeneity}$ and $\textit{local Lipschitz smoothness}$. These new techniques may be of independent interest.
Poster
Yuxin Wang · Duanyu Feng · Yongfu Dai · Zhengyu Chen · Jimin Huang · Sophia Ananiadou · Qianqian Xie · Hao Wang

[ West Ballroom A-D ]

Abstract
Data serves as the fundamental basis for advancing deep learning. The tabular data presented in a structured format is highly valuable for modeling and training.However, even in the era of LLM, obtaining tabular data from sensitive domains remains a challenge due to privacy or copyright concerns. Therefore, exploring the methods for effectively using models like LLMs to generate synthetic tabular data, which is privacy-preserving but similar to original one, is urgent.In this paper, we introduce a new framework HARMONIC for tabular data generation and evaluation by LLMs. In the data generation part of our framework, we employ fine-tuning to generate tabular data and enhance privacy rather than continued pre-training which is often used by previous small-scale LLM-based methods. In particular, we construct an instruction fine-tuning dataset based on the idea of the k-nearest neighbors algorithm to inspire LLMs to discover inter-row relationships. By such fine-tuning, LLMs are trained to remember the format and connections of the data rather than the data itself, which reduces the risk of privacy leakage. The experiments find that our tabular data generation achieves equivalent performance as existing methods but with better privacy by the metric of MLE, DCR, etc.In the evaluation part of our framework, …
Poster
Sukmin Yun · haokun lin · Rusiru Thushara · Mohammad Bhat · Yongxin Wang · zutao jiang · Mingkai Deng · Jinhong Wang · Tianhua Tao · Junbo Li · Haonan Li · Preslav Nakov · Timothy Baldwin · Zhengzhong Liu · Eric Xing · Xiaodan Liang · Zhiqiang Shen

[ West Ballroom A-D ]

Abstract
Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain. We hope our work will contribute to the development of general MLLMs suitable for web-based …
Poster
Ian Magnusson · Akshita Bhagia · Valentin Hofmann · Luca Soldaini · Ananya Harsh Jha · Oyvind Tafjord · Dustin Schwenk · Evan Walsh · Yanai Elazar · Kyle Lo · Dirk Groeneveld · Iz Beltagy · Hanna Hajishirzi · Noah Smith · Kyle Richardson · Jesse Dodge

[ West Ballroom A-D ]

Abstract
Evaluations of language models (LMs) commonly report perplexity on monolithic data held out from training. Implicitly or explicitly, this data is composed of domains—varying distributions of language. We introduce Perplexity Analysis for Language Model Assessment (Paloma), a benchmark to measure LM fit to 546 English and code domains, instead of assuming perplexity on one distribution extrapolates to others. We include two new datasets of the top 100 subreddits (e.g., r/depression on Reddit) and programming languages (e.g., Java on GitHub), both sources common in contemporary LMs. With our benchmark, we release 6 baseline 1B LMs carefully controlled to provide fair comparisons about which pretraining corpus is best and code for others to apply those controls to their own experiments. Our case studies demonstrate how the fine-grained results from Paloma surface findings such as that models pretrained without data beyond Common Crawl exhibit anomalous gaps in LM fit to many domains or that loss is dominated by the most frequently occurring strings in the vocabulary.
Poster
Yu Yang · Siddhartha Mishra · Jeffrey Chiang · Baharan Mirzasoleiman

[ West Ballroom A-D ]

Abstract
Despite the effectiveness of data selection for pretraining and instruction fine-tuninglarge language models (LLMs), improving data efficiency in supervised fine-tuning(SFT) for specialized domains poses significant challenges due to the complexityof fine-tuning data. To bridge this gap, we introduce an effective and scalabledata selection method for SFT, SmallToLarge (S2L), which trains a smallmodel, clusters loss trajectories of the examples, and samples from these clusters toguide data selection for larger models. We prove that during fine-tuning, sampleswithin the same loss trajectory cluster exhibit similar gradients. Then, we showthat S2L subsets have a bounded gradient error w.r.t. the full data, hence guaranteeconvergence to the neighborhood of the optimal solution. We demonstrate throughextensive experiments that S2L significantly improves data efficiency in SFT formathematical problem-solving, reducing the training data requirement to just $11$%of the original MathInstruct dataset to match full dataset performance whileoutperforming state-of-the-art data selection algorithms by an average of $4.7$%across $6$ in- and out-domain evaluation datasets. Remarkably, selecting only 50Kdata for SFT, S2L achieves a $32.7$% accuracy on the challenging MATHbenchmark, improving Phi-2 by $16.6$%. In clinical text summarization on theMIMIC-III dataset, S2L again outperforms training on the full dataset usingonly $50$% of the data. Notably, S2L can perform scalable data selection using …
Poster
Peng Zhou · Rongwen Li · Liang Du

[ West Ballroom A-D ]

Abstract
Kernel k-means has been widely studied in machine learning. However, existing kernel k-means methods often ignore the \textit{fairness} issue, which may cause discrimination. To address this issue, in this paper, we propose a novel Fair Kernel K-Means (FKKM) framework. In this framework, we first propose a new fairness regularization term that can lead to a fair partition of data. The carefully designed fairness regularization term has a similar form to the kernel k-means which can be seamlessly integrated into the kernel k-means framework. Then, we extend this method to the multiple kernel setting, leading to a Fair Multiple Kernel K-Means (FMKKM) method. We also provide some theoretical analysis of the generalization error bound, and based on this bound we give a strategy to set the hyper-parameter, which makes the proposed methods easy to use. At last, we conduct extensive experiments on both the single kernel and multiple kernel settings to compare the proposed methods with state-of-the-art methods to demonstrate their effectiveness.
Poster
Muhammad Faaiz Taufiq · Jean-Francois Ton · Yang Liu

[ West Ballroom A-D ]

Abstract
In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy, a phenomenon known as the fairness-accuracy trade-off. The severity of this trade-off inherently depends on dataset characteristics such as dataset imbalances or biases and therefore, using a uniform fairness requirement across diverse datasets remains questionable. To address this, we present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets, backed by rigorous statistical guarantees. By utilizing the You-Only-Train-Once (YOTO) framework, our approach mitigates the computational burden of having to train multiple models when approximating the trade-off curve. Crucially, we introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness while avoiding false conclusions due to estimation errors. Our experiments spanning tabular (e.g., Adult), image (CelebA), and language (Jigsaw) datasets underscore that our approach not only reliably quantifies the optimum achievable trade-offs across various data modalities but also helps detect suboptimality in SOTA fairness methods.
Poster
Matthew McDermott · Haoran Zhang · Lasse Hansen · Giovanni Angelotti · Jack Gallifant

[ West Ballroom A-D ]

Abstract
In machine learning (ML), a widespread claim is that the area under the precision-recall curve (AUPRC) is a superior metric for model comparison to the area under the receiver operating characteristic (AUROC) for tasks with class imbalance. This paper refutes this notion on two fronts. First, we theoretically characterize the behavior of AUROC and AUPRC in the presence of model mistakes, establishing clearly that AUPRC is not generally superior in cases of class imbalance. We further show that AUPRC can be a harmful metric as it can unduly favor model improvements in subpopulations with more frequent positive labels, heightening algorithmic disparities. Next, we empirically support our theory using experiments on both semi-synthetic and real-world fairness datasets. Prompted by these insights, we conduct a review of over 1.5 million scientific papers to understand the origin of this invalid claim, finding that it is often made without citation, misattributed to papers that do not argue this point, and aggressively over-generalized from source arguments. Our findings represent a dual contribution: a significant technical advancement in understanding the relationship between AUROC and AUPRC and a stark warning about unchecked assumptions in the ML community.
Poster
Shubham Chowdhary · Giulia De Pasquale · Nicolas Lanzetti · Ana-Andreea Stoica · Florian Dorfler

[ West Ballroom A-D ]

Abstract
We study fairness in social influence maximization, whereby one seeks to selectseeds that spread a given information throughout a network, ensuring balancedoutreach among different communities (e.g. demographic groups). In the literature,fairness is often quantified in terms of the expected outreach within individualcommunities. In this paper, we demonstrate that such fairness metrics can bemisleading since they overlook the stochastic nature of information diffusionprocesses. When information diffusion occurs in a probabilistic manner, multipleoutreach scenarios can occur. As such, outcomes such as “In 50% of the cases, noone in group 1 gets the information, while everyone in group 2 does, and in theother 50%, it is the opposite”, which always results in largely unfair outcomes,are classified as fair by a variety of fairness metrics in the literature. We tacklethis problem by designing a new fairness metric, mutual fairness, that capturesvariability in outreach through optimal transport theory. We propose a new seed-selection algorithm that optimizes both outreach and mutual fairness, and we showits efficacy on several real datasets. We find that our algorithm increases fairnesswith only a minor decrease (and at times, even an increase) in efficiency.
Poster
Zikai Xiong · Niccolo Dalmasso · Shubham Sharma · Freddy Lecue · Daniele Magazzeni · Vamsi Potluru · Tucker Balch · Manuela Veloso

[ West Ballroom A-D ]

Abstract
Data distillation and coresets have emerged as popular approaches to generate a smaller representative set of samples for downstream learning tasks to handle large-scale datasets. At the same time, machine learning is being increasingly applied to decision-making processes at a societal level, making it imperative for modelers to address inherent biases towards subgroups present in the data. While current approaches focus on creating fair synthetic representative samples by optimizing local properties relative to the original samples, their impact on downstream learning processes has yet to be explored. In this work, we present fair Wasserstein coresets ($\texttt{FWC}$), a novel coreset approach which generates fair synthetic representative samples along with sample-level weights to be used in downstream learning tasks. $\texttt{FWC}$ uses an efficient majority minimization algorithm to minimize the Wasserstein distance between the original dataset and the weighted synthetic samples while enforcing demographic parity. We show that an unconstrained version of $\texttt{FWC}$ is equivalent to Lloyd's algorithm for k-medians and k-means clustering. Experiments conducted on both synthetic and real datasets show that $\texttt{FWC}$: (i) achieves a competitive fairness-performance tradeoff in downstream models compared to existing approaches, (ii) improves downstream fairness when added to the existing training data and (iii) can be used …
Poster
Jing Wang · HaiYing Wang · Hao Zhang

[ West Ballroom A-D ]

Abstract
Subsampling is effective in tackling computational challenges for massive data with rare events. Overly aggressive subsampling may adversely affect estimation efficiency, and optimal subsampling is essential to mitigate the information loss. However, existing optimal subsampling probabilities depends on data scales, and some scaling transformations may result in inefficient subsamples. This problem is more significant when there are inactive features, because their influence on the subsampling probabilities can be arbitrarily magnified by inappropriate scaling transformations. We tackle this challenge and introduce a scale-invariant optimal subsampling function in the context of sparse models, where inactive features are commonly assumed. Instead of focusing on estimating model parameters, we define an optimal subsampling function to minimize the prediction error, using adaptive lasso as an example to outline the estimation procedure and study its theoretical guarantee. We first introduce the adaptive lasso estimator for rare-events data and establish its oracle properties, thereby validating the use of subsampling. Then we derive a scale-invariant optimal subsampling function that minimizes the prediction error of the inverse probability weighted (IPW) adaptive lasso. Finally, we present an estimator based on the maximum sampled conditional likelihood (MSCL) to further improve the estimation efficiency. We conduct numerical experiments using both simulated and …
Poster
Steve Hanneke · Mingyue Xu

[ West Ballroom A-D ]

Abstract
The well-known $\textit{empirical risk minimization}$ (ERM) principle is the basis of many widely used machine learning algorithms, and plays an essential role in the classical PAC theory. A common description of a learning algorithm's performance is its so-called “learning curve”, that is, the decay of the expected error as a function of the input sample size. As the PAC model fails to explain the behavior of learning curves, recent research has explored an alternative universal learning model and has ultimately revealed a distinction between optimal universal and uniform learning rates (Bousquet et al., 2021). However, a basic understanding of such differences with a particular focus on the ERM principle has yet to be developed. In this paper, we consider the problem of universal learning by ERM in the realizable case and study the possible universal rates. Our main result is a fundamental $\textit{tetrachotomy}$: there are only four possible universal learning rates by ERM, namely, the learning curves of any concept class learnable by ERM decay either at $e^{-n}$, $1/n$, $\log{(n)}/n$, or arbitrarily slow rates. Moreover, we provide a complete characterization of which concept classes fall into each of these categories, via new complexity structures. We also develop new combinatorial dimensions …
Poster
Ioar Casado Telletxea · Luis Antonio Ortega Andrés · Aritz Pérez · Andres Masegosa

[ West Ballroom A-D ]

Abstract
We introduce a new PAC-Bayes oracle bound for unbounded losses that extends Cramér-Chernoff bounds to the PAC-Bayesian setting. The proof technique relies on controlling the tails of certain random variables involving the Cramér transform of the loss. Our approach naturally leverages properties of Cramér-Chernoff bounds, such as exact optimization of the free parameter in many PAC-Bayes bounds. We highlight several applications of the main theorem. Firstly, we show that our bound recovers and generalizes previous results. Additionally, our approach allows working with richer assumptions that result in more informative and potentially tighter bounds. In this direction, we provide a general bound under a new *model-dependent* assumption from which we obtain bounds based on parameter norms and log-Sobolev inequalities. Notably, many of these bounds can be minimized to obtain distributions beyond the Gibbs posterior and provide novel theoretical coverage to existing regularization techniques.
Poster
Vladimir Kostic · Hélène Halconruy · Timothée Devergne · Karim Lounici · Massimiliano Pontil

[ West Ballroom A-D ]

Abstract
We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes. Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings. We evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning bounds independent of the state space dimension and ensures non-spurious spectral estimation. Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral learning bounds.
Poster
Naveen Raman · Zheyuan Shi · Fei Fang

[ West Ballroom A-D ]

Abstract
Restless multi-armed bandits (RMAB) extend multi-armed bandits so arm pulls impact future arm states. Despite the success of RMABs, a key limiting assumption is the separability of rewards into a sum across arms. We address this deficiency by proposing restless-multi-armed bandit with global rewards (RMAB-G), a generalization of RMABs to global non-separable rewards. To solve RMAB-G, we develop the Linear-Whittle and Shapley-Whittle indices, which extend Whittle indices from RMABs to RMAB-Gs. We prove approximation bounds which demonstrate how Linear and Shapley-Whittle indices fail for non-linear rewards. To overcome this limitation, we propose two sets of adaptive policies: the first computes indices iteratively and the second combines indices with Monte-Carlo Tree Search (MCTS). Empirically, we demonstrate that adaptive policies outperform both pre-computed index policies and baselines in synthetic and real-world food rescue datasets.
Poster
Ziqiao Wang · Yongyi Mao

[ West Ballroom A-D ]

Abstract
Unsupervised domain adaptation (UDA) plays a crucial role in addressing distribution shifts in machine learning. In this work, we improve the theoretical foundations of UDA proposed in Acuna et al. (2021) by refining their $f$-divergence-based discrepancy and additionally introducing a new measure, $f$-domain discrepancy ($f$-DD). By removing the absolute value function and incorporating a scaling parameter, $f$-DD obtains novel target error and sample complexity bounds, allowing us to recover previous KL-based results and bridging the gap between algorithms and theory presented in Acuna et al. (2021). Using a localization technique, we also develop a fast-rate generalization bound. Empirical results demonstrate the superior performance of $f$-DD-based learning algorithms over previous works in popular UDA benchmarks.
Poster
Yuri Kinoshita · Taro Toyoizumi

[ West Ballroom A-D ]

Abstract
While neural networks can enjoy an outstanding flexibility and exhibit unprecedented performance, the mechanism behind their behavior is still not well-understood. To tackle this fundamental challenge, researchers have tried to restrict and manipulate some of their properties in order to gain new insights and better control on them. Especially, throughout the past few years, the concept of *bi-Lipschitzness* has been proved as a beneficial inductive bias in many areas. However, due to its complexity, the design and control of bi-Lipschitz architectures are falling behind, and a model that is precisely designed for bi-Lipschitzness realizing a direct and simple control of the constants along with solid theoretical analysis is lacking. In this work, we investigate and propose a novel framework for bi-Lipschitzness that can achieve such a clear and tight control based on convex neural networks and the Legendre-Fenchel duality. Its desirable properties are illustrated with concrete experiments to illustrate its broad range of applications.
Poster
Jiashuo Jiang · Yinyu Ye

[ West Ballroom A-D ]

Abstract
We consider the reinforcement learning problem for the constrained Markov decision process (CMDP), which plays a central role in satisfying safety or resource constraints in sequential learning and decision-making. In this problem, we are given finite resources and a MDP with unknown transition probabilities. At each stage, we take an action, collecting a reward and consuming some resources, all assumed to be unknown and need to be learned over time. In this work, we take the first step towards deriving optimal problem-dependent guarantees for the CMDP problems. We derive a logarithmic regret bound, which translates into a $O(\frac{1}{\Delta\cdot\epsilon}\cdot\log^2(1/\epsilon))$ sample complexity bound, with $\Delta$ being a problem-dependent parameter, yet independent of $\epsilon$. Our sample complexity bound improves upon the state-of-art $O(1/\epsilon^2)$ sample complexity for CMDP problems established in the previous literature, in terms of the dependency on $\epsilon$. To achieve this advance, we develop a new framework for analyzing CMDP problems. To be specific, our algorithm operates in the primal space and we resolve the primal LP for the CMDP problem at each period in an online manner, with \textit{adaptive} remaining resource capacities. The key elements of our algorithm are: i) a characterization of the instance hardness via LP basis, ii) …
Poster
Reuben Adams · John Shawe-Taylor · Benjamin Guedj

[ West Ballroom A-D ]

Abstract
Current PAC-Bayes generalisation bounds are restricted to scalar metrics of performance, such as the loss or error rate. However, one ideally wants more information-rich certificates that control the entire distribution of possible outcomes, such as the distribution of the test loss in regression, or the probabilities of different mis-classifications. We provide the first PAC-Bayes bound capable of providing such rich information by bounding the Kullback-Leibler divergence between the empirical and true probabilities of a set of $M$ error types, which can either be discretized loss values for regression, or the elements of the confusion matrix (or a partition thereof) for classification. We transform our bound into a differentiable training objective. Our bound is especially useful in cases where the severity of different mis-classifications may change over time; existing PAC-Bayes bounds can only bound a particular pre-decided weighting of the error types. In contrast our bound implicitly controls all uncountably many weightings simultaneously.
Poster
Xingwu Chen · Lei Zhao · Difan Zou

[ West Ballroom A-D ]

Abstract
Despite the remarkable success of transformer-based models in various real-world tasks, their underlying mechanisms remain poorly understood. Recent studies have suggested that transformers can implement gradient descent as an in-context learner for linear regression problems and have developed various theoretical analyses accordingly. However, these works mostly focus on the expressive power of transformers by designing specific parameter constructions, lacking a comprehensive understanding of their inherent working mechanisms post-training. In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning. We experimentally discover that the utilization of multi-heads exhibits different patterns across layers: multiple heads are utilized and essential in the first layer, while usually only a single head is sufficient for subsequent layers. We provide a theoretical explanation for this observation: the first layer preprocesses the context data, and the following layers execute simple optimization steps based on the preprocessed context. Moreover, we demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms. Further experimental results support our explanations. Our findings offer insights into the benefits of multi-head attention and contribute to understanding the more intricate mechanisms hidden within trained transformers.
Poster
Emanuele Natale · Davide Ferre · Giordano Giambartolomei · Frederic Giroire · Frederik Mallmann-Trenn

[ West Ballroom A-D ]

Abstract
Considerable research efforts have recently been made to show that a random neural network $N$ contains subnetworks capable of accurately approximating any given neural network that is sufficiently smaller than $N$, without any training. This line of research, known as the Strong Lottery Ticket Hypothesis (SLTH), was originally motivated by the weaker Lottery Ticket Hypothesis, which states that a sufficiently large random neural network $N$ contains sparse subnetworks that can be trained efficiently to achieve performance comparable to that of training the entire network $N$.Despite its original motivation, results on the SLTH have so far not provided any guarantee on the size of subnetworks.Such limitation is due to the nature of the main technical tool leveraged by these results, the Random Subset Sum (RSS) Problem.Informally, the RSS Problem asks how large a random i.i.d. sample $\Omega$ should be so that we are able to approximate any number in $[-1,1]$, up to an error of $ \epsilon$, as the sum of a suitable subset of $\Omega$. We provide the first proof of the SLTH in classical settings, such as dense and equivariant networks, with guarantees on the sparsity of the subnetworks. Central to our results, is the proof of an essentially …
Poster
Kirill Brilliantov · Amauri Souza · Vikas Garg

[ West Ballroom A-D ]

Abstract
Heterogeneity, e.g., due to different types of layers or multiple sub-models, poses key challenges in analyzing the generalization behavior of several modern architectures. For instance, descriptors based on Persistent Homology (PH) are being increasingly integrated into Graph Neural Networks (GNNs) to augment them with rich topological features; however, the generalization of such PH schemes remains unexplored. We introduce a novel _compositional_ PAC-Bayes framework that provides a general recipe to analyze a broad spectrum of models including those with heterogeneous layers. Specifically, we provide the first data-dependent generalization bounds for a widely adopted PH vectorization scheme (that subsumes persistence landscapes, images, and silhouettes) as well as PH-augmented GNNs. Using our framework, we also obtain bounds for GNNs and neural nets with ease. Our bounds also inform the design of novel regularizers. Empirical evaluations on several standard real-world datasets demonstrate that our theoretical bounds highly correlate with empirical generalization performance, leading to improved classifier design via our regularizers. Overall, this work bridges a crucial gap in the theoretical understanding of PH methods and general heterogeneous models, paving the way for the design of better models for (graph) representation learning. Our code is available at https://github.com/Aalto-QuML/Compositional-PAC-Bayes.
Poster
Zihao Li · Yuan Cao · Cheng Gao · Yihan He · Han Liu · Jason Klusowski · Jianqing Fan · Mengdi Wang

[ West Ballroom A-D ]

Abstract
Transformers have achieved great success in recent years. Interestingly, transformers have shown particularly strong in-context learning capability -- even without fine-tuning, they are still able to solve unseen tasks well purely based on task-specific prompts. In this paper, we study the capability of one-layer transformers in learning the one-nearest neighbor prediction rule. Under a theoretical framework where the prompt contains a sequence of labeled training data and unlabeled test data, we show that, although the loss function is nonconvex, when trained with gradient descent, a single softmax attention layer can successfully learn to behave like a one-nearest neighbor classifier. Our result gives a concrete example on how transformers can be trained to implement nonparametric machine learning algorithms, and sheds light on the role of softmax attention in transformer models.
Poster
Yiling Xie · Xiaoming Huo

[ West Ballroom A-D ]

Abstract
Adversarial training can achieve robustness against adversarial perturbations and has been widely used in machine-learning models. This paper delivers a non-asymptotic consistency analysis of the adversarial training procedure under $\ell_\infty$-perturbation in high-dimensional linear regression. It will be shown that, under the restricted eigenvalue condition, the associated convergence rate of prediction error can achieve the minimax rate up to a logarithmic factor in the high-dimensional linear regression on the class of sparse parameters. Additionally, the group adversarial training procedure is analyzed. Compared with classic adversarial training, it will be proved that the group adversarial training procedure enjoys a better prediction error upper bound under certain group-sparsity patterns.
Poster
Joongkyu Lee · Min-hwan Oh

[ West Ballroom A-D ]

Abstract
In this paper, we study the contextual multinomial logit (MNL) bandit problem in which a learning agent sequentially selects an assortment based on contextual information, and user feedback follows an MNL choice model.There has been a significant discrepancy between lower and upper regret bounds, particularly regarding the maximum assortment size $K$. Additionally, the variation in reward structures between these bounds complicates the quest for optimality. Under uniform rewards, where all items have the same expected reward, we establish a regret lower bound of $\Omega(d\sqrt{\smash[b]{T/K}})$ and propose a constant-time algorithm, OFU-MNL+, that achieves a matching upper bound of $\tilde{\mathcal{O}}(d\sqrt{\smash[b]{T/K}})$. We also provide instance-dependent minimax regret bounds under uniform rewards.Under non-uniform rewards, we prove a lower bound of $\Omega(d\sqrt{T})$ and an upper bound of $\tilde{\mathcal{O}}(d\sqrt{T})$, also achievable by OFU-MNL+. Our empirical studies support these theoretical findings. To the best of our knowledge, this is the first work in the contextual MNL bandit literature to prove minimax optimality --- for either uniform or non-uniform reward setting --- and to propose a computationally efficient algorithm that achieves this optimality up to logarithmic factors.
Poster
Steve Hanneke · Hongao Wang

[ West Ballroom A-D ]

Abstract
We provide a full characterization of the concept classes that are optimistically universally online learnable with {0, 1} labels. The notion of optimistically universal online learning was defined in [Hanneke, 2021] in order to understand learnability under minimal assumptions. In this paper, following the philosophy behind that work, we investigate two questions, namely, for every concept class: (1) What are the minimal assumptions on the data process admitting online learnability? (2) Is there a learning algorithm which succeeds under every data process satisfying the minimal assumptions? Such an algorithm is said to be optimistically universal for the given concept class. We resolve both of these questions for all concept classes, and moreover, as part of our solution we design general learning algorithms for each case. Finally, we extend these algorithms and results to the agnostic case, showing an equivalence between the minimal assumptions on the data process for learnability in the agnostic and realizable cases, for every concept class, as well as the equivalence of optimistically universal learnability.
Poster
Qian Li · Tian Ding · Linxin Yang · Minghui Ouyang · Qingjiang Shi · Ruoyu Sun

[ West Ballroom A-D ]

Abstract
Graph neural networks (GNNs) have recently emerged as powerful tools for addressing complex optimization problems. It has been theoretically demonstrated that GNNs can universally approximate the solution mapping functions of linear programming (LP) problems. However, these theoretical results typically require GNNs to have large parameter sizes. Conversely, empirical experiments have shown that relatively small GNNs can solve LPs effectively, revealing a significant discrepancy between theoretical predictions and practical observations. In this work, we aim to bridge this gap by providing a theoretical foundation for the effectiveness of small-size GNNs. We prove that polylogarithmic-depth, constant-width GNNs are sufficient to solve packing and covering LPs, two widely used classes of LPs. Our proof leverages the capability of GNNs to simulate a variant of the gradient descent algorithm on a carefully selected potential function. Additionally, we introduce a new GNN architecture, termed GD-Net. Experimental results demonstrate that GD-Net significantly outperforms conventional GNN structures while using fewer parameters.
Poster
Keran Chen · Joon Suk Huh · Kirthevasan Kandasamy

[ West Ballroom A-D ]

Abstract
We study a data pricing problem, where a seller has access to $N$ homogeneous data points (e.g. drawn i.i.d. from some distribution).There are $m$ types of buyers in the market, where buyers of the same type $i$ have the same valuation curve $v_i:[N]\rightarrow [0,1]$, where $v_i(n)$ is the value for having $n$ data points.*A priori*, the seller is unaware of thedistribution of buyers, but can repeat the market for $T$ rounds so as to learn the revenue-optimal pricing curve $p:[N] \rightarrow [0, 1]$.To solve this online learning problem,we first develop novel discretization schemes to approximate any pricing curve.When compared to prior work,the size of our discretization schemes scales gracefully with the approximation parameter, which translates to better regret in online learning.Under assumptions like smoothness and diminishing returns which are satisfied by data, the discretization size can be reduced further.We then turn to the online learning problem, both in the stochastic and adversarial settings.On each round, the seller chooses an *anonymous* pricing curve $p_t$.A new buyer appears and may choose to purchase some amount of data.She then reveals her type *only if* she makes a purchase.Our online algorithms build on classical algorithms such as UCB and FTPL, but require novel ideas …
Poster
Saeed Masoudian · Julian Zimmert · Yevgeny Seldin

[ West Ballroom A-D ]

Abstract
We propose a new best-of-both-worlds algorithm for bandits with variably delayed feedback. In contrast to prior work, which required prior knowledge of the maximal delay $d_{\max}$ and had a linear dependence of the regret on it, our algorithm can tolerate arbitrary excessive delays up to order $T$ (where $T$ is the time horizon). The algorithm is based on three technical innovations, which may all be of independent interest: (1) We introduce the first implicit exploration scheme that works in best-of-both-worlds setting. (2) We introduce the first control of distribution drift that does not rely on boundedness of delays. The control is based on the implicit exploration scheme and adaptive skipping of observations with excessive delays. (3) We introduce a procedure relating standard regret with drifted regret that does not rely on boundedness of delays. At the conceptual level, we demonstrate that complexity of best-of-both-worlds bandits with delayed feedback is characterized by the amount of information missing at the time of decision making (measured by the number of outstanding observations) rather than the time that the information is missing (measured by the delays).
Poster
Mengxiao Zhang · Yuheng Zhang · Haipeng Luo · Paul Mineiro

[ West Ballroom A-D ]

Abstract
Interactive-Grounded Learning (IGL) [Xie et al., 2021] is a powerful framework in which a learner aims at maximizing unobservable rewards through interacting with an environment and observing reward-dependent feedback on the taken actions.To deal with personalized rewards that are ubiquitous in applications such as recommendation systems, Maghakian et al. [2022] study a version of IGL with context-dependent feedback, but their algorithm does not come with theoretical guarantees. In this work, we consider the same problem and provide the first provably efficient algorithms with sublinear regret under realizability. Our analysis reveals that the step-function estimator of prior work can deviate uncontrollably due to finite-sample effects. Our solution is a novel Lipschitz reward estimator which underestimates the true reward and enjoys favorable generalization performances. Building on this estimator, we propose two algorithms, one based on explore-then-exploit and the other based on inverse-gap weighting. We apply IGL to learning from image feedback and learning from text feedback, which are reward-free settings that arise in practice. Experimental results showcase the importance of using our Lipschitz reward estimator and the overall effectiveness of our algorithms.
Poster
Jihyung Kil · Zheda Mai · Justin Lee · Arpita Chowdhury · Zihe Wang · Kerrie Cheng · Lemeng Wang · Ye Liu · Wei-Lun (Harry) Chao

[ West Ballroom A-D ]

Abstract
The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping, while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-CompBench, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-CompBench mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-CompBench to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-CompBench not only sheds light on these limitations but also establishes a solid …
Poster
Ahmed Ben Yahmed · Clément Calauzènes · Vianney Perchet

[ West Ballroom A-D ]

Abstract
We examine multi-armed bandit problems featuring strategic arms under debt-free reporting. In this context, each arm is characterized by a bounded support reward distribution and strategically aims to maximize its own utility by retaining a portion of the observed reward, potentially disclosing only a fraction of it to the player. This scenario unfolds as a game over $T$ rounds, leading to a competition of objectives between the player, aiming to minimize regret, and the arms, motivated by the desire to maximize their individual utilities. To address these dynamics, we propose an algorithm that establishes an equilibrium wherein each arm behaves truthfully and discloses as much of its rewards as possible. Utilizing this algorithm, the player can attain the second-highest average (true) reward among arms, with a cumulative regret bounded by $O(\log(T)/\Delta)$ (problem-dependent) or $O(\sqrt{T\log(T)})$ (worst-case).
Poster
Taira Tsuchiya · Shinji Ito

[ West Ballroom A-D ]

Abstract
In this work, we explore online convex optimization (OCO) and introduce a new condition and analysis that provides fast rates by exploiting the curvature of feasible sets. In online linear optimization, it is known that if the average gradient of loss functions exceeds a certain threshold, the curvature of feasible sets can be exploited by the follow-the-leader (FTL) algorithm to achieve a logarithmic regret. This study reveals that algorithms adaptive to the curvature of loss functions can also leverage the curvature of feasible sets. In particular, we first prove that if an optimal decision is on the boundary of a feasible set and the gradient of an underlying loss function is non-zero, then the algorithm achieves a regret bound of $O(\rho \log T)$ in stochastic environments. Here, $\rho > 0$ is the radius of the smallest sphere that includes the optimal decision and encloses the feasible set. Our approach, unlike existing ones, can work directly with convex loss functions, exploiting the curvature of loss functions simultaneously, and can achieve the logarithmic regret only with a local property of feasible sets. Additionally, the algorithm achieves an $O(\sqrt{T})$ regret even in adversarial environments, in which FTL suffers an $\Omega(T)$ regret, and achieves an …
Poster
Xuefeng Liu · Fangfang Xia · Rick Stevens · Yuxin Chen

[ West Ballroom A-D ]

Abstract
While training models and labeling data are resource-intensive, a wealth of pre-trained models and unlabeled data exists. To effectively utilize these resources, we present an approach to actively select pre-trained models while minimizing labeling costs. We frame this as an online contextual active model selection problem: At each round, the learner receives an unlabeled data point as a context. The objective is to adaptively select the best model to make a prediction while limiting label requests. To tackle this problem, we propose CAMS, a contextual active model selection algorithm that relies on two novel components: (1) a contextual model selection mechanism, which leverages context information to make informed decisions about which model is likely to perform best for a given context, and (2)an active query component, which strategically chooses when to request labels for data points, minimizing the overall labeling cost. We provide rigorous theoretical analysis for the regret and query complexity under both adversarial and stochastic settings. Furthermore, we demonstrate the effectiveness of our algorithm on a diverse collection of benchmark classification tasks. Notably, CAMS requires substantially less labeling effort (less than 10%) compared to existing methods on CIFAR10 and DRIFT benchmarks, while achieving similar or better accuracy.
Poster
Kexin Jin · Jonas Latz · Chenguang Liu · Carola-Bibiane Schönlieb

[ West Ballroom A-D ]

Abstract

Optimization problems with continuous data appear in, e.g., robust machine learning, functional data analysis, and variational inference. Here, the target function is given as an integral over a family of (continuously) indexed target functions---integrated with respect to a probability measure. Such problems can often be solved by stochastic optimization methods: performing optimization steps with respect to the indexed target function with randomly switched indices. In this work, we study a continuous-time variant of the stochastic gradient descent algorithm for optimization problems with continuous data. This so-called stochastic gradient process consists in a gradient flow minimizing an indexed target function that is coupled with a continuous-time index process determining the index. Index processes are, e.g., reflected diffusions, pure jump processes, or other Lévy processes on compact spaces. Thus, we study multiple sampling patterns for the continuous data space and allow for data simulated or streamed at runtime of the algorithm. We analyze the approximation properties of the stochastic gradient process and study its longtime behavior and ergodicity under constant and decreasing learning rates. We end with illustrating the applicability of the stochastic gradient process in a polynomial regression problem with noisy functional data, as well as in a physics-informed neural network.

Poster
Yuezhou Hu · Jun Zhu · Jianfei Chen

[ West Ballroom A-D ]

Abstract
Training deep neural networks (DNNs) is costly. Fortunately, Nvidia Ampere and Hopper GPUs can accelerate matrix multiplications twice as fast as a dense equivalent by implementing 2:4 sparsity. However, previous STE-based 2:4 pre-training methods (\eg~STE with hard-thresholding, SR-STE) suffer from optimization difficulties because of discontinuous pruning function.In this study, we comprehensively analyse the bottleneck of traditional N:M sparse training and recognize three drawbacks with discontinuity: incorrect descending direction, inability to predict the amount of descent and sparse mask oscillation. In the light of this statement, we propose S-STE, a simple yet powerful 2:4 training method that contains two parts: to continuously project weights to be 2:4 sparse, and to rescale sparse weights with a per-tensor fixed scaling factor. Besides, we adopt minimum-variance unbiased estimation for activation gradient and FP8 quantization for whole process. Results show that our method surpass previous 2:4 pre-training recipes and is comparable even with full parameter models.
Poster
Hongtai Zeng · Chao Yang · Yanzhen Zhou · Cheng Yang · Qinglai Guo

[ West Ballroom A-D ]

Abstract
Ensuring that the outputs of neural networks satisfy specific constraints is crucial for applying neural networks to real-life decision-making problems. In this paper, we consider making a batch of neural network outputs satisfy bounded and general linear constraints. We first reformulate the neural network output projection problem as an entropy-regularized linear programming problem. We show that such a problem can be equivalently transformed into an unconstrained convex optimization problem with Lipschitz continuous gradient according to the duality theorem. Then, based on an accelerated gradient descent algorithm with numerical performance enhancement, we present our architecture, GLinSAT, to solve the problem. To the best of our knowledge, this is the first general linear satisfiability layer in which all the operations are differentiable and matrix-factorization-free. Despite the fact that we can explicitly perform backpropagation based on automatic differentiation mechanism, we also provide an alternative approach in GLinSAT to calculate the derivatives based on implicit differentiation of the optimality condition. Experimental results on constrained traveling salesman problems, partial graph matching with outliers, predictive portfolio allocation and power system unit commitment demonstrate the advantages of GLinSAT over existing satisfiability layers. Our implementation is available at https://github.com/HunterTracer/GLinSAT.
Poster
Ding Shihong · Long Yang · Luo Luo · Cong Fang

[ West Ballroom A-D ]

Abstract
We study a typical optimization model where the optimization variable is composed of multiple probability distributions. Though the model appears frequently in practice, such as for policy problems, it lacks specific analysis in the general setting. For this optimization problem, we propose a new structural condition/landscape description named generalized quasar-convexity (GQC) beyond the realms of convexity. In contrast to original quasar-convexity \citep{hinder2020near}, GQC allows an individual quasar-convex parameter $\gamma_i$ for each variable block $i$ and the smaller of $\gamma_i$ implies less block-convexity. To minimize the objective function, we consider a generalized oracle termed as the internal function that includes the standard gradient oracle as a special case. We provide optimistic mirror descent (OMD) for multiple distributions and prove that the algorithm can achieve an adaptive $\tilde{\mathcal{O}}((\sum_{i=1}^d1/\gamma_i)\epsilon^{-1})$ iteration complexity to find an $\varepsilon$-suboptimal global solution without pre-known the exact values of $\gamma_i$ when the objective admits ``polynomial-like'' structural. Notably, it achieves iteration complexity that does not explicitly depend on the number of distributions and strictly faster $(\sum_{i=1}^d 1/\gamma_i \text{ v.s. } d\max_{i\in[1:d]} 1/\gamma_i)$ than mirror decent methods. We also extend GQC to the minimax optimization problem proposing the generalized quasar-convexity-concavity (GQCC) condition and a decentralized variant of OMD with regularization. Finally, …
Poster
Peter Halmos · Xinhao Liu · Julian Gold · Benjamin Raphael

[ West Ballroom A-D ]

Abstract
Optimal transport (OT) is a general framework for finding a minimum-cost transport plan, or coupling, between probability distributions, and has many applications in machine learning. A key challenge in applying OT to massive datasets is the quadratic scaling of the coupling matrix with the size of the dataset. [Forrow et al. 2019] introduced a factored coupling for the k-Wasserstein barycenter problem, which [Scetbon et al. 2021] adapted to solve the primal low-rank OT problem. We derive an alternative parameterization of the low-rank problem based on the _latent coupling_ (LC) factorization previously introduced by [Lin et al. 2021] generalizing [Forrow et al. 2019]. The LC factorization has multiple advantages for low-rank OT including decoupling the problem into three OT problems and greater flexibility and interpretability. We leverage these advantages to derive a new algorithm _Factor Relaxation with Latent Coupling_ (FRLC), which uses _coordinate_ mirror descent to compute the LC factorization. FRLC handles multiple OT objectives (Wasserstein, Gromov-Wasserstein, Fused Gromov-Wasserstein), and marginal constraints (balanced, unbalanced, and semi-relaxed) with linear space complexity. We provide theoretical results on FRLC, and demonstrate superior performance on diverse applications -- including graph clustering and spatial transcriptomics -- while demonstrating its interpretability.
Poster
Xiaobin Li · Kai Wu · yujian li · Xiaoyu Zhang · Handing Wang · Jing Liu

[ West Ballroom A-D ]

Abstract
Zero-shot optimization involves optimizing a target task that was not seen during training, aiming to provide the optimal solution without or with minimal adjustments to the optimizer. It is crucial to ensure reliable and robust performance in various applications. Current optimizers often struggle with zero-shot optimization and require intricate hyperparameter tuning to adapt to new tasks. To address this, we propose a Pretrained Optimization Model (POM) that leverages knowledge gained from optimizing diverse tasks, offering efficient solutions to zero-shot optimization through direct application or fine-tuning with few-shot samples. Evaluation on the BBOB benchmark and two robot control tasks demonstrates that POM outperforms state-of-the-art black-box optimization methods, especially for high-dimensional tasks. Fine-tuning POM with a small number of samples and budget yields significant performance improvements. Moreover, POM demonstrates robust generalization across diverse task distributions, dimensions, population sizes, and optimization horizons. For code implementation, see https://github.com/ninja-wm/POM/.
Poster
Emanuele Zangrando · Steffen Schotthöfer · Gianluca Ceruti · Jonas Kusch · Francesco Tudisco

[ West Ballroom A-D ]

Abstract
Reducing parameter redundancies in neural network architectures is crucial for achieving feasible computational and memory requirements during train and inference of large networks. Given its easy implementation and flexibility, one promising approach is layer factorization, which reshapes weight tensors into a matrix format and parameterizes it as the product of two rank-r matrices. However, this family of approaches often requires an initial full-model warm-up phase, prior knowledge of a feasible rank, and it is sensitive to parameter initialization.In this work, we introduce a novel approach to train the factors of a Tucker decomposition of the weight tensors. Our training proposal proves to be optimal in locally approximating the original unfactorized dynamics and stable for the initialization. Furthermore, the rank of each mode is dynamically updated during training.We provide a theoretical analysis of the algorithm, showing convergence, approximation and local descent guarantees. The method's performance is further illustrated through a variety of experiments, showing remarkable training compression rates and comparable or even better performance than the full baseline and alternative layer factorization strategies.
Spotlight Poster
Tu Anh-Nguyen · Joey Huchette · Christian Tjandraatmadja

[ West Ballroom A-D ]

Abstract
We develop a theoretically-grounded learning method for the Generalized Linear Programming Value Function (GVF), which models the optimal value of a linear programming (LP) problem as its objective and constraint bounds vary. This function plays a fundamental role in algorithmic techniques for large-scale optimization, particularly in decomposition for two-stage mixed-integer linear programs (MILPs). This paper establishes a structural characterization of the GVF that enables it to be modeled as a particular neural network architecture, which we then use to learn the GVF in a way that benefits from three notable properties. First, our method produces a true under-approximation of the value function with respect to the constraint bounds. Second, the model is input-convex in the constraint bounds, which not only matches the structure of the GVF but also enables the trained model to be efficiently optimized over using LP. Finally, our learning method is unsupervised, meaning that training data generation does not require computing LP optimal values, which can be prohibitively expensive at large scales. We numerically show that our method can approximate the GVF well, even when compared to supervised methods that collect training data by solving an LP for each data point. Furthermore, as an application of our …
Spotlight Poster
Mubashara Akhtar · Omar Benjelloun · Costanza Conforti · Luca Foschini · Joan Giner-Miguelez · Pieter Gijsbers · Sujata Goswami · Nitisha Jain · Michalis Karamousadakis · Michael Kuchnik · Satyapriya Krishna · Sylvain Lesage · Quentin Lhoest · Pierre Marcenac · Manil Maskey · Peter Mattson · Luis Oala · Hamidah Oderinwale · Pierre Ruyssen · Tim Santos · Rajat Shinde · Elena Simperl · Arjun Suresh · Goeffry Thomas · Slava Tykhonov · Joaquin Vanschoren · Susheel Varma · Jos van der Velde · Steffen Vogler · Carole-Jean Wu · Luyao Zhang

[ West Ballroom A-D ]

Abstract
Data is a critical resource for machine learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms. Croissant makes datasets more discoverable, portable, and interoperable, thereby addressing significant challenges in ML data management. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, enabling easy loading into the most commonly-used ML frameworks, regardless of where the data is stored. Our initial evaluation by human raters shows that Croissant metadata is readable, understandable, complete, yet concise.
Poster
Ruichen Jiang · Ali Kavis · Qiujiang Jin · Sujay Sanghavi · Aryan Mokhtari

[ West Ballroom A-D ]

Abstract
We propose adaptive, line-search-free second-order methods with optimal rate of convergence for solving convex-concave min-max problems. By means of an adaptive step size, our algorithms feature a simple update rule that requires solving only one linear system per iteration, eliminating the need for line-search or backtracking mechanisms. Specifically, we base our algorithms on the optimistic method and appropriately combine it with second-order information. Moreover, distinct from common adaptive schemes, we define the step size recursively as a function of the gradient norm and the prediction error in the optimistic update. We first analyze a variant where the step size requires knowledge of the Lipschitz constant of the Hessian. Under the additional assumption of Lipschitz continuous gradients, we further design a parameter-free version by tracking the Hessian Lipschitz constant locally and ensuring the iterates remain bounded. We also evaluate the practical performance of our algorithm by comparing it to existing second-order algorithms for minimax optimization.
Poster
Rui Pan · Xiang Liu · SHIZHE DIAO · Renjie Pi · Jipeng Zhang · Chi Han · Tong Zhang

[ West Ballroom A-D ]

Abstract
The machine learning community has witnessed impressive advancements since large language models (LLMs) first appeared. Yet, their massive memory consumption has become a significant roadblock to large-scale training. For instance, a 7B model typically requires at least 60 GB of GPU memory with full parameter training, which presents challenges for researchers without access to high-resource environments. Parameter Efficient Fine-Tuning techniques such as Low-Rank Adaptation (LoRA) have been proposed to alleviate this problem. However, in most large-scale fine-tuning settings, their performance does not reach the level of full parameter training because they confine the parameter search to a low-rank subspace. Attempting to complement this deficiency, we investigate the layerwise properties of LoRA on fine-tuning tasks and observe an unexpected but consistent skewness of weight norms across different layers. Utilizing this key observation, a surprisingly simple training strategy is discovered, which outperforms both LoRA and full parameter training in a wide range of settings with memory costs as low as LoRA. We name it Layerwise Importance Sampled AdamW (LISA), a promising alternative for LoRA, which applies the idea of importance sampling to different layers in LLMs and randomly freeze most middle layers during optimization. Experimental results show that with similar or less …
Poster
Paul Mangold · Sergey Samsonov · Safwan Labbi · Ilya Levin · REDA ALAMI · Alexey Naumov · Eric Moulines

[ West Ballroom A-D ]

Abstract
In this paper, we analyze the sample and communication complexity of the federated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify the effects of local training with agent heterogeneity. We show that the communication complexity of FedLSA scales polynomially with the inverse of the desired accuracy ϵ. To overcome this, we propose SCAFFLSA a new variant of FedLSA that uses control variates to correct for client drift, and establish its sample and communication complexities. We show that for statistically heterogeneous agents, its communication complexity scales logarithmically with the desired accuracy, similar to Scaffnew. An important finding is that, compared to the existing results for Scaffnew, the sample complexity scales with the inverse of the number of agents, a property referred to as linear speed-up. Achieving this linear speed-up requires completely new theoretical arguments. We apply the proposed method to federated temporal difference learning with linear function approximation and analyze the corresponding complexity improvements.
Poster
Zhezhe Jiao · Martin Keller-Ressel

[ West Ballroom A-D ]

Abstract
It has repeatedly been observed that loss minimization by stochastic gradient descent (SGD) leads to heavy-tailed distributions of neural network parameters. Here, we analyze a continuous diffusion approximation of SGD, called homogenized stochastic gradient descent (hSGD), and show in a regularized linear regression framework that it leads to an asymptotically heavy-tailed parameter distribution, even though local gradient noise is Gaussian. We give explicit upper and lower bounds on the tail-index of the resulting parameter distribution and validate these bounds in numerical experiments. Moreover, the explicit form of these bounds enables us to quantify the interplay between optimization hyperparameters and the tail-index. Doing so, we contribute to the ongoing discussion on links between heavy tails and the generalization performance of neural networks as well as the ability of SGD to avoid suboptimal local minima.
Poster
Boris Repasky · Ehsan Abbasnejad · Anthony Dick

[ West Ballroom A-D ]

Abstract
Recent advancements in pre-trained vision models have made them pivotal in computer vision, emphasizing the need for their thorough evaluation and benchmarking. This evaluation needs to consider various factors of variation, their potential biases, shortcuts, and inaccuracies that ultimately lead to disparate performance in models. Such evaluations are conventionally done using either synthetic data from 2D or 3D rendering software or real-world images in controlled settings. Synthetic methods offer full control and flexibility, while real-world methods are limited by high costs and less adaptability. Moreover, 3D rendering can't yet fully replicate real photography, creating a realism gap.In this paper, we introduce BLURD--Benchmarking and Learning using a Unified Rendering and Diffusion Model--a novel method combining 3D rendering and Stable Diffusion to bridge this gap in representation learning. With BLURD we create a new family of datasets that allow for the creation of both 3D rendered and photo-realistic images with identical factors. BLURD, therefore, provides deeper insights into the representations learned by various CLIP backbones. The source code for creating the BLURD datasets is available at https://github.com/squaringTheCircle/BLURD
Poster
Jie Ren · Xidong Feng · Bo Liu · Xuehai Pan · Yao Fu · Luo Mai · Yaodong Yang

[ West Ballroom A-D ]

Abstract

Differentiable optimization algorithms often involve expensive computations of various meta-gradients. To address this, we design and implement TorchOpt, a new PyTorch-based differentiable optimization library. TorchOpt provides an expressive and unified programming interface that simplifies the implementation of explicit, implicit, and zero-order gradients. Moreover, TorchOpt has a distributed execution runtime capable of parallelizing diverse operations linked to differentiable optimization tasks across CPU and GPU devices. Experimental results demonstrate that TorchOpt achieves a 5.2× training time speedup in a cluster. TorchOpt is open-sourced at https://github.com/metaopt/torchopt and has become a PyTorch Ecosystem project.

Poster
Guy Kornowski · Swati Padmanabhan · Kai Wang · Zhe Zhang · Suvrit Sra

[ West Ballroom A-D ]

Abstract
Algorithms for bilevel optimization often encounter Hessian computations, which are prohibitive in high dimensions. While recent works offer first-order methods for unconstrained bilevel problems, the constrained setting remains relatively underexplored. We present first-order linearly constrained optimization methods with finite-time hypergradient stationarity guarantees. For linear equality constraints, we attain $\epsilon$-stationarity in $\widetilde{O}(\epsilon^{-2})$ gradient oracle calls, which is nearly-optimal. For linear inequality constraints, we attain $(\delta,\epsilon)$-Goldstein stationarity in $\widetilde{O}(d{\delta^{-1} \epsilon^{-3}})$ gradient oracle calls, where $d$ is the upper-level dimension. Finally, we obtain for the linear inequality setting dimension-free rates of $\widetilde{O}({\delta^{-1} \epsilon^{-4}})$ oracle complexity under the additional assumption of oracle access to the optimal dual variable. Along the way, we develop new nonsmooth nonconvex optimization methods with inexact oracles. Our numerical experiments verify these guarantees.
Spotlight Poster
Qiujiang Jin · Ruichen Jiang · Aryan Mokhtari

[ West Ballroom A-D ]

Abstract
In this paper, we present the first explicit and non-asymptotic global convergence rates of the BFGS method when implemented with an inexact line search scheme satisfying the Armijo-Wolfe conditions. We show that BFGS achieves a global linear convergence rate of $(1 - \frac{1}{\kappa})^t$ for $\mu$-strongly convex functions with $L$-Lipschitz gradients, where $\kappa = \frac{L}{\mu}$ represents the condition number. Additionally, if the objective function's Hessian is Lipschitz, BFGS with the Armijo-Wolfe line search achieves a linear convergence rate that depends solely on the line search parameters, independent of the condition number. We also establish a global superlinear convergence rate of $\mathcal{O}((\frac{1}{t})^t)$. These global bounds are all valid for any starting point $x_0$ and any symmetric positive definite initial Hessian approximation matrix $B_0$, though the choice of $B_0$ impacts the number of iterations needed to achieve these rates. By synthesizing these results, we outline the first global complexity characterization of BFGS with the Armijo-Wolfe line search. Additionally, we clearly define a mechanism for selecting the step size to satisfy the Armijo-Wolfe conditions and characterize its overall complexity.
Poster
Xiang Meng · Kayhan Behdin · Haoyue Wang · Rahul Mazumder

[ West Ballroom A-D ]

Abstract
The impressive performance of Large Language Models (LLMs) across various natural language processing tasks comes at the cost of vast computational resources and storage requirements. One-shot pruning techniques offer a way to alleviate these burdens by removing redundant weights without the need for retraining. Yet, the massive scale of LLMs often forces current pruning approaches to rely on heuristics instead of optimization-based techniques, potentially resulting in suboptimal compression. In this paper, we introduce ALPS, an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned conjugate gradient-based post-processing step. Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency. ALPS substantially outperforms state-of-the-art methods in terms of the pruning objective and perplexity reduction, particularly for highly sparse models. On the LLaMA3-8B model with 70\% sparsity, ALPS achieves a 29\% reduction in test perplexity on the WikiText dataset and a 8\% improvement in zero-shot benchmark performance compared to existing methods. Our code is available at https://github.com/mazumder-lab/ALPS.
Poster
Tam Nguyen · Anh-Dzung Doan · zhipeng cai · Tat-Jun Chin

[ West Ballroom A-D ]

Abstract
Neuromorphic computers open up the potential of energy-efficient computation using spiking neural networks (SNN), which consist of neurons that exchange spike-based information asynchronously. In particular, SNNs have shown promise in solving combinatorial optimization. Underpinning the SNN methods is the concept of energy minimization of an Ising model, which is closely related to quadratic unconstrained binary optimization (QUBO). Thus, the starting point for many SNN methods is reformulating the target problem as QUBO, then executing an SNN-based QUBO solver. For many combinatorial problems, the reformulation entails introducing penalty terms, potentially with slack variables, that implement feasibility constraints in the QUBO objective. For more complex problems such as hypergraph minimum vertex cover (HMVC), numerous slack variables are introduced which drastically increase the search domain and reduce the effectiveness of the SNN solver. In this paper, we propose a novel SNN formulation for HMVC. Rather than using penalty terms with slack variables, our SNN architecture introduces additional spiking neurons with a constraint checking and correction mechanism that encourages convergence to feasible solutions. In effect, our method obviates the need for reformulating HMVC as QUBO. Experiments on neuromorphic hardware show that our method consistently yielded high quality solutions for HMVC on real and synthetic …
Poster
Morad Tukan · Loay Mualem · Moran Feldman

[ West Ballroom A-D ]

Abstract
Non-monotone constrained submodular maximization plays a crucial role in various machine learning applications. However, existing algorithms often struggle with a trade-off between approximation guarantees and practical efficiency. The current state-of-the-art is a recent $0.401$-approximation algorithm, but its computational complexity makes it highly impractical. The best practical algorithms for the problem only guarantee $1/e$-approximation. In this work, we present a novel algorithm for submodular maximization subject to a cardinality constraint that combines a guarantee of $0.385$-approximation with a low and practical query complexity of $O(n+k^2)$. Furthermore, we evaluate our algorithm's performance through extensive machine learning applications, including Movie Recommendation, Image Summarization, and more. These evaluations demonstrate the efficacy of our approach.
Poster
Grigory Malinovsky · Peter Richtarik · Samuel Horváth · Eduard Gorbunov

[ West Ballroom A-D ]

Abstract
Distributed learning has emerged as a leading paradigm for training large machine learning models. However, in real-world scenarios, participants may be unreliable or malicious, posing a significant challenge to the integrity and accuracy of the trained models. Byzantine fault tolerance mechanisms have been proposed to address these issues, but they often assume full participation from all clients, which is not always practical due to the unavailability of some clients or communication constraints. In our work, we propose the first distributed method with client sampling and provable tolerance to Byzantine workers. The key idea behind the developed method is the use of gradient clipping to control stochastic gradient differences in recursive variance reduction. This allows us to bound the potential harm caused by Byzantine workers, even during iterations when all sampled clients are Byzantine. Furthermore, we incorporate communication compression into the method to enhance communication efficiency. Under general assumptions, we prove convergence rates for the proposed method that match the existing state-of-the-art (SOTA) theoretical results. We also propose a heuristic on how to adjust any Byzantine-robust method to a partial participation scenario via clipping.
Poster
Dmitry Kovalev · Ekaterina Borodich · Alexander Gasnikov · Dmitrii Feoktistov

[ West Ballroom A-D ]

Abstract
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network. This problem is relatively well-studied in the scenario when the objective functions are smooth, or the links of the network are fixed in time, or both. In particular, lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established, along with matching optimal algorithms. However, the remaining and most challenging setting of non-smooth decentralized optimization over time-varying networks is largely underexplored, as neither lower bounds nor optimal algorithms are known in the literature. We resolve this fundamental gap with the following contributions: (i) we establish the first lower bounds on the communication and subgradient computation complexities of solving non-smooth convex decentralized optimization problems over time-varying networks; (ii) we develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
Poster
Alexander Tyurin · Peter Richtarik

[ West Ballroom A-D ]

Abstract
We consider the decentralized stochastic asynchronous optimization setup, where many workers asynchronously calculate stochastic gradients and asynchronously communicate with each other using edges in a multigraph. For both homogeneous and heterogeneous setups, we prove new time complexity lower bounds under the assumption that computation and communication speeds are bounded by constants. After that, we developed a new nearly optimal method, Fragile SGD, and a new optimal method, Amelie SGD, that converge with arbitrary heterogeneous computation and communication speeds and match our lower bounds (up to a logarithmic factor in the homogeneous setting). Our time complexities are new, nearly optimal, and provably improve all previous asynchronous/synchronous stochastic methods in the decentralized setup.
Poster
Wenzhi Fang · Dong-Jun Han · Evan Chen · Shiqiang Wang · Christopher Brinton

[ West Ballroom A-D ]

Abstract
While traditional federated learning (FL) typically focuses on a star topology where clients are directly connected to a central server, real-world distributed systems often exhibit hierarchical architectures. Hierarchical FL (HFL) has emerged as a promising solution to bridge this gap, leveraging aggregation points at multiple levels of the system. However, existing algorithms for HFL encounter challenges in dealing with multi-timescale model drift, i.e., model drift occurring across hierarchical levels of data heterogeneity. In this paper, we propose a multi-timescale gradient correction (MTGC) methodology to resolve this issue. Our key idea is to introduce distinct control variables to (i) correct the client gradient towards the group gradient, i.e., to reduce client model drift caused by local updates based on individual datasets, and (ii) correct the group gradient towards the global gradient, i.e., to reduce group model drift caused by FL over clients within the group. We analytically characterize the convergence behavior of MTGC under general non-convex settings, overcoming challenges associated with couplings between correction terms. We show that our convergence bound is immune to the extent of data heterogeneity, confirming the stability of the proposed algorithm against multi-level non-i.i.d. data. Through extensive experiments on various datasets and models, we validate the …
Spotlight Poster
Róbert Busa-Fekete · Travis Dick · Claudio Gentile · Andres Munoz Medina · Adam Smith · Marika Swanberg

[ West Ballroom A-D ]

Abstract
We propose reconstruction advantage measures to audit label privatization mechanisms. A reconstruction advantage measure quantifies the increase in an attacker's ability to infer the true label of an unlabeled example when provided with a private version of the labels in a dataset (e.g., aggregate of labels from different users or noisy labels output by randomized response), compared to an attacker that only observes the feature vectors, but may have prior knowledge of the correlation between features and labels. We consider two such auditing measures: one additive, and on multiplicative. These cover previous approaches taken in the literature on empirical auditing and differential privacy. These measures allow us to place a variety of proposed privatization schemes---some differentially private, some not---on the same footing. We analyze these measures theoretically under a distributional model which, we claim, encapsulates reasonable adversarial settings. We also quantify their behavior empirically on real and simulated prediction tasks. Across a range of experimental settings, we find that differentially private schemes dominate or match the privacy-utility tradeoff of more heuristic approaches.
Poster
Dario Fenoglio · Gabriele Dominici · Pietro Barbiero · Alberto Tonda · Martin Gjoreski · Marc Langheinrich

[ West Ballroom A-D ]

Abstract
Federated Learning (FL), a privacy-aware approach in distributed deep learning environments, enables many clients to collaboratively train a model without sharing sensitive data, thereby reducing privacy risks. However, enabling human trust and control over FL systems requires understanding the evolving behaviour of clients, whether beneficial or detrimental for the training, which still represents a key challenge in the current literature. To address this challenge, we introduce Federated Behavioural Planes (FBPs), a novel method to analyse, visualise, and explain the dynamics of FL systems, showing how clients behave under two different lenses: predictive performance (error behavioural space) and decision-making processes (counterfactual behavioural space). Our experiments demonstrate that FBPs provide informative trajectories describing the evolving states of clients and their contributions to the global model, thereby enabling the identification of clusters of clients with similar behaviours. Leveraging the patterns identified by FBPs, we propose a robust aggregation technique named Federated Behavioural Shields to detect malicious or noisy client models, thereby enhancing security and surpassing the efficacy of existing state-of-the-art FL defense mechanisms. Our code is publicly available on GitHub.
Poster
David Durfee

[ West Ballroom A-D ]

Abstract
We provide a new algorithmic framework for differentially private estimation of general functions that adapts to the hardness of the underlying dataset. We build upon previous work that gives a paradigm for selecting an output through the exponential mechanism based upon closeness of the inverse to the underlying dataset, termed the inverse sensitivity mechanism. Our framework will slightly modify the closeness metric and instead give a simple and efficient application of the sparse vector technique. While the inverse sensitivity mechanism was shown to be instance optimal, it was only with respect to a class of unbiased mechanisms such that the most likely outcome matches the underlying data. We break this assumption in order to more naturally navigate the bias-variance tradeoff, which will also critically allow for extending our method to unbounded data. In consideration of this tradeoff, we provide theoretical guarantees and empirical validation that our technique will be particularly effective when the distances to the underlying dataset are asymmetric. This asymmetry is inherent to a range of important problems including fundamental statistics such as variance, as well as commonly used machine learning performance metrics for both classification and regression tasks. We efficiently instantiate our method in $O(n)$ time for …
Poster
Ronak Mehta · Jelena Diakonikolas · Zaid Harchaoui

[ West Ballroom A-D ]

Abstract
We consider the penalized distributionally robust optimization (DRO) problem with a closed, convex uncertainty set, a setting that encompasses learning using $f$-DRO and spectral/$L$-risk minimization. We present Drago, a stochastic primal-dual algorithm which combines cyclic and randomized components with a carefully regularized primal update to achieve dual variance reduction. Owing to its design, Drago enjoys a state-of-the-art linear convergence rate on strongly convex-strongly concave DRO problems witha fine-grained dependency on primal and dual condition numbers. The theoretical results are supported with numerical benchmarks on regression and classification tasks.
Poster
Ziyad Benomar · Dorian Baudry · Vianney Perchet

[ West Ballroom A-D ]

Abstract
Prophet inequalities are fundamental optimal stopping problems, where a decision-maker observes sequentially items with values sampled independently from known distributions, and must decide at each new observation to either stop and gain the current value or reject it irrevocably and move to the next step. This model is often too pessimistic and does not adequately represent real-world online selection processes. Potentially, rejectesd items can be revisited and a fraction of their value can be recovered. To analyze this problem, we consider general decay functions $D_1,D_2,\ldots$, quantifying the value to be recovered from a rejected item, depending on how far it has been observed in the past. We analyze how lookback improves, or not, the competitive ratio in prophet inequalities in different order models. We show that, under mild monotonicity assumptions on the decay functions, the problem can be reduced to the case where all the decay functions are equal to the same function $x \mapsto \gamma x$, where $\gamma = \inf_{x>0} \inf_{j \geq 1} D_j(x)/x$. Consequently, we focus on this setting and refine the analyses of the competitive ratios, with upper and lower bounds expressed as increasing functions of $\gamma$.
Poster
Wei Jiang · Sifan Yang · Yibo Wang · Lijun Zhang

[ West Ballroom A-D ]

Abstract
This paper explores adaptive variance reduction methods for stochastic optimization based on the STORM technique. Existing adaptive extensions of STORM rely on strong assumptions like bounded gradients and bounded function values, or suffer an additional $\mathcal{O}(\log T)$ term in the convergence rate. To address these limitations, we introduce a novel adaptive STORM method that achieves an optimal convergence rate of $\mathcal{O}(T^{-1/3})$ for non-convex functions with our newly designed learning rate strategy. Compared with existing approaches, our method requires weaker assumptions and attains the optimal convergence rate without the additional $\mathcal{O}(\log T)$ term. We also extend the proposed technique to stochastic compositional optimization, obtaining the same optimal rate of $\mathcal{O}(T^{-1/3})$. Furthermore, we investigate the non-convex finite-sum problem and develop another innovative adaptive variance reduction method that achieves an optimal convergence rate of $\mathcal{O}(n^{1/4} T^{-1/2} )$, where $n$ represents the number of component functions. Numerical experiments across various tasks validate the effectiveness of our method.
Poster
Hoang Phuc Hau Luu · Hanlin Yu · Bernardo Williams · Petrus Mikkola · Marcelo Hartmann · Kai Puolamäki · Arto Klami

[ West Ballroom A-D ]

Abstract
We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is---to our knowledge---still unknown in our very general non-geodesically-convex setting.
Poster
Cheikh Ahmed · Alexandre Forel · Axel Parmentier · Thibaut Vidal

[ West Ballroom A-D ]

Abstract
Districting is a complex combinatorial problem that consists in partitioning a geographical area into small districts. In logistics, it is a major strategic decision determining operating costs for several years. Solving districting problems using traditional methods is intractable even for small geographical areas and existing heuristics often provide sub-optimal results. We present a structured learning approach to find high-quality solutions to real-world districting problems in a few minutes. It is based on integrating a combinatorial optimization layer, the capacitated minimum spanning tree problem, into a graph neural network architecture. To train this pipeline in a decision-aware fashion, we show how to construct target solutions embedded in a suitable space and learn from target solutions. Experiments show that our approach outperforms existing methods as it can significantly reduce costs on real-world cities.
Poster
Songfu Cai · Fei Han · Xuanyu Cao

[ West Ballroom A-D ]

Abstract
We introduce the framework of performative control, where the policy chosen by the controller affects the underlying dynamics of the control system. This results in a sequence of policy-dependent system state data with policy-dependent temporal correlations. Following the recent literature on performative prediction \cite{perdomo2020performative}, we introduce the concept of a performatively stable control (PSC) solution. We first propose a sufficient condition for the performative control problem to admit a unique PSC solution with a problem-specific structure of distributional sensitivity propagation and aggregation. We further analyze the impacts of system stability on the existence of the PSC solution. Specifically, for {almost surely strongly stable} policy-dependent dynamics, the PSC solution exists if the sum of the distributional sensitivities is small enough. However, for almost surely unstable policy-dependent dynamics, the existence of the PSC solution will necessitate a temporally backward decaying of the distributional sensitivities. We finally provide a repeated stochastic gradient descent scheme that converges to the PSC solution and analyze its non-asymptotic convergence rate. Numerical results validate our theoretical analysis.
Poster
Haizhou Du · Yijian Chen · Ryan Yang · Yuchen Li · Linghe Kong

[ West Ballroom A-D ]

Abstract
While Distributed Machine Learning (DML) has been widely used to achieve decent performance, it is still challenging to take full advantage of data and devices distributed at multiple vantage points to adapt and learn, especially it is non-trivial to address dynamic and divergence challenges based on the linear aggregation framework as follows: (1) heterogeneous learning data at different devices (i.e., non-IID data) resulting in model divergence and (2) in the case of time-varying communication links, the limited ability for devices to reconcile model divergence. In this paper, we contribute a non-linear class aggregation framework HyperPrism that leverages distributed mirror descent with averaging done in the mirror descent dual space and adapts the degree of Weighted Power Mean (WPM) used in each round. Moreover, HyperPrism could adaptively choose different mapping for different layers of the local model with a dedicated hypernetwork per device, achieving automatic optimization of DML in high divergence settings. We perform rigorous analysis and experimental evaluations to demonstrate the effectiveness of adaptive, mirror-mapping DML. In particular, we extend the generalizability of existing related works and position them as special cases within HyperPrism. Our experimental results show that HyperPrism can improve the convergence speed up to 98.63% and scale …
Poster
Bo Liu · Lemeng Wu · Lizhang Chen · Kaizhao Liang · Jiaxu Zhu · Chen Liang · Raghuraman Krishnamoorthi · Qiang Liu

[ West Ballroom A-D ]

Abstract
The Lion optimizer has been a promising competitor with the AdamW for training large AI models, with advantages in memory, computation, and sample efficiency. In this paper, we introduce Distributed Lion, an innovative adaptation of Lion for distributed training environments. Leveraging the sign operator in Lion, our Distributed Lion only requires to communicate binary or lower-precision vectorsbetween workers to the center server, significantly reducing the communication cost. Our theoretical analysis confirms Distributed Lion's convergence properties. Empirical results demonstrate its robustness across a range of tasks, worker counts, and batch sizes, on both vision and language problems. Notably, Distributed Lion attains comparable performance to standard Lion or AdamW optimizers applied on aggregated gradients, but with significantly reduced communication bandwidth. This feature is particularly advantageous for training large models. In addition, we also demonstrate that \mavolion{} presents a more favorable performance-bandwidth balance compared to existing efficient distributed methods such as deep gradient compression and ternary gradients.
Poster
Tehila Dahan · Kfir Y. Levy

[ West Ballroom A-D ]

Abstract
We address the challenges of Byzantine-robust training in asynchronous distributed machine learning systems, aiming to enhance efficiency amid massive parallelization and heterogeneous compute resources. Asynchronous systems, marked by independently operating workers and intermittent updates, uniquely struggle with maintaining integrity against Byzantine failures, which encompass malicious or erroneous actions that disrupt learning. The inherent delays in such settings not only introduce additional bias to the system but also obscure the disruptions caused by Byzantine faults. To tackle these issues, we adapt the Byzantine framework to asynchronous dynamics by introducing a novel weighted robust aggregation framework. This allows for the extension of robust aggregators and a recent meta-aggregator to their weighted versions, mitigating the effects of delayed updates. By further incorporating a recent variance-reduction technique, we achieve an optimal convergence rate for the first time in an asynchronous Byzantine environment. Our methodology is rigorously validated through empirical and theoretical analysis, demonstrating its effectiveness in enhancing fault tolerance and optimizing performance in asynchronous ML systems.
Poster
Bo Li · Wei Wang · Peng Ye

[ West Ballroom A-D ]

Abstract
Differential privacy (DP) is a formal notion that restricts the privacy leakage of an algorithm when running on sensitive data, in which privacy-utility trade-off is one of the central problems in private data analysis. In this work, we investigate the fundamental limits of differential privacy in online learning algorithms and present evidence that separates three types of constraints: no DP, pure DP, and approximate DP. We first describe a hypothesis class that is online learnable under approximate DP but not online learnable under pure DP under the adaptive adversarial setting. This indicates that approximate DP must be adopted when dealing with adaptive adversaries. We then prove that any private online learner must make an infinite number of mistakes for almost all hypothesis classes. This essentially generalizes previous results and shows a strong separation between private and non-private settings since a finite mistake bound is always attainable (as long as the class is online learnable) when there is no privacy requirement.
Poster
Abhipsa Basu · Saswat Subhajyoti Mallick · Venkatesh Babu R

[ West Ballroom A-D ]

Abstract
In image classification, it is common to utilize a pretrained model to extract meaningful features of the input images, and then to train a classifier on top of it to make predictions for any downstream task. Trained on enormous amounts of data, these models have been shown to contain harmful biases which can hurt their performance when adapted for a downstream classification task. Further, very often they may be blackbox, either due to scale, or because of unavailability of model weights or architecture. Thus, during a downstream task, we cannot debias such models by updating the weights of the feature encoder, as only the classifier can be finetuned. In this regard, we investigate the suitability of some existing debiasing techniques and thereby motivate the need for more focused research towards this problem setting. Furthermore, we propose a simple method consisting of a clustering-based adaptive margin loss with a blackbox feature encoder, with no knowledge of the bias attribute. Our experiments demonstrate the effectiveness of our method across multiple benchmarks.
Poster
Dan Qiao · Yu-Xiang Wang

[ West Ballroom A-D ]

Abstract
We study the problem of multi-agent reinforcement learning (multi-agent RL) with differential privacy (DP) constraints. This is well-motivated by various real-world applications involving sensitive data, where it is critical to protect users' private information. We first extend the definitions of Joint DP (JDP) and Local DP (LDP) to two-player zero-sum episodic Markov Games, where both definitions ensure trajectory-wise privacy protection. Then we design a provably efficient algorithm based on optimistic Nash value iteration and privatization of Bernstein-type bonuses. The algorithm is able to satisfy JDP and LDP requirements when instantiated with appropriate privacy mechanisms. Furthermore, for both notions of DP, our regret bound generalizes the best known result under the single-agent RL case, while our regret could also reduce to the best known result for multi-agent RL without privacy constraints. To the best of our knowledge, these are the first results towards understanding trajectory-wise privacy protection in multi-agent RL.
Poster
Rongzhe Wei · Eli Chien · Pan Li

[ West Ballroom A-D ]

Abstract
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. However, protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level different privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel $\infty$-Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI more applicable in practice. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
Poster
Andrew Lowy · Daogao Liu · Hilal Asi

[ West Ballroom A-D ]

Abstract
We study private stochastic convex optimization (SCO) under user-level differential privacy (DP) constraints. In this setting, there are $n$ users (e.g., cell phones), each possessing $m$ data items (e.g., text messages), and we need to protect the privacy of each user's entire collection of data items. Existing algorithms for user-level DP SCO are impractical in many large-scale machine learning scenarios because: (i) they make restrictive assumptions on the smoothness parameter of the loss function and require the number of users to grow polynomially with the dimension of the parameter space; or (ii) they are prohibitively slow, requiring at least $(mn)^{3/2}$ gradient computations for smooth losses and $(mn)^3$ computations for non-smooth losses. To address these limitations, we provide novel user-level DP algorithms with state-of-the-art excess risk and runtime guarantees, without stringent assumptions. First, we develop a linear-time algorithm with state-of-the-art excess risk (for a non-trivial linear-time algorithm) under a mild smoothness assumption. Our second algorithm applies to arbitrary smooth losses and achieves optimal excess risk in $\approx (mn)^{9/8}$ gradient computations. Third, for non-smooth loss functions, we obtain optimal excess risk in $n^{11/8} m^{5/4}$ gradient computations. Moreover, our algorithms do not require the number of users to grow polynomially with the dimension.
Poster
Yuval Dagan · Michael Jordan · Xuelin Yang · Lydia Zakynthinou · Nikita Zhivotovskiy

[ West Ballroom A-D ]

Abstract
We present differentially private algorithms for high-dimensional mean estimation. Previous private estimators on distributions over $\mathbb{R}^d$ suffer from a curse of dimensionality, as they require $\Omega(d^{1/2})$ samples to achieve non-trivial error, even in cases where $O(1)$ samples suffice without privacy. This rate is unavoidable when the distribution is isotropic, namely, when the covariance is a multiple of the identity matrix. Yet, real-world data is often highly anisotropic, with signals concentrated on a small number of principal components. We develop estimators that are appropriate for such signals---our estimators are $(\varepsilon,\delta)$-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions. Given $n$ samples from a distribution with known covariance-proxy $\Sigma$ and unknown mean $\mu$, we present an estimator $\hat{\mu}$ that achieves error, $\|\hat{\mu}-\mu\|_2\leq \alpha$, as long as $n\gtrsim \text{tr}(\Sigma)/\alpha^2+ \text{tr}(\Sigma^{1/2})/(\alpha\varepsilon)$. We show that this is the optimal sample complexity for this task up to logarithmic factors. Moreover, for the case of unknown covariance, we present an algorithm whose sample complexity has improved dependence on the dimension, from $d^{1/2}$ to $d^{1/4}$.
Poster
Yihang Yao · Zhepeng Cen · Wenhao Ding · Haohong Lin · Shiqi Liu · Tingnan Zhang · Wenhao Yu · DING ZHAO

[ West Ballroom A-D ]

Abstract
Offline safe reinforcement learning (RL) aims to train a policy that satisfies con- straints using a pre-collected dataset. Most current methods struggle with the mismatch between imperfect demonstrations and the desired safe and rewarding performance. In this paper, we mitigate this issue from a data-centric perspective and introduce OASIS (cOnditionAl diStributIon Shaping), a new paradigm in offline safe RL designed to overcome these critical limitations. OASIS utilizes a conditional diffusion model to synthesize offline datasets, thus shaping the data dis- tribution toward a beneficial target domain. Our approach makes compliance with safety constraints through effective data utilization and regularization techniques to benefit offline safe RL training. Comprehensive evaluations on public benchmarks and varying datasets showcase OASIS’s superiority in benefiting offline safe RL agents to achieve high-reward behavior while satisfying the safety constraints, out- performing established baselines. Furthermore, OASIS exhibits high data efficiency and robustness, making it suitable for real-world applications, particularly in tasks where safety is imperative and high-quality demonstrations are scarce. More details are available at the website https://sites.google.com/view/saferl-oasis/home.
Poster
Scott Jeen · Tom Bewley · Jonathan Cullen

[ West Ballroom A-D ]

Abstract
Zero-shot reinforcement learning (RL) promises to provide agents that can perform _any_ task in an environment after an offline, reward-free pre-training phase. Methods leveraging successor measures and successor features have shown strong performance in this setting, but require access to large heterogenous datasets for pre-training which cannot be expected for most real problems. Here, we explore how the performance of zero-shot RL methods degrades when trained on small homogeneous datasets, and propose fixes inspired by _conservatism_, a well-established feature of performant single-task offline RL algorithms. We evaluate our proposals across various datasets, domains and tasks, and show that conservative zero-shot RL algorithms outperform their non-conservative counterparts on low quality datasets, and perform no worse on high quality datasets. Somewhat surprisingly, our proposals also outperform baselines that get to see the task during training. Our code is available via the project page https://enjeeneer.io/projects/zero-shot-rl/.
Poster
Tankred Saanum · Peter Dayan · Eric Schulz

[ West Ballroom A-D ]

Abstract
To solve control problems via model-based reasoning or planning, an agent needs to know how its actions affect the state of the world. The actions an agent has at its disposal often change the state of the environment in systematic ways. However, existing techniques for world modelling do not guarantee that the effect of actions are represented in such systematic ways. We introduce the Parsimonious Latent Space Model (PLSM), a world model that regularizes the latent dynamics to make the effect of the agent's actions more predictable. Our approach minimizes the mutual information between latent states and the change that an action produces in the agent's latent state, in turn minimizing the dependence the state has on the dynamics. This makes the world model softly state-invariant. We combine PLSM with different model classes used for i) future latent state prediction, ii) planning, and iii) model-free reinforcement learning. We find that our regularization improves accuracy, generalization, and performance in downstream tasks, highlighting the importance of systematic treatment of actions in world models.
Poster
Guoxin Chen · Minpeng Liao · Chengxi Li · Kai Fan

[ West Ballroom A-D ]

Abstract
Although recent advancements in large language models (LLMs) have significantly improved their performance on various tasks, they still face challenges with complex and symbolic multi-step reasoning, particularly in mathematical reasoning. To bolster the mathematical reasoning capabilities of LLMs, most existing efforts concentrate on seeking assistance from either domain experts or GPT-4 for high-quality process-supervised data, which is not only expensive but also labor-intensive. In our study, we propose an innovative framework, AlphaMath, that bypasses the need for process annotations (from humans or GPTs) by leveraging Monte Carlo Tree Search (MCTS). This framework focuses on unleashing the potential of a well-pretrained LLM to autonomously enhance its mathematical reasoning. Specifically, we integrate a value model with the LLM, automatically generating both process supervision and step-level evaluation signals in MCTS. Furthermore, we propose an efficient inference strategy—step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.
Spotlight Poster
Hojun Chung · Junseo Lee · Minsoo Kim · Dohyeong Kim · Songhwai Oh

[ West Ballroom A-D ]

Abstract
Training agents that are robust to environmental changes remains a significant challenge in deep reinforcement learning (RL). Unsupervised environment design (UED) has recently emerged to address this issue by generating a set of training environments tailored to the agent's capabilities. While prior works demonstrate that UED has the potential to learn a robust policy, their performance is constrained by the capabilities of the environment generation. To this end, we propose a novel UED algorithm, adversarial environment design via regret-guided diffusion models (ADD). The proposed method guides the diffusion-based environment generator with the regret of the agent to produce environments that the agent finds challenging but conducive to further improvement. By exploiting the representation power of diffusion models, ADD can directly generate adversarial environments while maintaining the diversity of training environments, enabling the agent to effectively learn a robust policy. Our experimental results demonstrate that the proposed method successfully generates an instructive curriculum of environments, outperforming UED baselines in zero-shot generalization across novel, out-of-distribution environments.
Poster
Oswin So · Cheng Ge · Chuchu Fan

[ West Ballroom A-D ]

Abstract
Current reinforcement-learning methods are unable to directly learn policies that solve the minimum cost reach-avoid problem to minimize cumulative costs subject to the constraints of reaching the goal and avoiding unsafe states, as the structure of this new optimization problem is incompatible with current methods. Instead, a surrogate problem is solved where all objectives are combined with a weighted sum. However, this surrogate objective results in suboptimal policies that do not directly minimize the cumulative cost. In this work, we propose RC-PPO, a reinforcement-learning-based method for solving the minimum-cost reach-avoid problem by using connections to Hamilton-Jacobi reachability. Empirical results demonstrate that RC-PPO learns policies with comparable goal-reaching rates to while achieving up to 57% lower cumulative costs compared to existing methods on a suite of minimum-cost reach-avoid benchmarks on the Mujoco simulator. The project page can be found at https://oswinso.xyz/rcppo.
Poster
Jingwu Tang · Gokul Swamy · Fei Fang · Steven Wu

[ West Ballroom A-D ]

Abstract
We study a multi-agent imitation learning (MAIL) problem where we take the perspective of a learner attempting to *coordinate* a group of agents based on demonstrations of an expert doing so. Most prior work in MAIL essentially reduces the problem to matching the behavior of the expert *within* the support of the demonstrations. While doing so is sufficient to drive the *value gap* between the learner and the expert to zero under the assumption that agents are non-strategic, it does not guarantee robustness to deviations by strategic agents. Intuitively, this is because strategic deviations can depend on a counterfactual quantity: the coordinator's recommendations outside of the state distribution their recommendations induce. In response, we initiate the study of an alternative objective for MAIL in Markov Games we term the *regret gap* that explicitly accounts for potential deviations by agents in the group. We first perform an in-depth exploration of the relationship between the value and regret gaps. First, we show that while the value gap can be efficiently minimized via a direct extension of single-agent IL algorithms, even *value equivalence* can lead to an arbitrarily large regret gap. This implies that achieving regret equivalence is harder than achieving value equivalence …
Poster
Hao Ma · Tianyi Hu · Zhiqiang Pu · Liu Boyin · Xiaolin Ai · Yanyan Liang · Min Chen

[ West Ballroom A-D ]

Abstract
Reinforcement learning (RL) has emerged as a pivotal technique for fine-tuning large language models (LLMs) on specific tasks. However, prevailing RL fine-tuning methods predominantly rely on PPO and its variants. Though these algorithms are effective in general RL settings, they often exhibit suboptimal performance and vulnerability to distribution collapse when applied to the fine-tuning of LLMs. In this paper, we propose CORY, extending the RL fine-tuning of LLMs to a sequential cooperative multi-agent reinforcement learning framework, to leverage the inherent coevolution and emergent capabilities of multi-agent systems. In CORY, the LLM to be fine-tuned is initially duplicated into two autonomous agents: a pioneer and an observer. The pioneer generates responses based on queries, while the observer generates responses using both the queries and the pioneer’s responses. The two agents are trained together. During training, the agents exchange roles periodically, fostering cooperation and coevolution between them. Experiments evaluate CORY's performance by fine-tuning GPT-2 and Llama-2 under subjective and objective reward functions on the IMDB Review and GSM8K datasets, respectively. Results show that CORY outperforms PPO in terms of policy optimality, resistance to distribution collapse, and training robustness, thereby underscoring its potential as a superior methodology for refining LLMs in real-world applications.
Poster
Josh McClellan · Naveed Haghani · John Winder · Furong Huang · Pratap Tokekar

[ West Ballroom A-D ]

Abstract
Multi-Agent Reinforcement Learning (MARL) struggles with sample inefficiency and poor generalization [1]. These challenges are partially due to a lack of structure or inductive bias in the neural networks typically used in learning the policy. One such form of structure that is commonly observed in multi-agent scenarios is symmetry. The field of Geometric Deep Learning has developed Equivariant Graph Neural Networks (EGNN) that are equivariant (or symmetric) to rotations, translations, and reflections of nodes. Incorporating equivariance has been shown to improve learning efficiency and decrease error [ 2 ]. In this paper, we demonstrate that EGNNs improve the sample efficiency and generalization in MARL. However, we also show that a naive application of EGNNs to MARL results in poor early exploration due to a bias in the EGNN structure. To mitigate this bias, we present Exploration-enhanced Equivariant Graph Neural Networks or E2GN2. We compare E2GN2 to other common function approximators using common MARL benchmarks MPE and SMACv2. E2GN2 demonstrates a significant improvement in sample efficiency, greater final reward convergence, and a 2x-5x gain in over standard GNNs in our generalization tests. These results pave the way for more reliable and effective solutions in complex multi-agent systems.
Poster
Pihe Hu · Shaolong Li · Zhuoran Li · Ling Pan · Longbo Huang

[ West Ballroom A-D ]

Abstract
Deep Multi-agent Reinforcement Learning (MARL) relies on neural networks with numerous parameters in multi-agent scenarios, often incurring substantial computational overhead. Consequently, there is an urgent need to expedite training and enable model compression in MARL. This paper proposes the utilization of dynamic sparse training (DST), a technique proven effective in deep supervised learning tasks, to alleviate the computational burdens in MARL training. However, a direct adoption of DST fails to yield satisfactory MARL agents, leading to breakdowns in value learning within deep sparse value-based MARL models. Motivated by this challenge, we introduce an innovative Multi-Agent Sparse Training (MAST) framework aimed at simultaneously enhancing the reliability of learning targets and the rationality of sample distribution to improve value learning in sparse models. Specifically, MAST incorporates the Soft Mellowmax Operator with a hybrid TD-($\lambda$) schema to establish dependable learning targets. Additionally, it employs a dual replay buffer mechanism to enhance the distribution of training samples. Building upon these aspects, MAST utilizes gradient-based topology evolution to exclusively train multiple MARL agents using sparse networks. Our comprehensive experimental investigation across various value-based MARL algorithms on multiple benchmarks demonstrates, for the first time, significant reductions in redundancy of up to $20\times$ in Floating Point Operations …
Poster
Junyu Liu · Xiangjun Peng

[ West Ballroom A-D ]

Abstract
Feint behaviors refer to a set of deceptive behaviors in a nuanced manner, which enable players to obtain temporal and spatial advantages over opponents in competitive games. Such behaviors are crucial tactics in most competitive multi-player games (e.g., boxing, fencing, basketball, motor racing, etc.). However, existing literature does not provide a comprehensive (and/or concrete) formalization for Feint behaviors, and their implications on game strategies. In this work, we introduce the first comprehensive formalization of Feint behaviors at both action-level and strategy-level, and provide concrete implementation and quantitative evaluation of them in multi-player games. The key idea of our work is to (1) allow automatic generation of Feint behaviors via Palindrome-directed templates, combine them into meaningful behavior sequences via a Dual-Behavior Model; (2) concertize the implications from our formalization of Feint on game strategies, in terms of temporal, spatial, and their collective impacts respectively; and (3) provide a unified implementation scheme of Feint behaviors in existing MARL frameworks. The experimental results show that our design of Feint behaviors can (1) greatly improve the game reward gains; (2) significantly improve the diversity of Multi-Player Games; and (3) only incur negligible overheads in terms of time consumption.
Poster
Haoyuan Qin · Chennan Ma · Deng · Zhengzhu Liu · Songzhu Mei · Xinwang Liu · Cheng Wang · Siqi Shen

[ West Ballroom A-D ]

Abstract
In this work, we study the dormant neuron phenomenon in multi-agent reinforcement learning value factorization, where the mixing network suffers from reduced network expressivity caused by an increasing number of inactive neurons. We demonstrate the presence of the dormant neuron phenomenon across multiple environments and algorithms, and show that this phenomenon negatively affects the learning process. We show that dormant neurons correlates with the existence of over-active neurons, which have large activation scores. To address the dormant neuron issue, we propose ReBorn, a simple but effective method that transfers the weights from over-active neurons to dormant neurons. We theoretically show that this method can ensure the learned action preferences are not forgotten after the weight-transferring procedure, which increases learning effectiveness. Our extensive experiments reveal that ReBorn achieves promising results across various environments and improves the performance of multiple popular value factorization approaches. The source code of ReBorn is available in \url{https://github.com/xmu-rl-3dv/ReBorn}.
Poster
Yang Li · Wenhao Zhang · Jianhong Wang · Shao Zhang · Yali Du · Ying Wen · Wei Pan

[ West Ballroom A-D ]

Abstract
Among the research topics in multi-agent learning, mixed-motive cooperation is one of the most prominent challenges, primarily due to the mismatch between individual and collective goals. The cutting-edge research is focused on incorporating domain knowledge into rewards and introducing additional mechanisms to incentivize cooperation. However, these approaches often face shortcomings such as the effort on manual design and the absence of theoretical groundings. To close this gap, we model the mixed-motive game as a differentiable game for the ease of illuminating the learning dynamics towards cooperation. More detailed, we introduce a novel optimization method named \textbf{\textit{A}}ltruistic \textbf{\textit{G}}radient \textbf{\textit{A}}djustment (\textbf{\textit{AgA}}) that employs gradient adjustments to progressively align individual and collective objectives. Furthermore, we theoretically prove that AgA effectively attracts gradients to stable fixed points of the collective objective while considering individual interests, and we validate these claims with empirical evidence. We evaluate the effectiveness of our algorithm AgA through benchmark environments for testing mixed-motive collaboration with small-scale agents such as the two-player public good game and the sequential social dilemma games, Cleanup and Harvest, as well as our self-developed large-scale environment in the game StarCraft II.
Poster
Yizhe Huang · Xingbo Wang · Hao Liu · Fanqi Kong · Aoyang Qin · Min Tang · Xiaoxi Wang · Song-Chun Zhu · Mingjie Bi · Siyuan Qi · Xue Feng

[ West Ballroom A-D ]

Abstract
Traditional interactive environments limit agents' intelligence growth with fixed tasks. Recently, single-agent environments address this by generating new tasks based on agent actions, enhancing task diversity. We consider the decision-making problem in multi-agent settings, where tasks are further influenced by social connections, affecting rewards and information access. However, existing multi-agent environments lack a combination of adaptive physical surroundings and social connections, hindering the learning of intelligent behaviors.To address this, we introduce AdaSociety, a customizable multi-agent environment featuring expanding state and action spaces, alongside explicit and alterable social structures. As agents progress, the environment adaptively generates new tasks with social structures for agents to undertake. In AdaSociety, we develop three mini-games showcasing distinct social structures and tasks. Initial results demonstrate that specific social structures can promote both individual and collective benefits, though current reinforcement learning and LLM-based algorithms show limited effectiveness in leveraging social structures to enhance performance. Overall, AdaSociety serves as a valuable research platform for exploring intelligence in diverse physical and social settings. The code is available at https://github.com/bigai-ai/AdaSociety.
Poster
Long-Fei Li · Peng Zhao · Zhi-Hua Zhou

[ West Ballroom A-D ]

Abstract
We study episodic linear mixture MDPs with the unknown transition and adversarial rewards under full-information feedback, employing *dynamic regret* as the performance measure. We start with in-depth analyses of the strengths and limitations of the two most popular methods: occupancy-measure-based and policy-based methods. We observe that while the occupancy-measure-based method is effective in addressing non-stationary environments, it encounters difficulties with the unknown transition. In contrast, the policy-based method can deal with the unknown transition effectively but faces challenges in handling non-stationary environments. Building on this, we propose a novel algorithm that combines the benefits of both methods. Specifically, it employs (i) an *occupancy-measure-based global optimization* with a two-layer structure to handle non-stationary environments; and (ii) a *policy-based variance-aware value-targeted regression* to tackle the unknown transition. We bridge these two parts by a novel conversion. Our algorithm enjoys an $\widetilde{\mathcal{O}}(d \sqrt{H^3 K} + \sqrt{HK(H + \bar{P}_K)})$ dynamic regret, where $d$ is the feature mapping dimension, $H$ is the episode length, $K$ is the number of episodes, $\bar{P}_K$ is the non-stationarity measure. We show it is minimax optimal up to logarithmic factors by establishing a matching lower bound. To the best of our knowledge, this is the **first** work that achieves **near-optimal** …
Poster
Pietro Mazzaglia · Tim Verbelen · Bart Dhoedt · Aaron Courville · Sai Rajeswar Mudumba

[ West Ballroom A-D ]

Abstract
Learning generalist embodied agents, able to solve multitudes of tasks in different domains is a long-standing problem. Reinforcement learning (RL) is hard to scale up as it requires a complex reward design for each task. In contrast, language can specify tasks in a more natural way. Current foundation vision-language models (VLMs) generally require fine-tuning or other adaptations to be adopted in embodied contexts, due to the significant domain gap. However, the lack of multimodal data in such domains represents an obstacle to developing foundation models for embodied applications. In this work, we overcome these problems by presenting multimodal-foundation world models, able to connect and align the representation of foundation VLMs with the latent space of generative world models for RL, without any language annotations. The resulting agent learning framework, GenRL, allows one to specify tasks through vision and/or language prompts, ground them in the embodied domain’s dynamics, and learn the corresponding behaviors in imagination.As assessed through large-scale multi-task benchmarking in locomotion and manipulation domains, GenRL enables multi-task generalization from language and visual prompts. Furthermore, by introducing a data-free policy learning strategy, our approach lays the groundwork for foundational policy learning using generative world models. Website, code and data: https://mazpie.github.io/genrl/
Spotlight Poster
Miguel Lazaro-Gredilla · Li Ku · Kevin Murphy · Dileep George

[ West Ballroom A-D ]

Abstract
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds _exactly_ to a _different_ set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Spotlight Poster
Huzi Cheng · Joshua Brown

[ West Ballroom A-D ]

Abstract
Goal-directed planning presents a challenge for classical RL algorithms due to the vastness of the combinatorial state and goal spaces, while humans and animals adapt to complex environments, especially with diverse, non-stationary objectives, often employing intermediate goals for long-horizon tasks.Here, we propose a goal reduction mechanism for effectively deriving subgoals from arbitrary and distant original goals, using a novel loop-removal technique.The product of the method, called goal-reducer, distills high-quality subgoals from a replay buffer, all without the need for prior global environmental knowledge.Simulations show that the goal-reducer can be integrated into RL frameworks like Deep Q-learning and Soft Actor-Critic.It accelerates performance in both discrete and continuous action space tasks, such as grid world navigation and robotic arm manipulation, relative to the corresponding standard RL models.Moreover, the goal-reducer, when combined with a local policy, without iterative training, outperforms its integrated deep RL counterparts in solving a navigation task.This goal reduction mechanism also models human problem-solving.Comparing the model's performance and activation with human behavior and fMRI data in a treasure hunting task, we found matching representational patterns between an goal-reducer agent's components and corresponding human brain areas, particularly the vmPFC and basal ganglia. The results suggest that humans may use a similar …
Poster
Yuewen Sun · Biwei Huang · Yu Yao · Donghuo Zeng · Xinshuai Dong · Songyao Jin · Boyang Sun · Roberto Legaspi · Kazushi Ikeda · Peter Spirtes · Kun Zhang

[ West Ballroom A-D ]

Abstract
The application of reinforcement learning (RL) involving interactions with individuals has grown significantly in recent years. These interactions, influenced by factors such as personal preferences and physiological differences, causally influence state transitions, ranging from health conditions in healthcare to learning progress in education. As a result, different individuals may exhibit different state-transition processes. Understanding individualized state-transition processes is essential for optimizing individualized policies. In practice, however, identifying these state-transition processes is challenging, as individual-specific factors often remain latent. In this paper, we establish the identifiability of these latent factors and introduce a practical method that effectively learns these processes from observed state-action trajectories. Experiments on various datasets show that the proposed method can effectively identify latent state-transition processes and facilitate the learning of individualized RL policies.
Spotlight Poster
Qingyuan Wu · Simon Zhan · Yixuan Wang · Yuhui Wang · Chung-Wei Lin · Chen Lv · Qi Zhu · Chao Huang

[ West Ballroom A-D ]

Abstract
In environments with delayed observation, state augmentation by including actions within the delay window is adopted to retrieve Markovian property to enable reinforcement learning (RL). Whereas, state-of-the-art (SOTA) RL techniques with Temporal-Difference (TD) learning frameworks commonly suffer from learning inefficiency, due to the significant expansion of the augmented state space with the delay. To improve the learning efficiency without sacrificing performance, this work novelly introduces Variational Delayed Policy Optimization (VDPO), reforming delayed RL as a variational inference problem. This problem is further modelled as a two-step iterative optimization problem, where the first step is TD learning in the delay-free environment with a small state space, and the second step is behaviour cloning which can be addressed much more efficiently than TD learning. We not only provide a theoretical analysis of VDPO in terms of sample complexity and performance, but also empirically demonstrate that VDPO can achieve consistent performance with SOTA methods, with a significant enhancement of sample efficiency (approximately 50\% less amount of samples) in the MuJoCo benchmark.
Poster
Awni Altabaa · Zhuoran Yang

[ West Ballroom A-D ]

Abstract
In sequential decision-making problems, the *information structure* describes the causal dependencies between system variables, encompassing the dynamics of the environment and the agents' actions. Classical models of reinforcement learning (e.g., MDPs, POMDPs) assume a restricted and highly regular information structure, while more general models like predictive state representations do not explicitly model the information structure. By contrast, real-world sequential decision-making problems typically involve a complex and time-varying interdependence of system variables, requiring a rich and flexible representation of information structure. In this paper, we formalize a novel reinforcement learning model which explicitly represents the information structure.We then use this model to carry out an information-structural analysis of the statistical complexity of general sequential decision-making problems, obtaining a characterization via a graph-theoretic quantity of the DAG representation of the information structure. We prove an upper bound on the sample complexity of learning a general sequential decision-making problem in terms of its information structure by exhibiting an algorithm achieving the upper bound. This recovers known tractability results and gives a novel perspective on reinforcement learning in general sequential decision-making problems, providing a systematic way of identifying new tractable classes of problems.
Poster
Daehee Lee · Minjong Yoo · Woo Kyung Kim · Wonje Choi · Honguk Woo

[ West Ballroom A-D ]

Abstract
Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in the Franka-Kitchen and Meta-World demonstrate the robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
Poster
Zhaolin Gao · Jonathan Chang · Wenhao Zhan · Owen Oertell · Gokul Swamy · Kianté Brantley · Thorsten Joachims · Drew Bagnell · Jason Lee · Wen Sun

[ West Ballroom A-D ]

Abstract
While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications, including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping), and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a *minimalist* RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the *relative reward* between two completions to a prompt in terms of the policy, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and be extended to handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler …
Poster
Xinyi Li · Shan Yu · Yueying Wang · Guannan Wang · Li Wang · Ming-Jun Lai

[ West Ballroom A-D ]

Abstract

In recent years, there has been an exponentially increased amount of point clouds collected with irregular shapes in various areas. Motivated by the importance of solid modeling for point clouds, we develop a novel and efficient smoothing tool based on multivariate splines over the triangulation to extract the underlying signal and build up a 3D solid model from the point cloud. The proposed method can denoise or deblur the point cloud effectively, provide a multi-resolution reconstruction of the actual signal, and handle sparse and irregularly distributed point clouds to recover the underlying trajectory. In addition, our method provides a natural way of numerosity data reduction. We establish the theoretical guarantees of the proposed method, including the convergence rate and asymptotic normality of the estimator, and show that the convergence rate achieves optimal nonparametric convergence. We also introduce a bootstrap method to quantify the uncertainty of the estimators. Through extensive simulation studies and a real data example, we demonstrate the superiority of the proposed method over traditional smoothing methods in terms of estimation accuracy and efficiency of data reduction.

Poster
Yanfei Zhou · Matteo Sesia

[ West Ballroom A-D ]

Abstract
This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features. These features are carefully selected to reflect potential model limitations or biases. This can be useful to find a practical compromise between efficiency---by providing informative predictions---and algorithmic fairness---by ensuring equalized coverage for the most sensitive groups. We demonstrate the validity and effectiveness of this method on simulated and real data sets.
Poster
Linus Jeary · Tom Kuipers · Mehran Hosseini · Nicola Paoletti

[ West Ballroom A-D ]

Abstract
Conformal Prediction (CP) is a popular uncertainty quantification method that provides distribution-free, statistically valid prediction sets, assuming that training and test data are exchangeable. In such a case, CP's prediction sets are guaranteed to cover the (unknown) true test output with a user-specified probability. Nevertheless, this guarantee is violated when the data is subjected to adversarial attacks, which often result in a significant loss of coverage. Recently, several approaches have been put forward to recover CP guarantees in this setting. These approaches leverage variations of randomised smoothing to produce conservative sets which account for the effect of the adversarial perturbations. They are, however, limited in that they only support $\ell_2$-bounded perturbations and classification tasks. This paper introduces VRCP (Verifiably Robust Conformal Prediction), a new framework that leverages recent neural network verification methods to recover coverage guarantees under adversarial attacks. Our VRCP method is the first to support perturbations bounded by arbitrary norms including $\ell_1$, $\ell_2$, and $\ell_\infty$, as well as regression tasks. We evaluate and compare our approach on image classification tasks (CIFAR10, CIFAR100, and TinyImageNet) and regression tasks for deep reinforcement learning environments. In every case, VRCP achieves above nominal coverage and yields significantly more efficient and informative prediction …
Poster
Yiling Chen · Shi Feng · Fang-Yi Yu

[ West Ballroom A-D ]

Abstract
Comparison data elicited from people are fundamental to many machine learning tasks, including reinforcement learning from human feedback for large language models and estimating ranking models. They are typically subjective and not directly verifiable. How to truthfully elicit such comparison data from rational individuals? We design peer prediction mechanisms for eliciting comparison data using a bonus-penalty payment. Our design leverages on the strong stochastic transitivity for comparison data to create symmetrically strongly truthful mechanisms such that truth-telling 1) forms a strict Bayesian Nash equilibrium, and 2) yields the highest payment among all symmetric equilibria. Each individual only needs to evaluate one pair of items and report her comparison in our mechanism.We further extend the bonus-penalty payment concept to eliciting networked data, designing a symmetrically strongly truthful mechanism when agents’ private signals are sampled according to the Ising models. We provide the necessary and sufficient conditions for our bonus-penalty payment to have truth-telling as a strict Bayesian Nash equilibrium. Experiments on two real-world datasets further support our theoretical discoveries.
Poster
Phuong Nam Tran · The Anh Ta · shuqing shi · Debmalya Mandal · Yali Du · Long Tran-Thanh

[ West Ballroom A-D ]

Abstract
Reward allocation, also known as the credit assignment problem, has been an important topic in economics, engineering, and machine learning. An important concept in reward allocation is the core, which is the set of stable allocations where no agent has the motivation to deviate from the grand coalition. In previous works, computing the core requires either knowledge of the reward function in deterministic games or the reward distribution in stochastic games. However, this is unrealistic, as the reward function or distribution is often only partially known and may be subject to uncertainty. In this paper, we consider the core learning problem in stochastic cooperative games, where the reward distribution is unknown. Our goal is to learn the expected core, that is, the set of allocations that are stable in expectation, given an oracle that returns a stochastic reward for an enquired coalition each round. Within the class of strictly convex games, we present an algorithm named \texttt{Common-Points-Picking} that returns a point in the expected core given a polynomial number of samples, with high probability. To analyse the algorithm, we develop a new extension of the separation hyperplane theorem for multiple convex sets.t.
Poster
Lee Cohen · Saeed Sharifi-Malvajerdi · Kevin Stangl · Ali Vakilian · Juba Ziani

[ West Ballroom A-D ]

Abstract
In strategic classification, agents modify their features, at a cost, to obtain a positive classification outcome from the learner’s classifier, typically assuming agents have full knowledge of the deployed classifier. In contrast, we consider a Bayesian setting where agents have a common distributional prior on the classifier being used and agents manipulate their features to maximize their expected utility according to this prior.The learner can reveal truthful, yet not necessarily complete, information about the classifier to the agents, aiming to release just enough information to shape the agents' behavior and thus maximize accuracy. We show that partial information release can counter-intuitively benefit the learner’s accuracy, allowing qualified agents to pass the classifier while preventing unqualified agents from doing so. Despite the intractability of computing the best response of an agent in the general case, we provide oracle-efficient algorithms for scenarios where the learner’s hypothesis class consists of low-dimensional linear classifiers or when the agents’ cost function satisfies a sub-modularity condition. Additionally, we address the learner’s optimization problem, offering both positive and negative results on determining the optimal information release to maximize expected accuracy, particularly in settings where an agent’s qualification can be represented by a real-valued number.
Poster
Renato Leme · Georgios Piliouras · Jon Schneider

[ West Ballroom A-D ]

Abstract
In this paper, we investigate the question of whether no-swap-regret dynamics have stronger convergence properties in repeated games than regular no-external-regret dynamics. We prove that in almost all symmetric zero-sum games under symmetric initializations of the agents, no-swap-regret dynamics in self-play are guaranteed to converge in a strong ``frequent-iterate'' sense to the Nash equilibrium: in all but a vanishing fraction of the rounds, the players must play a strategy profile close to a symmetric Nash equilibrium. Remarkably, relaxing any of these three constraints, i.e. by allowing either i) asymmetric initial conditions, or ii) an asymmetric game or iii) no-external regret dynamics suffices to destroy this result and lead to complex non-equilibrating or even chaotic behavior. In a dual type of result, we show that the power of no-swap-regret dynamics comes at a cost of imposing a time-asymmetry on its inputs. While no-external-regret dynamics can be completely determined by the cumulative reward vector received by each player, we show there does not exist any general no-swap-regret dynamics defined on the same state space. In fact, we prove that any no-swap-regret learning algorithm must play a time-asymmetric function over the set of previously observed rewards, ruling out any dynamics based on a …
Poster
Kunhe Yang · Hanrui Zhang

[ West Ballroom A-D ]

Abstract
We study Bayesian persuasion under approximate best response, where the receiver may choose any action that is not too much suboptimal, given their posterior belief upon receiving the signal. We focus on the computational aspects of the problem, aiming to design algorithms that efficiently compute (almost) optimal strategies for the sender. Despite the absence of the revelation principle --- which has been one of the most powerful tools in Bayesian persuasion --- we design polynomial-time exact algorithms for the problem when either the state space or the action space is small, as well as a quasi-polynomial-time approximation scheme (QPTAS) for the general problem. On the negative side, we show there is no polynomial-time exact algorithm for the general problem unless $\mathsf{P} = \mathsf{NP}$. Our results build on several new algorithmic ideas, which might be useful in other principal-agent problems where robustness is desired.
Poster
Teodora Popordanoska · Gorjan Radevski · Tinne Tuytelaars · Matthew Blaschko

[ West Ballroom A-D ]

Abstract
When machine learning systems face dataset shift, model calibration plays a pivotal role in ensuring their reliability.Calibration error (CE) provides insights into the alignment between the predicted confidence scores and the classifier accuracy.While prior works have delved into the implications of dataset shift on calibration, existing CE estimators either (i) assume access to labeled data from the target domain, often unavailable in practice, or (ii) are derived under a covariate shift assumption.In this work we propose a novel, label-free, consistent CE estimator under label shift. Label shift is characterized by changes in the marginal label distribution p(Y), with a constant conditional p(X|Y) distribution between the source and target. We introduce a novel calibration method, called LaSCal, which uses the estimator in conjunction with a post-hoc calibration strategy, to perform unsupervised calibration on the target distribution. Our thorough empirical analysis demonstrates the effectiveness and reliability of the proposed approach across different modalities, model architectures and label shift intensities.
Poster
Liang Chen · Yong Zhang · Yibing Song · Zhiqiang Shen · Lingqiao Liu

[ West Ballroom A-D ]

Abstract
Domain generalization (DG) methods aim to maintain good performance in an unseen target domain by using training data from multiple source domains. While success on certain occasions are observed, enhancing the baseline across most scenarios remains challenging. This work introduces a simple yet effective framework, dubbed learning from multiple experts (LFME), that aims to make the target model an expert in all source domains to improve DG. Specifically, besides learning the target model used in inference, LFME will also train multiple experts specialized in different domains, whose output probabilities provide professional guidance by simply regularizing the logit of the target model. Delving deep into the framework, we reveal that the introduced logit regularization term implicitly provides effects of enabling the target model to harness more information, and mining hard samples from the experts during training. Extensive experiments on benchmarks from different DG tasks demonstrate that LFME is consistently beneficial to the baseline and can achieve comparable performance to existing arts. Code is available at https://github.com/liangchen527/LFME.
Oral Poster
Yongzhe Jia · Xuyun Zhang · Hongsheng Hu · Kim-Kwang Raymond Choo · Lianyong Qi · Xiaolong Xu · Amin Beheshti · Wanchun Dou

[ West Ballroom A-D ]

Abstract
Federated learning (FL) has emerged as a prominent machine learning paradigm in edge computing environments, enabling edge devices to collaboratively optimize a global model without sharing their private data. However, existing FL frameworks suffer from efficacy deterioration due to the system heterogeneity inherent in edge computing, especially in the presence of domain shifts across local data. In this paper, we propose a heterogeneous FL framework DapperFL, to enhance model performance across multiple domains. In DapperFL, we introduce a dedicated Model Fusion Pruning (MFP) module to produce personalized compact local models for clients to address the system heterogeneity challenges. The MFP module prunes local models with fused knowledge obtained from both local and remaining domains, ensuring robustness to domain shifts. Additionally, we design a Domain Adaptive Regularization (DAR) module to further improve the overall performance of DapperFL. The DAR module employs regularization generated by the pruned model, aiming to learn robust representations across domains. Furthermore, we introduce a specific aggregation algorithm for aggregating heterogeneous local models with tailored architectures and weights. We implement DapperFL on a real-world FL platform with heterogeneous clients. Experimental results on benchmark datasets with multiple domains demonstrate that DapperFL outperforms several state-of-the-art FL frameworks by up to …
Poster
Andong Wang · Yuning Qiu · Mingyuan Bai · Zhong Jin · Guoxu Zhou · Qibin Zhao

[ West Ballroom A-D ]

Abstract
In multi-output regression, we identify a previously neglected challenge that arises from the inability of training distribution to cover all combinations of input features, leading to combinatorial distribution shift (CDS). To the best of our knowledge, this is the first work to formally define and address this problem. We tackle it through a novel tensor decomposition perspective, proposing the Functional t-Singular Value Decomposition (Ft-SVD) theorem which extends the classical tensor SVD to infinite and continuous feature domains, providing a natural tool for representing and analyzing multi-output functions. Within the Ft-SVD framework, we formulate the multi-output regression problem under CDS as a low-rank tensor estimation problem under the missing not at random (MNAR) setting, and introduce a series of assumptions about the true functions, training and testing distributions, and spectral properties of the ground-truth embeddings, making the problem more tractable.To address the challenges posed by CDS in multi-output regression, we develop a tailored Double-Stage Empirical Risk Minimization (ERM-DS) algorithm that leverages the spectral properties of the embeddings and uses specific hypothesis classes in each frequency component to better capture the varying spectral decay patterns. We provide rigorous theoretical analyses that establish performance guarantees for the ERM-DS algorithm. This work lays a …
Poster
Lei Shi · Waverly Wei · Jingshen Wang

[ West Ballroom A-D ]

Abstract
Covariate-adjusted response-adaptive randomization (CARA) designs are gaining increasing attention. These designs combine the advantages of randomized experiments with the ability to adaptively revise treatment allocations based on data collected across multiple stages, enhancing estimation efficiency. Yet, CARA designs often assume that primary outcomes are immediately observable, which is not the case in many clinical scenarios where there is a delay in observing primary outcomes. This assumption can lead to significant missingness and inefficient estimation of treatment effects. To tackle this practical challenge, we propose a CARA experimental strategy integrating delayed primary outcomes with immediately observed surrogate outcomes. Surrogate outcomes are intermediate clinical outcomes that are predictive or correlated with the primary outcome of interest. Our design goal is to improve the estimation efficiency of the average treatment effect (ATE) of the primary outcome utilizing surrogate outcomes. From a methodological perspective, our approach offers two benefits: First, we accommodate arm and covariates-dependent delay mechanisms without imposing any parametric modeling assumptions on the distribution of outcomes. Second, when primary outcomes are not fully observed, surrogate outcomes can guide the adaptive treatment allocation rule. From a theoretical standpoint, we prove the semiparametric efficiency bound of estimating ATE under delayed primary outcomes while incorporating …
Poster
Guang Yang · Yuan Cao · Long Feng

[ West Ballroom A-D ]

Abstract
Different from classical one-model-fits-all strategy, individualized models allow parameters to vary across samples and are gaining popularity in various fields, particularly in personalized medicine. Motivated by medical imaging analysis, this paper introduces a novel individualized modeling framework for matrix-valued data that does not require additional information on sample similarity for the individualized coefficients. Under our framework, the model individualization stems from an optimal internal relation map within the samples themselves. We refer to the proposed method as Attention boosted Individualized Regression, due to its close connections with the self-attention mechanism. Therefore, our approach provides a new interpretation for attention from the perspective of individualized modeling. Comprehensive numerical experiments and real brain MRI analysis using an ADNI dataset demonstrated the superior performance of our model.
Spotlight Poster
Antoine Scheid · Aymeric Capitaine · Etienne Boursier · Eric Moulines · Michael Jordan · Alain Durmus

[ West Ballroom A-D ]

Abstract
In Economics, the concept of externality refers to any indirect effect resulting from an interaction between players and affecting a third party without compensation. Most of the models within which externality has been studied assume that agents have perfect knowledge of their environment and preferences. This is a major hindrance to the practical implementation of many proposed solutions. To adress this issue, we consider a two-players bandit game setting where the actions of one of the player affect the other one. Building upon this setup, we extend the Coase theorem [Coase, 2013], which suggests that the optimal approach for maximizing the social welfare in the presence of externality is to establish property rights, i.e., enabling transfers and bargaining between the players. Nonetheless, this fundamental result relies on the assumption that bargainers possess perfect knowledge of the underlying game. We first demonstrate that in the absence of property rights in the considered online scenario, the social welfare breaks down. We then provide a policy for the players, which allows them to learn a bargaining strategy which maximizes the total welfare, recovering the Coase theorem under uncertainty.
Spotlight Poster
Javier Maass · Joaquin Fontbona

[ West Ballroom A-D ]

Abstract
We develop a Mean-Field (MF) view of the learning dynamics of overparametrized Artificial Neural Networks (NN) under distributional symmetries of the data w.r.t. the action of a general compact group $G$. We consider for this a class of generalized shallow NNs given by an ensemble of $N$ multi-layer units, jointly trained using stochastic gradient descent (SGD) and possibly symmetry-leveraging (SL) techniques, such as Data Augmentation (DA), Feature Averaging (FA) or Equivariant Architectures (EA). We introduce the notions of weakly and strongly invariant laws (WI and SI) on the parameter space of each single unit, corresponding, respectively, to $G$-invariant distributions, and to distributions supported on parameters fixed by the group action (which encode EA). This allows us to define symmetric models compatible with taking $N\to\infty$ and give an interpretation of the asymptotic dynamics of DA, FA and EA in terms of Wasserstein Gradient Flows describing their MF limits. When activations respect the group action, we show that, for symmetric data, DA, FA and freely-trained models obey the exact same MF dynamic, which stays in the space of WI parameter laws and attains therein the population risk's minimizer. We also provide a counterexample to the general attainability of such an optimum over …
Poster
Qinbo Bai · Washim Mondal · Vaneet Aggarwal

[ West Ballroom A-D ]

Abstract
This paper explores the realm of infinite horizon average reward Constrained Markov Decision Processes (CMDPs). To the best of our knowledge, this work is the first to delve into the regret and constraint violation analysis of average reward CMDPs with a general policy parametrization. To address this challenge, we propose a primal dual-based policy gradient algorithm that adeptly manages the constraints while ensuring a low regret guarantee toward achieving a global optimal policy. In particular, our proposed algorithm achieves $\tilde{\mathcal{O}}({T}^{4/5})$ objective regret and $\tilde{\mathcal{O}}({T}^{4/5})$ constraint violation bounds.
Poster
Wooseong Cho · Taehyun Hwang · Joongkyu Lee · Min-hwan Oh

[ West Ballroom A-D ]

Abstract
We study reinforcement learning with _multinomial logistic_ (MNL) function approximation where the underlying transition probability kernel of the _Markov decision processes_ (MDPs) is parametrized by an unknown transition core with features of state and action. For the finite horizon episodic setting with inhomogeneous state transitions, we propose provably efficient algorithms with randomized exploration having frequentist regret guarantees. For our first algorithm, $\texttt{RRL-MNL}$, we adapt optimistic sampling to ensure the optimism of the estimated value function with sufficient frequency and establish that $\texttt{RRL-MNL}$ is both _statistically_ and _computationally_ efficient, achieving a $\tilde{\mathcal{O}}(\kappa^{-1} d^{\frac{3}{2}} H^{\frac{3}{2}} \sqrt{T})$ frequentist regret bound with constant-time computational cost per episode. Here, $d$ is the dimension of the transition core, $H$ is the horizon length, $T$ is the total number of steps, and $\kappa$ is a problem-dependent constant. Despite the simplicity and practicality of $\texttt{RRL-MNL}$, its regret bound scales with $\kappa^{-1}$, which is potentially large in the worst case. To improve the dependence on $\kappa^{-1}$, we propose $\texttt{ORRL-MNL}$, which estimates the value function using local gradient information of the MNL transition model. We show that its frequentist regret bound is $\tilde{\mathcal{O}}(d^{\frac{3}{2}} H^{\frac{3}{2}} \sqrt{T} + \kappa^{-1} d^2 H^2)$. To the best of our knowledge, these are the first randomized …
Poster
Jian Qian · Haichen Hu · David Simchi-Levi

[ West Ballroom A-D ]

Abstract
Motivated by the recent discovery of a statistical and computational reduction from contextual bandits to offline regression \citep{simchi2020bypassing}, we address the general (stochastic) Contextual Markov Decision Process (CMDP) problem with horizon $H$ (as known as CMDP with $H$ layers). In this paper, we introduce a reduction from CMDPs to offline density estimation under the realizability assumption, i.e., a model class $\mathcal{M}$ containing the true underlying CMDP is provided in advance. We develop an efficient, statistically near-optimal algorithm requiring only $O(H \log T)$ calls to an offline density estimation algorithm (or oracle) across all $T$ rounds. This number can be further reduced to $O(H \log \log T)$ if $T$ is known in advance. Our results mark the first efficient and near-optimal reduction from CMDPs to offline density estimation without imposing any structural assumptions on the model class. A notable feature of our algorithm is the design of a layerwise exploration-exploitation tradeoff tailored to address the layerwise structure of CMDPs. Additionally, our algorithm is versatile and applicable to pure exploration tasks in reward-free reinforcement learning.
Poster
Yujia Jin · Ishani Karmarkar · Aaron Sidford · Jiayi Wang

[ West Ballroom A-D ]

Abstract
We provide faster randomized algorithms for computing an $\epsilon$-optimal policy in a discounted Markov decision process with $A_{\text{tot}}$-state-action pairs, bounded rewards, and discount factor $\gamma$. We provide an $\tilde{O}(A_{\text{tot}}[(1 - \gamma)^{-3}\epsilon^{-2} + (1 - \gamma)^{-2}])$-time algorithm in the sampling setting, where the probability transition matrix is unknown but accessible through a generative model which can be queried in $\tilde{O}(1)$-time, and an $\tilde{O}(s + (1-\gamma)^{-2})$-time algorithm in the offline setting where the probability transition matrix is known and $s$-sparse. These results improve upon the prior state-of-the-art which either ran in $\tilde{O}(A_{\text{tot}}[(1 - \gamma)^{-3}\epsilon^{-2} + (1 - \gamma)^{-3}])$ time [Sidford, Wang, Wu, Ye 2018] in the sampling setting, $\tilde{O}(s + A_{\text{tot}} (1-\gamma)^{-3})$ time [Sidford, Wang, Wu, Yang, Ye 2018] in the offline setting, or time at least quadratic in the number of states using interior point methods for linear programming. We achieve our results by building upon prior stochastic variance-reduced value iteration methods [Sidford, Wang, Wu, Yang, Ye 2018]. We provide a variant that carefully truncates the progress of its iterates to improve the variance of new variance-reduced sampling procedures that we introduce to implement the steps. Our method is essentially model-free and can be implemented in $\tilde{O}(A_{\text{tot}})$-space when given generative model …
Poster
Apurv Shukla · Debabrota Basu

[ West Ballroom A-D ]

Abstract
We study the preference-based pure exploration problem for bandits with vector-valued rewards and a set of preferences imposed over them. Specifically, we aim to identify the most preferred policy over a set of arms according to the preferences induced on the reward vectors by an ordering cone $C$. First, to quantify the impact of preferences, we derive a novel lower bound on the sample complexity for identifying the most preferred arm with confidence level $1-\delta$. Our lower bound shows that how the geometry of the preferences and reward vectors changes the hardness of this problem. We further explicate this geometry for Gaussian distributions of rewards, and provide a convex reformulation of the lower bound solvable with linear programming. Then, we leverage this convex reformulation of the lower bound to design the Track and Stop with Preferences (TSwP) algorithm that identifies the most preferred policy. Finally, we derive a new concentration result for vector-valued rewards, and show that TSwP achieves a matching sample complexity upper bound.
Spotlight Poster
Raymond Zhang · Richard Combes

[ West Ballroom A-D ]

Abstract
We consider Thompson Sampling (TS) for linear combinatorial semi-bandits and subgaussian rewards. We propose the first known TS whose finite-time regret does not scale exponentially with the dimension of the problem. We further show the mismatched sampling paradox: A learner who knows the rewards distributions and samples from the correct posterior distribution can perform exponentially worse than a learner who does not know the rewards and simply samples from a well-chosen Gaussian posterior. The code used to generate the experiments is available at https://github.com/RaymZhang/CTS-Mismatched-Paradox
Poster
Noah Golowich · Elad Hazan · Zhou Lu · Dhruv Rohatgi · Y. Jennifer Sun

[ West Ballroom A-D ]

Abstract
The study of population dynamics originated with early sociological works but has since extended into many fields, including biology, epidemiology, evolutionary game theory, and economics. Most studies on population dynamics focus on the problem of prediction rather than control. Existing mathematical models for population control are often restricted to specific, noise-free dynamics, while real-world population changes can be complex and adversarial. To address this gap, we propose a new framework based on the paradigm of online control. We first characterize a set of linear dynamical systems that can naturally model evolving populations. We then give an efficient gradient-based controller for these systems, with near-optimal regret bounds with respect to a broad class of linear policies. Our empirical evaluations demonstrate the effectiveness of the proposed algorithm for population control even in non-linear models such as SIR and replicator dynamics.
Poster
Kevin Tan · Wei Fan · Yuting Wei

[ West Ballroom A-D ]

Abstract
Hybrid Reinforcement Learning (RL), where an agent learns from both an offline dataset and online explorations in an unknown environment, has garnered significant recent interest. A crucial question posed by Xie et al. (2022) is whether hybrid RL can improve upon the existing lower bounds established in purely offline and purely online RL without relying on the single-policy concentrability assumption. While Li et al. (2023) provided an affirmative answer to this question in the tabular PAC RL case, the question remains unsettled for both the regret-minimizing RL case and the non-tabular case. In this work, building upon recent advancements in offline RL and reward-agnostic exploration, we develop computationally efficient algorithms for both PAC and regret-minimizing RL with linear function approximation, without requiring concentrability on the entire state-action space. We demonstrate that these algorithms achieve sharper error or regret bounds that are no worse than, and can improve on, the optimal sample complexity in offline RL (the first algorithm, for PAC RL) and online RL (the second algorithm, for regret-minimizing RL) in linear Markov decision processes (MDPs), regardless of the quality of the behavior policy. To our knowledge, this work establishes the tightest theoretical guarantees currently available for hybrid RL in …
Poster
Andreas Schlaginhaufen · Maryam Kamgarpour

[ West Ballroom A-D ]

Abstract
Inverse reinforcement learning (IRL) aims to infer a reward from expert demonstrations, motivated by the idea that the reward, rather than the policy, is the most succinct and transferable description of a task [Ng et al., 2000]. However, the reward corresponding to an optimal policy is not unique, making it unclear if an IRL-learned reward is transferable to new transition laws in the sense that its optimal policy aligns with the optimal policy corresponding to the expert's true reward. Past work has addressed this problem only under the assumption of full access to the expert's policy, guaranteeing transferability when learning from two experts with the same reward but different transition laws that satisfy a specific rank condition [Rolland et al., 2022]. In this work, we show that the conditions developed under full access to the expert's policy cannot guarantee transferability in the more practical scenario where we have access only to demonstrations of the expert. Instead of a binary rank condition, we propose principal angles as a more refined measure of similarity and dissimilarity between transition laws. Based on this, we then establish two key results: 1) a sufficient condition for transferability to any transition laws when learning from at …
Poster
Xiaotong Li · Fan Zhang · Haiwen Diao · Yueze Wang · Xinlong Wang · LINGYU DUAN

[ West Ballroom A-D ]

Abstract
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The code and dataset are available …
Poster
Haoyu Geng · Hang Ruan · Runzhong Wang · Yang Li · YANG WANG · Lei Chen · Junchi Yan

[ West Ballroom A-D ]

Abstract
Predictive combinatorial optimization, where the parameters of combinatorial optimization (CO) are unknown at the decision-making time, is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising. Tackling such a problem usually involves a prediction model and a CO solver. These two modules are integrated into the predictive CO pipeline following two design principles: ''Predict-then-Optimize (PtO)'', which learns predictions by supervised training and subsequently solves CO using predicted coefficients, while the other, named ''Predict-and-Optimize (PnO)'', directly optimizes towards the ultimate decision quality and claims to yield better decisions than traditional PtO approaches. However, there lacks a systematic benchmark of both approaches, including the specific design choices at the module level, as well as an evaluation dataset that covers representative real-world scenarios. To this end, we develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for combinatorial advertising that will be released. Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO. A comprehensive categorization of current approaches and integration of typical scenarios are provided under …
Poster
Shirley Wu · Shiyu Zhao · Michihiro Yasunaga · Kexin Huang · Kaidi Cao · Qian Huang · Vassilis Ioannidis · Karthik Subbian · James Zou · Jure Leskovec

[ West Ballroom A-D ]

Abstract
Answering real-world complex queries, such as complex product search, often requires accurate retrieval from semi-structured knowledge bases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, many previous works studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine. We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties, together with their ground-truth answers (items). We conduct rigorous human evaluation to validate the quality of our synthesized queries. We further enhance the benchmark with high-quality human-generated queries to provide an authentic reference. STARK serves as a comprehensive testbed for evaluating the performance of retrieval systems driven by large language models (LLMs). Our experiments suggest that STARK presents significant challenges to the current retrieval and LLM systems, highlighting the need for more capable semi-structured retrieval systems.
Spotlight Poster
Kefan Su · Yusen Huo · ZHILIN ZHANG · Shuai Dou · Chuan Yu · Jian Xu · Zongqing Lu · Bo Zheng

[ West Ballroom A-D ]

Abstract
Decision-making in large-scale games is an essential research area in artificial intelligence (AI) with significant real-world impact. However, the limited access to realistic large-scale game environments has hindered research progress in this area. In this paper, we present AuctionNet, a benchmark for bid decision-making in large-scale ad auctions derived from a real-world online advertising platform. AuctionNet is composed of three parts: an ad auction environment, a pre-generated dataset based on the environment, and performance evaluations of several baseline bid decision-making algorithms. More specifically, the environment effectively replicates the integrity and complexity of real-world ad auctions through the interaction of several modules: the ad opportunity generation module employs deep generative networks to bridge the gap between simulated and real-world data while mitigating the risk of sensitive data exposure; the bidding module implements diverse auto-bidding agents trained with different decision-making algorithms; and the auction module is anchored in the classic Generalized Second Price (GSP) auction but also allows for customization of auction mechanisms as needed. To facilitate research and provide insights into the environment, we have also pre-generated a substantial dataset based on the environment. The dataset contains 10 million ad opportunities, 48 diverse auto-bidding agents, and over 500 million auction records. …
Poster
Chuanyi Xue · Qihan Liu · Xiaoteng Ma · Xinyao Qin · Gui Ning · Yang Qi · Jinsheng Ren · Bin Liang · Jun Yang

[ West Ballroom A-D ]

Abstract
Reinforcement learning (RL) demonstrates superior potential over traditional flight control methods for fixed-wing aircraft, particularly under extreme operational conditions. However, the high demand for training samples and the lack of efficient computation in existing simulators hinder its further application. In this paper, we introduce NeuralPlane, the first benchmark platform for large-scale parallel simulations of fixed-wing aircraft. NeuralPlane significantly boosts high-fidelity simulation via GPU-accelerated Flight Dynamics Model (FDM) computation, achieving a single-step simulation time of just 0.2 seconds at a parallel scale of $10^{6}$, far exceeding current platforms. We also provide clear code templates, comprehensive evaluation/visualization tools and hierarchical frameworks for integrating RL and traditional control methods. We believe that NeuralPlane can accelerate the development of RL-based fixed-wing flight control and serve as a new challenging benchmark for the RL community. Our NeuralPlane is open-source and accessible at https://github.com/xuecy22/NeuralPlane.
Poster
Zibin Dong · Yifu Yuan · Jianye Hao · Fei Ni · Yi Ma · Pengyi Li · YAN ZHENG

[ West Ballroom A-D ]

Abstract
Leveraging the powerful generative capability of diffusion models (DMs) to build decision-making agents has achieved extensive success. However, there is still a demand for an easy-to-use and modularized open-source library that offers customized and efficient development for DM-based decision-making algorithms. In this work, we introduce **CleanDiffuser**, the first DM library specifically designed for decision-making algorithms. By revisiting the roles of DMs in the decision-making domain, we identify a set of essential sub-modules that constitute the core of CleanDiffuser, allowing for the implementation of various DM algorithms with simple and flexible building blocks. To demonstrate the reliability and flexibility of CleanDiffuser, we conduct comprehensive evaluations of various DM algorithms implemented with CleanDiffuser across an extensive range of tasks. The analytical experiments provide a wealth of valuable design choices and insights, reveal opportunities and challenges, and lay a solid groundwork for future research. CleanDiffuser will provide long-term support to the decision-making community, enhancing reproducibility and fostering the development of more robust solutions.
Poster
Xuan Ju · Yiming Gao · Zhaoyang Zhang · Ziyang Yuan · Xintao Wang · AILING ZENG · Yu Xiong · Qiang Xu · Ying Shan

[ West Ballroom A-D ]

Abstract
Sora's high-motion intensity and long consistent videos have significantly impacted the field of video generation, attracting unprecedented attention. However, existing publicly available datasets are inadequate for generating Sora-like videos, as they mainly contain short videos with low motion intensity and brief captions. To address these issues, we propose MiraData, a high-quality video dataset that surpasses previous ones in video duration, caption detail, motion strength, and visual quality. We curate MiraData from diverse, manually selected sources and meticulously process the data to obtain semantically consistent clips. GPT-4V is employed to annotate structured captions, providing detailed descriptions from four different perspectives along with a summarized dense caption. To better assess temporal consistency and motion intensity in video generation, we introduce MiraBench, which enhances existing benchmarks by adding 3D consistency and tracking-based motion strength metrics. MiraBench includes 150 evaluation prompts and 17 metrics covering temporal consistency, motion strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To demonstrate the utility and effectiveness of MiraData, we conduct experiments using our DiT-based video generation model, MiraDiT. The experimental results on MiraBench demonstrate the superiority of MiraData, especially in motion strength.
Poster
Kazusato Oko · Yujin Song · Taiji Suzuki · Denny Wu

[ West Ballroom A-D ]

Abstract
Transformers can efficiently learn in-context from example demonstrations. Most existing theoretical analyses studied the in-context learning (ICL) ability of transformers for linear function classes, where it is typically shown that the minimizer of the pretraining loss implements one gradient descent step on the least squares objective. However, this simplified linear setting arguably does not demonstrate the statistical efficiency of ICL, since the pretrained transformer does not outperform directly solving linear regression on the test prompt. In this paper, we study ICL of a nonlinear function class via transformer with nonlinear MLP layer: given a class of \textit{single-index} target functions $f_*(\boldsymbol{x}) = \sigma_*(\langle\boldsymbol{x},\boldsymbol{\beta}\rangle)$, where the index features $\boldsymbol{\beta}\in\mathbb{R}^d$ are drawn from a $r$-dimensional subspace, we show that a nonlinear transformer optimized by gradient descent (with a pretraining sample complexity that depends on the \textit{information exponent} of the link functions $\sigma_*$) learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$; in contrast, any algorithm that directly learns $f_*$ on test prompt yields a statistical complexity that scales with the ambient dimension $d$. Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient …
Spotlight Poster
Luise Ge · Daniel Halpern · Evi Micha · Ariel Procaccia · Itai Shapira · Yevgeniy Vorobeychik · Junlin Wu

[ West Ballroom A-D ]

Abstract
In the context of reinforcement learning from human feedback (RLHF), the reward function is generally derived from maximum likelihood estimation of a random utility model based on pairwise comparisons made by humans. The problem of learning a reward function is one of preference aggregation that, we argue, largely falls within the scope of social choice theory. From this perspective, we can evaluate different aggregation methods via established axioms, examining whether these methods meet or fail well-known standards. We demonstrate that both the Bradley-Terry-Luce Model and its broad generalizations fail to meet basic axioms. In response, we develop novel rules for learning reward functions with strong axiomatic guarantees. A key innovation from the standpoint of social choice is that our problem has a *linear* structure, which greatly restricts the space of feasible rules and leads to a new paradigm that we call *linear social choice*.
Poster
Lorenzo Tiberi · Francesca Mignacco · Kazuki Irie · Haim Sompolinsky

[ West Ballroom A-D ]

Abstract
Despite the remarkable empirical performance of Transformers, their theoretical understanding remains elusive. Here, we consider a deep multi-head self-attention network, that is closely related to Transformers yet analytically tractable. We develop a statistical mechanics theory of Bayesian learning in this model, deriving exact equations for the network's predictor statistics under the finite-width thermodynamic limit, i.e., $N,P\rightarrow\infty$, $P/N=\mathcal{O}(1)$, where $N$ is the network width and $P$ is the number of training examples. Our theory shows that the predictor statistics are expressed as a sum of independent kernels, each one pairing different "attention paths", defined as information pathways through different attention heads across layers. The kernels are weighted according to a "task-relevant kernel combination" mechanism that aligns the total kernel with the task labels. As a consequence, this interplay between attention paths enhances generalization performance. Experiments confirm our findings on both synthetic and real-world sequence classification tasks. Finally, our theory explicitly relates the kernel combination mechanism to properties of the learned weights, allowing for a qualitative transfer of its insights to models trained via gradient descent. As an illustration, we demonstrate an efficient size reduction of the network, by pruning those attention heads that are deemed less relevant by our theory.
Poster
Subhodh Kotekal

[ West Ballroom A-D ]

Abstract
The normal means model is often studied under the assumption of a known variance. However, ignorance of the variance is a frequent issue in applications and basic theoretical questions still remain open in this setting. This article establishes that the sharp minimax rate of variance estimation in square error is $(\frac{\log\log n}{\log n})^2$ under arguably the most mild assumption imposed for identifiability: bounded means. The rate-optimal estimator proposed in this article achieves the optimal rate by estimating $O\left(\frac{\log n}{\log\log n}\right)$ cumulants and leveraging a variational representation of the noise variance in terms of the cumulants of the data distribution. The minimax lower bound involves a moment matching construction.
Poster
Jiawen Zhang · Xumeng Wen · Zhenwei Zhang · Shun Zheng · Jia Li · Jiang Bian

[ West Ballroom A-D ]

Abstract
Delivering precise point and distributional forecasts across a spectrum of prediction horizons represents a significant and enduring challenge in the application of time-series forecasting within various industries.Prior research on developing deep learning models for time-series forecasting has often concentrated on isolated aspects, such as long-term point forecasting or short-term probabilistic estimations. This narrow focus may result in skewed methodological choices and hinder the adaptability of these models to uncharted scenarios.While there is a rising trend in developing universal forecasting models, a thorough understanding of their advantages and drawbacks, especially regarding essential forecasting needs like point and distributional forecasts across short and long horizons, is still lacking.In this paper, we present ProbTS, a benchmark tool designed as a unified platform to evaluate these fundamental forecasting needs and to conduct a rigorous comparative analysis of numerous cutting-edge studies from recent years.We dissect the distinctive data characteristics arising from disparate forecasting requirements and elucidate how these characteristics can skew methodological preferences in typical research trajectories, which often fail to fully accommodate essential forecasting needs.Building on this, we examine the latest models for universal time-series forecasting and discover that our analyses of methodological strengths and weaknesses are also applicable to these universal models.Finally, we …
Poster
wang lin · Yueying Feng · WenKang Han · Tao Jin · Zhou Zhao · Fei Wu · Chang Yao · Jingyuan Chen

[ West Ballroom A-D ]

Abstract
Understanding human emotions is fundamental to enhancing human-computer interaction, especially for embodied agents that mimic human behavior. Traditional emotion analysis often takes a third-person perspective, limiting the ability of agents to interact naturally and empathetically. To address this gap, this paper presents $E^3$ for Exploring Embodied Emotion, the first massive first-person view video dataset. $E^3$ contains more than $50$ hours of video, capturing $8$ different emotion types in diverse scenarios and languages. The dataset features videos recorded by individuals in their daily lives, capturing a wide range of real-world emotions conveyed through visual, acoustic, and textual modalities. By leveraging this dataset, we define $4$ core benchmark tasks - emotion recognition, emotion classification, emotion localization, and emotion reasoning - supported by more than $80$k manually crafted annotations, providing a comprehensive resource for training and evaluating emotion analysis models. We further present Emotion-LlaMa, which complements visual modality with acoustic modality to enhance the understanding of emotion in first-person videos. The results of comparison experiments with a large number of baselines demonstrate the superiority of Emotion-LlaMa and set a new benchmark for embodied emotion analysis. We expect that $E^3$ can promote advances in multimodal understanding, robotics, and augmented reality, and provide a solid …
Poster
The Viet Bui · Tien Mai · Thanh Nguyen

[ West Ballroom A-D ]

Abstract
Training agents in multi-agent games presents significant challenges due to their intricate nature. These challenges are exacerbated by dynamics influenced not only by the environment but also by strategies of opponents. Existing methods often struggle with slow convergence and instability.To address these challenges, we harness the potential of imitation learning (IL) to comprehend and anticipate actions of the opponents, aiming to mitigate uncertainties with respect to the game dynamics.Our key contributions include:(i) a new multi-agent IL model for predicting next moves of the opponents - our model works with hidden actions of opponents and local observations;(ii) a new multi-agent reinforcement learning (MARL) algorithm that combines our IL model and policy training into one single training process;and (iii) extensive experiments in three challenging game environments, including an advanced version of the Star-Craft multi-agent challenge (i.e., SMACv2).Experimental results show that our approach achieves superior performance compared to state-of-the-art MARL algorithms.
Poster
Lenart Treven · Bhavya · Yarden As · Florian Dorfler · Andreas Krause

[ West Ballroom A-D ]

Abstract
Reinforcement learning (RL) excels in optimizing policies for discrete-time Markov decision processes (MDP). However, various systems are inherently continuous in time, making discrete-time MDPs an inexact modeling choice. In many applications, such as greenhouse control or medical treatments, each interaction (measurement or switching of action) involves manual intervention and thus is inherently costly. Therefore, we generally prefer a time-adaptive approach with fewer interactions with the system.In this work, we formalize an RL framework, **T**ime-**a**daptive **Co**ntrol \& **S**ensing (**TaCoS**), that tackles this challenge by optimizing over policies that besides control predict the duration of its application. Our formulation results in an extended MDP that any standard RL algorithm can solve.We demonstrate that state-of-the-art RL algorithms trained on TaCoS drastically reduce the interaction amount over their discrete-time counterpart while retaining the same or improved performance, and exhibiting robustness over discretization frequency.Finally, we propose OTaCoS, an efficient model-based algorithm for our setting. We show that OTaCoS enjoys sublinear regret for systems with sufficiently smooth dynamics and empirically results in further sample-efficiency gains.
Poster
Mingze Wang · Weinan E

[ West Ballroom A-D ]

Abstract
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates.Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads.These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
Poster
Yitong Dong · Yijin Li · Zhaoyang Huang · Weikang Bian · Jingbo Liu · Hujun Bao · Zhaopeng Cui · Hongsheng Li · Guofeng Zhang

[ West Ballroom A-D ]

Abstract
In this paper, we propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior. Unlike recent prior-free MVS methods that work in a pair-wise manner, our method simultaneously considers all the source images. Specifically, we introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information within and across multi-view images. Considering the asymmetry of the epipolar disparity flow, the key to our method lies in accurately modeling multi-view geometric constraints. We integrate pose embedding to encapsulate information such as multi-view camera poses, providing implicit geometric constraints for multi-view disparity feature fusion dominated by attention. Additionally, we construct corresponding hidden states for each source image due to significant differences in the observation quality of the same pixel in the reference frame across multiple source frames. We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image and dynamically update hidden states through the uncertainty estimation module. Extensive results on the DTU dataset and Tanks\&Temple benchmark demonstrate the effectiveness of our method.
Poster
Junjie Ni · Guofeng Zhang · Guanglin Li · Yijin Li · Xinyang Liu · Zhaoyang Huang · Hujun Bao

[ West Ballroom A-D ]

Abstract
We tackle the efficiency problem of learning local feature matching.Recent advancements have given rise to purely CNN-based and transformer-based approaches, each augmented with deep learning techniques. While CNN-based methods often excel in matching speed, transformer-based methods tend to provide more accurate matches. We propose an efficient transformer-based network architecture for local feature matching.This technique is built on constructing multiple homography hypotheses to approximate the continuous correspondence in the real world and uni-directional cross-attention to accelerate the refinement. On the YFCC100M dataset, our matching accuracy is competitive with LoFTR, a state-of-the-art transformer-based architecture, while the inference speed is boosted to 4 times, even outperforming the CNN-based methods.Comprehensive evaluations on other open datasets such as Megadepth, ScanNet, and HPatches demonstrate our method's efficacy, highlighting its potential to significantly enhance a wide array of downstream applications.
Poster
ZAIXI ZHANG · Mengdi Wang · Qi Liu

[ West Ballroom A-D ]

Abstract
Structure-based drug design (SBDD), which aims to generate 3D ligand molecules binding to target proteins, is a fundamental task in drug discovery. Existing SBDD methods typically treat protein as rigid and neglect protein structural change when binding with ligand molecules, leading to a big gap with real-world scenarios and inferior generation qualities (e.g., many steric clashes). To bridge the gap, we propose FlexSBDD, a deep generative model capable of accurately modeling the flexible protein-ligand complex structure for ligand molecule generation. FlexSBDD adopts an efficient flow matching framework and leverages E(3)-equivariant network with scalar-vector dual representation to model dynamic structural changes. Moreover, novel data augmentation schemes based on structure relaxation/sidechain repacking are adopted to boost performance. Extensive experiments demonstrate that FlexSBDD achieves state-of-the-art performance in generating high-affinity molecules and effectively modeling the protein's conformation change to increase favorable protein-ligand interactions (e.g., Hydrogen bonds) and decrease steric clashes.
Poster
Tian Xu · Zhilong Zhang · Ruishuo Chen · Yihao Sun · Yang Yu

[ West Ballroom A-D ]

Abstract
As a prominent category of imitation learning methods, adversarial imitation learning (AIL) has garnered significant practical success powered by neural network approximation. However, existing theoretical studies on AIL are primarily limited to simplified scenarios such as tabular and linear function approximation and involve complex algorithmic designs that hinder practical implementation, highlighting a gap between theory and practice. In this paper, we explore the theoretical underpinnings of online AIL with general function approximation. We introduce a new method called optimization-based AIL (OPT-AIL), which centers on performing online optimization for reward functions and optimism-regularized Bellman error minimization for Q-value functions. Theoretically, we prove that OPT-AIL achieves polynomial expert sample complexity and interaction complexity for learning near-expert policies. To our best knowledge, OPT-AIL is the first provably efficient AIL method with general function approximation. Practically, OPT-AIL only requires the approximate optimization of two objectives, thereby facilitating practical implementation. Empirical studies demonstrate that OPT-AIL outperforms previous state-of-the-art deep AIL methods in several challenging tasks.
Poster
Changho Shin · Jitian Zhao · Sonia Cromp · Harit Vishwakarma · Frederic Sala

[ West Ballroom A-D ]

Abstract
Popular zero-shot models suffer due to artifacts inherited from pretraining. One particularly detrimental issue, caused by unbalanced web-scale pretraining data, is mismatched label distribution. Existing approaches that seek to repair the label distribution are not suitable in zero-shot settings, as they have mismatching requirements, such as needing access to labeled downstream task data or knowledge of the true label balance in the pretraining distribution. We sidestep these challenges and introduce a simple and lightweight approach to adjust pretrained model predictions via optimal transport. Our technique requires only an estimate of the label distribution of a downstream task. Theoretically, we characterize the improvement produced by our procedure under certain mild conditions and provide bounds on the error caused by misspecification. Empirically, we validate our method in a wide array of zero-shot image and text classification tasks, improving accuracy by 4.8% and 15.9% on average, and beating baselines like prior matching---often by significant margins---in 17 out of 21 datasets.
Poster
Aristeidis Panos

[ West Ballroom A-D ]

Abstract
The standard paradigm of modeling marked point processes is by parameterizing the intensity function using an attention-based (Transformer-style) architecture. Despite the flexibility of these methods, their inference is based on the computationally intensive thinning algorithm. In this work, we propose a framework where the advantages of the attention-based architecture are maintained and the limitation of the thinning algorithm is circumvented. The framework depends on modeling the conditional distribution of inter-event times with a mixture of log-normals satisfying a Markov property and the conditional probability mass function for the marks with a Transformer-based architecture. The proposed method attains state-of-the-art performance in predicting the next event of a sequence given its history. The experiments also reveal the efficacy of the methods that do not rely on the thinning algorithm during inference over the ones they do. Finally, we test our method on the challenging long-horizon prediction task and find that it outperforms a baseline developed specifically for tackling this task; importantly, inference requires just a fraction of time compared to the thinning-based baseline.
Spotlight Poster
Ziyang Xiao · Dongxiang Zhang · Xiongwei Han · Xiaojin Fu · Wing Yin YU · Tao Zhong · Sai Wu · Yuan Wang · Jianwei Yin · Gang Chen

[ West Ballroom A-D ]

Abstract
Verbal and visual-spatial information processing are two critical subsystems that activate different brain regions and often collaborate together for cognitive reasoning. Despite the rapid advancement of LLM-based reasoning, the mainstream frameworks, such as Chain-of-Thought (CoT) and its variants, primarily focus on the verbal dimension, resulting in limitations in tackling reasoning problems with visual and spatial clues. To bridge the gap, we propose a novel dual-modality reasoning framework called Vision-Augmented Prompting (VAP). Upon receiving a textual problem description, VAP automatically synthesizes an image from the visual and spatial clues by utilizing external drawing tools. Subsequently, VAP formulates a chain of thought in both modalities and iteratively refines the synthesized image. Finally, a conclusive reasoning scheme based on self-alignment is proposed for final result generation. Extensive experiments are conducted across four versatile tasks, including solving geometry problems, Sudoku, time series prediction, and travelling salesman problem. The results validated the superiority of VAP over existing LLMs-based reasoning frameworks.
Poster
Pusen Dong · Tianchen Zhu · yue qiu · Haoyi Zhou · Jianxin Li

[ West Ballroom A-D ]

Abstract
Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.
Poster
Alkis Kalavasis · Amin Karbasi · Argyris Oikonomou · Katerina Sotiraki · Grigoris Velegkas · Manolis Zampetakis

[ West Ballroom A-D ]

Abstract
As ML models become increasingly complex and integral to high-stakes domains such as finance and healthcare, they also become more susceptible to sophisticated adversarial attacks. We investigate the threat posed by undetectable backdoors, as defined in Goldwasser et al. [2022], in models developed by insidious external expert firms. When such backdoors exist, they allow the designer of the model to sell information on how to slightly perturb their input to change the outcome of the model. We develop a general strategy to plant backdoors to obfuscated neural networks, that satisfy the security properties of the celebrated notion of indistinguishability obfuscation. Applying obfuscation before releasing neural networks is a strategy that is well motivated to protect sensitive information of the external expert firm. Our method to plant backdoors ensures that even if the weights and architecture of the obfuscated model are accessible, the existence ofthe backdoor is still undetectable. Finally, we introduce the notion of undetectable backdoors to language models and extend our neural network backdoor attacks to such models based on the existence of steganographic functions.
Poster
Hang Yin · Xiuwei Xu · Zhenyu Wu · Jie Zhou · Jiwen Lu

[ West Ballroom A-D ]

Abstract
In this paper, we propose a new framework for zero-shot object navigation.Existing zero-shot object navigation methods prompt LLM with the text of spatially closed objects, which lacks enough scene context for in-depth reasoning.To better preserve the information of environment and fully exploit the reasoning ability of LLM, we propose to represent the observed scene with 3D scene graph. The scene graph encodes the relationships between objects, groups and rooms with a LLM-friendly structure, for which we design a hierarchical chain-of-thought prompt to help LLM reason the goal location according to scene context by traversing the nodes and edges.Moreover, benefit from the scene graph representation, we further design a re-perception mechanism to empower the object navigation framework with the ability to correct perception error.We conduct extensive experiments on MP3D, HM3D and RoboTHOR environments, where SG-Nav surpasses previous state-of-the-art zero-shot methods by more than \textbf{10\%} SR on all benchmarks, while the decision process is explainable. To the best of our knowledge, SG-Nav is the first zero-shot method that achieves even higher performance than supervised object navigation methods on the challenging MP3D benchmark.Code of this project will be released in the final version.
Poster
David Brandfonbrener · Hanlin Zhang · Andreas Kirsch · Jonathan Richard Schwarz · Sham Kakade

[ West Ballroom A-D ]

Abstract
Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models.In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmoFiltered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4
Poster
Xinshuai Dong · Ignavier Ng · Biwei Huang · Yuewen Sun · Songyao Jin · Roberto Legaspi · Peter Spirtes · Kun Zhang

[ West Ballroom A-D ]

Abstract
Linear causal models are important tools for modeling causal dependencies and yet in practice, only a subset of the variables can be observed. In this paper, we examine the parameter identifiability of these models by investigating whether the edge coefficients can be recovered given the causal structure and partially observed data. Our setting is more general than that of prior research—we allow all variables, including both observed and latent ones, to be flexibly related, and we consider the coefficients of all edges, whereas most existing works focus only on the edges between observed variables. Theoretically, we identify three types of indeterminacy for the parameters in partially observed linear causal models. We then provide graphical conditions that are sufficient for all parameters to be identifiable and show that some of them are provably necessary. Methodologically, we propose a novel likelihood-based parameter estimation method that addresses the variance indeterminacy of latent variables in a specific way and can asymptotically recover the underlying parameters up to trivial indeterminacy. Empirical studies on both synthetic and real-world datasets validate our identifiability theory and the effectiveness of the proposed method in the finite-sample regime.
Poster
Haiyun Yao · Zongbo Han · Huazhu Fu · Xi Peng · Qinghua Hu · Changqing Zhang

[ West Ballroom A-D ]

Abstract
Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
Poster
Amrith Setlur · Saurabh Garg · Xinyang Geng · Naman Garg · Virginia Smith · Aviral Kumar

[ West Ballroom A-D ]

Abstract
Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of …
Poster
Wenzhuo Liu · Fei Zhu · Shijie Ma · Cheng-lin Liu

[ West Ballroom A-D ]

Abstract
Although Vision Transformers (ViTs) have recently advanced computer vision tasks significantly, an important real-world problem was overlooked: adapting to variable input resolutions. Typically, images are resized to a fixed resolution, such as 224x224, for efficiency during training and inference. However, uniform input size conflicts with real-world scenarios where images naturally vary in resolution. Modifying the preset resolution of a model may severely degrade the performance. In this work, we propose to enhance the model adaptability to resolution variation by optimizing the patch embedding. The proposed method, called Multi-Scale Patch Embedding (MSPE), substitutes the standard patch embedding with multiple variable-sized patch kernels and selects the best parameters for different resolutions, eliminating the need to resize the original image. Our method does not require high-cost training or modifications to other parts, making it easy to apply to most ViT models. Experiments in image classification, segmentation, and detection tasks demonstrate the effectiveness of MSPE, yielding superior performance on low-resolution inputs and performing comparably on high-resolution inputs with existing methods.
Poster
David Janz · Alexander Litvak · Csaba Szepesvari

[ West Ballroom A-D ]

Abstract
We provide the first useful and rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size of order $\smash{d \log T}$ incurs regret at most of the order $\smash{(d \log T)^{5/2} \sqrt{T}}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$---which defeats the purpose of ensemble sampling---while obtaining near $\smash{\sqrt{T}}$ order regret. Our result is also the first to allow for infinite action sets.
Poster
Xueyan Zou · Linjie Li · Jianfeng Wang · Jianwei Yang · Mingyu Ding · Junyi Wei · Zhengyuan Yang · Feng Li · Hao Zhang · Shilong Liu · Arul Aravinthan · Yong Jae Lee · Lijuan Wang

[ West Ballroom A-D ]

Abstract
Foundation models possess strong capabilities in reasoning and memorizing across modalities. To further unleash the power of foundation models, we present FIND, a generalized interface for aligning foundation models' embeddings with unified image and dataset-level understanding spanning modality and granularity. As shown in Fig.1, a lightweight transformer interface without tuning any foundation model weights is enough for segmentation, grounding, and retrieval in an interleaved manner. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, etc., under the same architecture and weights. (2) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. In light of the interleaved embedding space, we introduce FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleaved segmentation and retrieval. We are the first work aligning foundations models' embeddings for interleave understanding. Meanwhile, our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings.
Poster
Zhi Wang · Li Zhang · Wenhao Wu · Yuanheng Zhu · Dongbin Zhao · Chunlin Chen

[ West Ballroom A-D ]

Abstract
A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types …
Poster
Dong Zhao · Qi Zang · Shuang Wang · Nicu Sebe · Zhun Zhong

[ West Ballroom A-D ]

Abstract
Presently, pseudo-labeling stands as a prevailing approach in cross-domain semantic segmentation, enhancing model efficacy by training with pixels assigned with reliable pseudo-labels. However, we identify two key limitations within this paradigm: (1) under relatively severe domain shifts, most selected reliable pixels appear speckled and remain noisy. (2) when dealing with wild data, some pixels belonging to the open-set class may exhibit high confidence and also appear speckled. These two points make it difficult for the pixel-level selection mechanism to identify and correct these speckled close- and open-set noises. As a result, error accumulation is continuously introduced into subsequent self-training, leading to inefficiencies in pseudo-labeling. To address these limitations, we propose a novel method called Semantic Connectivity-driven Pseudo-labeling (SeCo). SeCo formulates pseudo-labels at the connectivity level, which makes it easier to locate and correct closed and open set noise. Specifically, SeCo comprises two key components: Pixel Semantic Aggregation (PSA) and Semantic Connectivity Correction (SCC). Initially, PSA categorizes semantics into ``stuff'' and ``things'' categories and aggregates speckled pseudo-labels into semantic connectivity through efficient interaction with the Segment Anything Model (SAM). This enables us not only to obtain accurate boundaries but also simplifies noise localization. Subsequently, SCC introduces a simple connectivity classification task, …
Poster
Yikun Ban · Jiaru Zou · Zihao Li · Yunzhe Qi · Dongqi Fu · Jian Kang · Hanghang Tong · Jingrui He

[ West Ballroom A-D ]

Abstract
Link prediction is a critical problem in graph learning with broad applications such as recommender systems and knowledge graph completion. Numerous research efforts have been directed at solving this problem, including approaches based on similarity metrics and Graph Neural Networks (GNN). However, most existing solutions are still rooted in conventional supervised learning, which makes it challenging to adapt over time to changing customer interests and to address the inherent dilemma of exploitation versus exploration in link prediction.To tackle these challenges, this paper reformulates link prediction as a sequential decision-making process, where each link prediction interaction occurs sequentially. We propose a novel fusion algorithm, PRB (PageRank Bandits), which is the first to combine contextual bandits with PageRank for collaborative exploitation and exploration. We also introduce a new reward formulation and provide a theoretical performance guarantee for PRB. Finally, we extensively evaluate PRB in both online and offline settings, comparing it with bandit-based and graph-based methods. The empirical success of PRB demonstrates the value of the proposed fusion approach. Our code is released at https://github.com/jiaruzouu/PRB.
Poster
Samin Yeasar Arnob · Riyasat Ohib · Sergey Plis · Amy Zhang · Alessandro Sordoni · Doina Precup

[ West Ballroom A-D ]

Abstract
Reinforcement learning (RL) algorithms have been very successful at tackling complex control problems, such as AlphaGo or fusion control. However, current research mainly emphasizes solution quality, often achieved by using large models trained on large amounts of data, and does not account for the financial, environmental, and societal costs associated with developing and deploying such models. Modern neural networks are often overparameterized and a significant number of parameters can be pruned without meaningful loss in performance, resulting in more efficient use of the model's capacity lottery ticket. We present a methodology for identifying sub-networks within a larger network in reinforcement learning (RL). We call such sub-networks, neural pathways. We show empirically that even very small learned sub-networks, using less than 5% of the large network's parameters, can provide very good quality solutions. We also demonstrate the training of multiple pathways within the same networks in a multitask setup, where each pathway is encouraged to tackle a separate task. We evaluate empirically our approach on several continuous control tasks, in both online and offline training
Poster
Siwei Wang · Yifei Shen · Shi Feng · Haoran Sun · Shang-Hua Teng · Wei Chen

[ West Ballroom A-D ]

Abstract
Planning is a crucial element of both human intelligence and contemporary large language models (LLMs). In this paper, we initiate a theoretical investigation into the emergence of planning capabilities in Transformer-based LLMs via their next-word prediction mechanisms. We model planning as a network path-finding task, where the objective is to generate a valid path from a specified source node to a designated target node. Our mathematical characterization shows that Transformer architectures can execute path-finding by embedding the adjacency and reachability matrices within their weights. Furthermore, our theoretical analysis of gradient-based learning dynamics reveals that LLMs can learn both the adjacency and a limited form of the reachability matrices. These theoretical insights are then validated through experiments, which demonstrate that Transformer architectures indeed learn the adjacency and an incomplete reachability matrices, consistent with our theoretical predictions. When applying our methodology to the real-world planning benchmark Blocksworld, our observations remain consistent. Additionally, our analyses uncover a fundamental limitation of current Transformer architectures in path-finding: these architectures cannot identify reachability relationships through transitivity, which leads to failures in generating paths when concatenation is required. These findings provide new insights into how the internal mechanisms of autoregressive learning facilitate intelligent planning and deepen our …
Poster
Xiaoyuan Zhang · Genghui Li · Xi Lin · Yichi Zhang · Yifan Chen · Qingfu Zhang

[ West Ballroom A-D ]

Abstract
Multiobjective optimization (MOO) plays a critical role in various real-world domains. A major challenge therein is generating $K$ uniform Pareto-optimal solutions to represent the entire Pareto front. To address this issue, this paper firstly introduces \emph{fill distance} to evaluate the $K$ design points, which provides a quantitative metric for the representativeness of the design. However, directly specifying the optimal design that minimizes the fill distance is nearly intractable due to the nested $\min-\max-\min$ optimization problem. To address this, we propose a surrogate ``max-packing'' design for the fill distance design, which is easier to optimize and leads to a rate-optimal design with a fill distance at most $4\times$ the minimum value. Extensive experiments on synthetic and real-world benchmarks demonstrate that our proposed paradigm efficiently produces high-quality, representative solutions and outperforms baseline methods.
Poster
Zhimeng Jiang · Zirui Liu · Xiaotian Han · Qizhang Feng · Hongye Jin · Qiaoyu Tan · Kaixiong Zhou · Na Zou · Xia Hu

[ West Ballroom A-D ]

Abstract
Deep neural networks are ubiquitously adopted in many applications, such as computer vision, natural language processing, and graph analytics. However, well-trained neural networks can make prediction errors after deployment as the world changes. \textit{Model editing} involves updating the base model to correct prediction errors with less accessible training data and computational resources.Despite recent advances in model editors in computer vision and natural language processing, editable training in graph neural networks (GNNs) is rarely explored. The challenge with editable GNN training lies in the inherent information aggregation across neighbors, which can lead model editors to affect the predictions of other nodes unintentionally. In this paper, we first observe the gradient of cross-entropy loss for the target node and training nodes with significant inconsistency, which indicates that directly fine-tuning the base model using the loss on the target node deteriorates the performance on training nodes. Motivated by the gradient inconsistency observation, we propose a simple yet effective \underline{G}radient \underline{R}ewiring method for \underline{E}ditable graph neural network training, named \textbf{GRE}. Specifically, we first store the anchor gradient of the loss on training nodes to preserve the locality. Subsequently, we rewire the gradient of the loss on the target node to preserve performance on the …
Poster
Grigory Bartosh · Dmitry Vetrov · Christian Andersson Naesseth

[ West Ballroom A-D ]

Abstract
Conventional diffusion models typically relies on a fixed forward process, which implicitly defines complex marginal distributions over latent variables. This can often complicate the reverse process’ task in learning generative trajectories, and results in costly inference for diffusion models. To address these limitations, we introduce Neural Flow Diffusion Models (NFDM), a novel framework that enhances diffusion models by supporting a broader range of forward processes beyond the standard Gaussian. We also propose a novel parameterization technique for learning the forward process. Our framework provides an end-to-end, simulation-free optimization objective, effectively minimizing a variational upper bound on the negative log-likelihood. Experimental results demonstrate NFDM’s strong performance, evidenced by state-of-the-art likelihood estimation. Furthermore, we investigate NFDM’s capacity for learning generative dynamics with specific characteristics, such as deterministic straight lines trajectories, and demonstrate how the framework may be adopted for learning bridges between two distributions. The results underscores NFDM’s versatility and its potential for a wide range of applications.
Poster
Xinyu Zhou · Jinglun Li · Lingyi Hong · Kaixun Jiang · Pinxue Guo · Weifeng Ge · Wenqiang Zhang

[ West Ballroom A-D ]

Abstract
Previous visual object tracking methods employ image-feature regression models or coordinate autoregression models for bounding box prediction. Image-feature regression methods heavily depend on matching results and do not utilize positional prior, while the autoregressive approach can only be trained using bounding boxes available in the training set, potentially resulting in suboptimal performance during testing with unseen data. Inspired by the diffusion model, denoising learning enhances the model’s robustness to unseen data. Therefore, We introduce noise to bounding boxes, generating noisy boxes for training, thus enhancing model robustness on testing data. We propose a new paradigm to formulate the visual object tracking problem as a denoising learning process. However, tracking algorithms are usually asked to run in real-time, directly applying the diffusion model to object tracking would severely impair tracking speed. Therefore, we decompose the denoising learning process into every denoising block within a model, not by running the model multiple times, and thus we summarize the proposed paradigm as an in-model latent denoising learning process. Specifically, we propose a denoising Vision Transformer (ViT), which is composed of multiple denoising blocks. In the denoising block, template and search embeddings are projected into every denoising block as conditions. A denoising block is …
Poster
Bochuan Cao · Jinyuan Jia · Chuxuan Hu · Wenbo Guo · Zhen Xiang · Jinghui Chen · Bo Li · Dawn Song

[ West Ballroom A-D ]

Abstract
Backdoor attacks aim to inject a backdoor into a classifier such that it predicts any input with an attacker-chosen backdoor trigger as an attacker-chosen target class. Existing backdoor attacks require either retraining the classifier with some clean data or modifying the model's architecture.As a result, they are 1) not applicable when clean data is unavailable, 2) less efficient when the model is large, and 3) less stealthy due to architecture changes. In this work, we propose DFBA, a novel retraining-free and data-free backdoor attack without changing the model architecture. Technically, our proposed method modifies a few parameters of a classifier to inject a backdoor. Through theoretical analysis, we verify that our injected backdoor is provably undetectable and unremovable by various state-of-the-art defenses under mild assumptions. Our evaluation on multiple datasets further demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100\% attack success rates, and 3) bypasses six existing state-of-the-art defenses. Moreover, our comparison with a state-of-the-art non-data-free backdoor attack shows our attack is more stealthy and effective against various defenses while achieving less classification accuracy loss.We will release our code upon paper acceptance.
Poster
Quoc Tran Dinh · Trang H. Tran · Lam Nguyen

[ West Ballroom A-D ]

Abstract
This paper aims at developing novel shuffling gradient-based methods for tackling two classes of minimax problems: nonconvex-linear and nonconvex-strongly concave settings. The first algorithm addresses the nonconvex-linear minimax model and achieves the state-of-the-art oracle complexity typically observed in nonconvex optimization. It also employs a new shuffling estimator for the ``hyper-gradient'', departing from standard shuffling techniques in optimization. The second method consists of two variants: semi-shuffling and full-shuffling schemes. These variants tackle the nonconvex-strongly concave minimax setting. We establish their oracle complexity bounds under standard assumptions, which, to our best knowledge, are the best-known for this specific setting. Numerical examples demonstrate the performance of our algorithms and compare them with two other methods. Our results show that the new methods achieve comparable performance with SGD, supporting the potential of incorporating shuffling strategies into minimax algorithms.
Poster
Qi Song · Tianxiang Gong · Shiqi Gao · Haoyi Zhou · Jianxin Li

[ West Ballroom A-D ]

Abstract
Multimodal contrastive learning (MCL) has recently demonstrated significant success across various tasks. However, the existing MCL treats all negative samples equally and ignores the potential semantic association with positive samples, which limits the model's ability to achieve fine-grained alignment. In multi-view scenarios, MCL tends to prioritize shared information while neglecting modality-specific unique information across different views, leading to feature suppression and suboptimal performance in downstream tasks. To address these limitations, we propose a novel contrastive framework name *QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization*. In the QUEST framework, we propose quaternion contrastive objectives and orthogonal constraints to extract sufficient unique information. Meanwhile, a shared information-guided penalization is introduced to ensure that shared information does not excessively influence the optimization of unique information. Our method leverages quaternion vector spaces to simultaneously optimize shared and unique information. Experiments on multiple datasets show that our method achieves superior performance in multimodal contrastive learning benchmarks. On public benchmark, our approach achieves state-of-the-art performance, and on synthetic shortcut datasets, we outperform existing baseline methods by an average of 97.95\% on the CLIP model.
Poster
Guodong DU · Junlin Lee · Jing Li · Runhua Jiang · Yifei Guo · Shuyang Yu · Hanting Liu · Sim Kuan Goh · Ho-Kin Tang · Daojing He · Min Zhang

[ West Ballroom A-D ]

Abstract
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named **PCB-Merging** (Parameter Competition Balancing), a *lightweight* and *training-free* technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods.
Poster
Aleksandr Lobanov · Alexander Gasnikov · Andrey Krasnov

[ West Ballroom A-D ]

Abstract
Frequently, the burgeoning field of black-box optimization encounters challenges due to a limited understanding of the mechanisms of the objective function. To address such problems, in this work we focus on the deterministic concept of Order Oracle, which only utilizes order access between function values (possibly with some bounded noise), but without assuming access to their values. As theoretical results, we propose a new approach to create non-accelerated optimization algorithms (obtained by integrating Order Oracle into existing optimization “tools”) in non-convex, convex, and strongly convex settings that are as good as both SOTA coordinate algorithms with first-order oracle and SOTA algorithms with Order Oracle up to logarithm factor. Moreover, using the proposed approach, _we provide the first accelerated optimization algorithm using the Order Oracle_. And also, using an already different approach we provide the asymptotic convergence of _the first algorithm with the stochastic Order Oracle concept_. Finally, our theoretical results demonstrate effectiveness of proposed algorithms through numerical experiments.
Poster
Disha Makhija · Joydeep Ghosh · Nhat Ho

[ West Ballroom A-D ]

Abstract
Federated learning (FL), through its privacy-preserving collaborative learning approach, has significantly empowered decentralized devices. However, constraints in either data and/or computational resources among participating clients introduce several challenges in learning, including the inability to train large model architectures, heightened risks of overfitting, and more. In this work, we present a novel FL framework grounded in Bayesian learning to address these challenges. Our approach involves training personalized Bayesian models at each client tailored to the unique complexities of the clients' datasets and efficiently collaborating across these clients. By leveraging Bayesian neural networks and their uncertainty quantification capabilities, our local training procedure robustly learns from small datasets. And the novel collaboration procedure utilizing priors in the functional (output) space of the networks facilitates collaboration across models of varying sizes, enabling the framework to adapt well in heterogeneous data and computational settings. Furthermore, we present a differentially private version of the algorithm, accompanied by formal differential privacy guarantees that apply without any assumptions on the learning algorithm. Through experiments on popular FL datasets, we demonstrate that our approach outperforms strong baselines in both homogeneous and heterogeneous settings, and under strict privacy constraints.
Poster
Chao Wang · Xin HE · Yuwen Wang · Junhui Wang

[ West Ballroom A-D ]

Abstract
This paper investigates the impact of alignment between the target function of interest and the kernel matrix on a variety of kernel-based methods based on a general loss belonging to a rich loss function family, which covers many commonly used methods in regression and classification problems. We consider the truncated kernel-based method (TKM) which is estimated within a reduced function space constructed by using the spectral truncation of the kernel matrix and compare its theoretical behavior to that of the standard kernel-based method (KM) under various settings. By using the kernel complexity function that quantifies the complexity of the induced function space, we derive the upper bounds for both TKM and KM, and further reveal their dependencies on the degree of target-kernel alignment. Specifically, for the alignment with polynomial decay, the established results indicate that under the just-aligned and weakly-aligned regimes, TKM and KM share the same learning rate. Yet, under the strongly-aligned regime, KM suffers the saturation effect, while TKM can be continuously improved as the alignment becomes stronger. This further implies that TKM has a strong ability to capture the strong alignment and provide a theoretically guaranteed solution to eliminate the phenomena of saturation effect. The minimax lower …
Poster
Jie Yang · Wang ZENG · Sheng Jin · Lumin Xu · Wentao Liu · Chen Qian · Ruimao Zhang

[ West Ballroom A-D ]

Abstract
Recent advancements in Multimodal Large Language Models (MLLMs) have greatly improved their abilities in image understanding. However, these models often struggle with grasping pixel-level semantic details, e.g., the keypoints of an object. To bridge this gap, we introduce the novel challenge of Semantic Keypoint Comprehension, which aims to comprehend keypoints across different task scenarios, including keypoint semantic understanding, visual prompt-based keypoint detection, and textual prompt-based keypoint detection. Moreover, we introduce KptLLM, a unified multimodal model that utilizes an identify-then-detect strategy to effectively address these challenges. KptLLM underscores the initial discernment of semantics in keypoints, followed by the precise determination of their positions through a chain-of-thought process. With several carefully designed modules, KptLLM adeptly handles various modality inputs, facilitating the interpretation of both semantic contents and keypoint locations. Our extensive experiments demonstrate KptLLM's superiority in various keypoint detection benchmarks and its unique semantic capabilities in interpreting keypoints.
Poster
Zhenhui Ye · Tianyun Zhong · Yi Ren · Ziyue Jiang · Jiawei Huang · Rongjie Huang · Jinglin Liu · Jinzheng He · Chen Zhang · Zehan Wang · Xize Cheng · Xiang Yin · Zhou Zhao

[ West Ballroom A-D ]

Abstract
Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos. Personalized TFG is a variant that emphasizes the perceptual identity similarity of the synthesized result (from the perspective of appearance and talking style). While previous works typically solve this problem by learning an individual neural radiance field (NeRF) for each identity to implicitly store its static and dynamic information, we find it inefficient and non-generalized due to the per-identity-per-training framework and the limited training data. To this end, we propose MimicTalk, the first attempt that exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG. To be specific, (1) we first come up with a person-agnostic 3D TFG model as the base model and propose to adapt it into a specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to help the model learn the personalized static appearance and facial dynamic features; (3) To generate the facial motion of the personalized talking style, we propose an in-context stylized audio-to-motion model that mimics the implicit talking style provided in the reference video without information loss by an explicit style representation. The adaptation process to an unseen …
Poster
Jiashun Liu · Jianye Hao · Xiaotian Hao · Yi Ma · YAN ZHENG · Yujing Hu · Tangjie Lv

[ West Ballroom A-D ]

Abstract
Intermittent control problems are common in real world. The interactions between the decision maker and the executor can be discontinuous (intermittent) due to various types of interruptions, e.g. unstable communication channel. Due to intermittent interaction, agents are unable to acquire the state sent by the executor and cannot transmit actions to the executor within a period of time step, i.e. bidirectional blockage, which may lead to inefficiencies of reinforcement learning policies and prevent the executors from completing the task. Such problem is not well studied in the RL community. In this paper, we model Intermittent control problem as an Intermittent Control Markov Decision Process, i.e agents are expected to generate action sequences corresponding to the unavailable states and transmit them before disabling interactions to ensure the smooth and effective motion of executors. However, directly generating multiple future actions in the original action space has unnatural motion issue and exploration difficulty. We propose **M**ulti-step **A**ction **R**epre**S**entation (**MARS**), which encodes a sequence of actions from the original action space to a compact and decodable latent space. Then based on the latent action sequence representation, the mainstream RL methods can be easily optimized to learn a smooth and efficient motion policy. Extensive experiments …
Poster
Masatoshi Uehara · Yulai Zhao · Ehsan Hajiramezanali · Gabriele Scalia · Gokcen Eraslan · Avantika Lal · Sergey Levine · Tommaso Biancalani

[ West Ballroom A-D ]

Abstract
AI-driven design problems, such as DNA/protein sequence design, are commonly tackled from two angles: generative modeling, which efficiently captures the feasible design space (e.g., natural images or biological sequences), and model-based optimization, which utilizes reward models for extrapolation. To combine the strengths of both approaches, we adopt a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL. Although prior work has explored similar avenues, they primarily focus on scenarios where accurate reward models are accessible. In contrast, we concentrate on an offline setting where a reward model is unknown, and we must learn from static offline datasets, a common scenario in scientific domains. In offline scenarios, existing approaches tend to suffer from overoptimization, as they may be misled by the reward model in out-of-distribution regions. To address this, we introduce a conservative fine-tuning approach, BRAID, by optimizing a conservative reward model, which includes additional penalization outside of offline data distributions. Through empirical and theoretical analysis, we demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models while avoiding the generation of invalid designs through pre-trained diffusion models.
Poster
Haian Jin · Yuan Li · Fujun Luan · Yuanbo Xiangli · Sai Bi · Kai Zhang · Zexiang Xu · Jin Sun · Noah Snavely

[ West Ballroom A-D ]

Abstract
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as …
Poster
JIAMIAN WANG · Zongliang Wu · Yulun Zhang · Xin Yuan · Tao Lin · Zhiqiang Tao

[ West Ballroom A-D ]

Abstract
Existing reconstruction models in snapshot compressive imaging systems (SCI) are trained with a single well-calibrated hardware instance, making their perfor- mance vulnerable to hardware shifts and limited in adapting to multiple hardware configurations. To facilitate cross-hardware learning, previous efforts attempt to directly collect multi-hardware data and perform centralized training, which is impractical due to severe user data privacy concerns and hardware heterogeneity across different platforms/institutions. In this study, we explicitly consider data privacy and heterogeneity in cooperatively optimizing SCI systems by proposing a Federated Hardware-Prompt learning (FedHP) framework. Rather than mitigating the client drift by rectifying the gradients, which only takes effect on the learning manifold but fails to solve the heterogeneity rooted in the input data space, FedHP learns a hardware-conditioned prompter to align inconsistent data distribution across clients, serving as an indicator of the data inconsistency among different hardware (e.g., coded apertures). Extensive experimental results demonstrate that the proposed FedHP coordinates the pre-trained model to multiple hardware con- figurations, outperforming prevalent FL frameworks for 0.35dB under challenging heterogeneous settings. Moreover, a Snapshot Spectral Heterogeneous Dataset has been built upon multiple practical SCI systems. Data and code are aveilable at https://github.com/Jiamian-Wang/FedHP-Snapshot-Compressive-Imaging.git

Town Hall / Business Meeting Fri 13 Dec 07:00 p.m.  

Business meeting to address community questions. Not live streamed.


Closing Reception Fri 13 Dec 08:00 p.m.