Skip to yearly menu bar Skip to main content


Poster

FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions

Anuroop Sriram · Benjamin K Miller · Ricky T. Q. Chen · Brandon Wood

East Exhibit Hall A-C #2409
[ ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: Material discovery is a critical area of research with the potential to revolutionize various fields, including carbon capture, renewable energy, and electronics. However, the immense scale of the chemical space makes it challenging to explore all possible materials experimentally. In this paper, we introduce FlowLLM, a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials. FlowLLM first fine-tunes an LLM to learn an effective base distribution of meta-stable crystals in a text representation. After converting to a graph representation, the RFM model takes samples from the LLM and iteratively refines the coordinates and lattice parameters. Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by $\sim50$% – a huge improvement on a difficult problem. Additionally, the crystals generated by FlowLLM are much closer to their relaxed state when compared with another leading model, significantly reducing post-hoc computational cost.

Live content is unavailable. Log in and register to view live content