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Generative Modeling for Material Discovery

▶ Discovering new, stable materials is a key challenge in material
science.

▶ Prior generative methods used denoising methods (diffusion,
flow matching), or large language models (LLMs), which have
complementary strengths.

▶ LLMs excel at generating discrete variables (atom types).
▶ Denoising methods excel at continue values.

▶ Question: How do we get the best of both worlds?

▶ We introduce FlowLLM, a simple yet effective method to
combine LLMs and Riemannian Flow Matching (RFM).
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Crystal Representation

A crystals with n ∈ N atoms can be represented
as: c := (a, f , l ) ∈ C, consisting of:

▶ Lattice, l , defined using three side lengths
(a, b, c) ∈ R+ in Å, and three internal
angles (α, β, γ) ∈ [60◦, 120◦].

▶ Atom types are categorical vectors:
a :=

[
a1, . . . , an

]
, where ai ∈ A.

▶ Atom positions represented using
fractional coordinates on a flat torus:
f :=

[
f 1, . . . , f n

]
, f i ∈ F = T3. The

positions “wrap around” the unit cell.



FlowLLM Model

FlowLLM generates materials via
a two step process – it first sam-
ples an initial, noisy sample from
an LLM, followed by an iterative
refinement process using an RFM
model:

c0 ∼ pLLM(c ; θ0), (1)

c1 ∼ pRFM(c |c0; θ1) (2)

The LLM serves as the learned
prior distribution for the RFM.



Large Language Model for Base Distribution

To train the LLM part of the
model, we represent crystals using
a text representation, and fine-tune
a LLAMA-2 model on this.

This closely follows Crystal-LLM1.

1 Gruver et al.“Fine-Tuned Language Models Generate Stable Inorganic Materials as
Text”, ICLR 2024



Denoising with Riemannian Flow Matching

The output of the LLM is refined using Riemmannian Flow Matching
with a suitable product manifold to represent crystals following
FlowMM2.

▶ Atom positions are represented on a flat torus, and lattice
parameters in euclidean space. Atom types are kept fixed.

▶ We use an equivariant GNN for the velocity function.

1 Miller et al.“FlowMM: Generating Materials with Riemannian Flow Matching”, ICML
2024



FlowLLM Model Training

We train the our model in 3 steps:

1. The LLM is first trained independently to generate a text
representation of the material, with suitable prompting by
fine-tuning a 70B parameter LLaMA-2 model.

2. Next, we create a paired dataset of {(c0, c1)} samples, where
each base distribution sample, c0 is sample from the LLM with
a prompt conditioned on the chemical formula of the
corresponding target sample, c1.

3. Finally, the RFM is trained using a flow matching objective on
this paired distribution.



Experiments

▶ We train our models on the MP-20 dataset (∼ 40K materials).

▶ Key Metrics are Stability Rate (percentage of generated
structures that are stable) and SUN rate (percentage that are
stable, unique and nove).

Method Type Stability Rate(%)↑ SUN Rate(%) ↑

CDVAE Diffusion 1.57 –
DiffCSP Diffusion 5.06 3.34
FlowMM Flow Matching 4.65 2.34

CrystalLLM (70B) LLM 5.28 –

FlowLLM(Ours)
τ = 1.0, P = 0.9 LLM + Flow Matching 10.07 4.89
τ = 0.7, P = 1.0 LLM + Flow Matching 13.03 4.88
τ = 0.7, P = 0.9 LLM + Flow Matching 17.82 4.92

FlowLLM significantly outperforms prior methods!



Thank you

Check out our poster, paper, and code!

Paper Code


