FlowLLM: Flow Matching for Material Generation with LLMs as Base Distributions

Anuroop Sriram, Benjamin Kurt Miller, Ricky T. Q. Chen, Brandon M. Wood

November 15, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generative Modeling for Material Discovery

- Discovering new, stable materials is a key challenge in material science.
- Prior generative methods used denoising methods (diffusion, flow matching), or large language models (LLMs), which have complementary strengths.
 - LLMs excel at generating discrete variables (atom types).
 Denoising methods excel at continue values.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question: How do we get the best of both worlds?

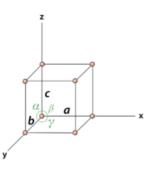
Generative Modeling for Material Discovery

- Discovering new, stable materials is a key challenge in material science.
- Prior generative methods used denoising methods (diffusion, flow matching), or large language models (LLMs), which have complementary strengths.
 - LLMs excel at generating discrete variables (atom types).
 Denoising methods excel at continue values.
- Question: How do we get the best of both worlds?
 - We introduce FlowLLM, a simple yet effective method to combine LLMs and Riemannian Flow Matching (RFM).

Crystal Representation

A crystals with $n \in \mathbb{N}$ atoms can be represented as: $\boldsymbol{c} := (\boldsymbol{a}, \boldsymbol{f}, \boldsymbol{l}) \in C$, consisting of:

- Lattice, *I*, defined using three side lengths (a, b, c) ∈ ℝ⁺ in Å, and three internal angles (α, β, γ) ∈ [60°, 120°].
- Atom types are categorical vectors: $\boldsymbol{a} := [a^1, \dots, a^n]$, where $a^i \in \mathcal{A}$.
- Atom positions represented using fractional coordinates on a flat torus:
 f := [f¹,..., fⁿ], fⁱ ∈ F = T³. The positions "wrap around" the unit cell.



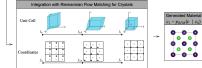
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

FlowLLM Model

FlowLLM generates materials via a two step process – it first samples an initial, noisy sample from an LLM, followed by an iterative refinement process using an RFM model:

Unconditional

$$egin{aligned} oldsymbol{c}_0 &\sim p_{\mathsf{LLM}}(oldsymbol{c}; heta_0), & (1) \ oldsymbol{c}_1 &\sim p_{\mathsf{RFM}}(oldsymbol{c}|oldsymbol{c}_0; heta_1) & (2) \end{aligned}$$



Noisy Material

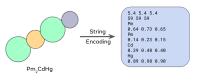
(日) (四) (日) (日) (日)

The LLM serves as the learned prior distribution for the RFM.

Large Language Model for Base Distribution

To train the LLM part of the model, we represent crystals using a text representation, and fine-tune a LLAMA-2 model on this.

This closely follows Crystal-LLM¹.



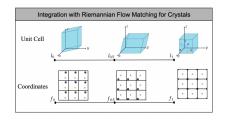
 ¹ Gruver et al. "Fine-Tuned Language Models Generate Stable Inorganic Materials as Text", ICLR 2024

 ←□ → ←∂ → ←≧ → ←≧ → ↓ ≥ →

Denoising with Riemannian Flow Matching

The output of the LLM is refined using Riemmannian Flow Matching with a suitable product manifold to represent crystals following $FlowMM^2$.

- Atom positions are represented on a flat torus, and lattice parameters in euclidean space. Atom types are kept fixed.
- ▶ We use an equivariant GNN for the velocity function.



 ¹ Miller et al. "FlowMM: Generating Materials with Riemannian Flow Matching", ICML

 2024

 <□> < ♂> < ≥> < ≥> < ≥</td>

FlowLLM Model Training

We train the our model in 3 steps:

- 1. The LLM is first trained independently to generate a text representation of the material, with suitable prompting by fine-tuning a 70B parameter LLaMA-2 model.
- Next, we create a paired dataset of {(c₀, c₁)} samples, where each base distribution sample, c₀ is sample from the LLM with a prompt conditioned on the chemical formula of the corresponding target sample, c₁.
- 3. Finally, the RFM is trained using a flow matching objective on this paired distribution.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experiments

- We train our models on the MP-20 dataset ($\sim 40K$ materials).
- Key Metrics are Stability Rate (percentage of generated structures that are stable) and SUN rate (percentage that are stable, unique and nove).

Method	Туре	Stability Rate(%)↑	SUN Rate(%) ↑
CDVAE DiffCSP FlowMM CrystalLLM (70B)	Diffusion Diffusion Flow Matching LLM	1.57 5.06 4.65 5.28	_ 3.34 2.34 _
FlowLLM(Ours) $\tau = 1.0, P = 0.9$ $\tau = 0.7, P = 1.0$ $\tau = 0.7, P = 0.9$	LLM + Flow Matching LLM + Flow Matching LLM + Flow Matching	10.07 13.03 17.82	4.89 4.88 4.92

FlowLLM significantly outperforms prior methods!

Check out our poster, paper, and code!

