Skip to yearly menu bar Skip to main content


Poster

Revisiting Few-Shot Object Detection with Vision-Language Models

Anish Madan · Neehar Peri · Shu Kong · Deva Ramanan

East Exhibit Hall A-C #3407
[ ] [ Project Page ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

The era of vision-language models (VLMs) trained on large web-scale datasets challenges conventional formulations of “open-world" perception. In this work, we revisit the task of few-shot object detection (FSOD) in the context of recent foundational VLMs. First, we point out that zero-shot VLMs such as GroundingDINO significantly outperform state-of-the-art few-shot detectors (48 vs. 33 AP) on COCO. Despite their strong zero-shot performance, such foundational models may still be sub-optimal. For example, trucks on the web may be defined differently from trucks for a target application such as autonomous vehicle perception. We argue that the task of few-shot recognition can be reformulated as aligning foundation models to target concepts using a few examples. Interestingly, such examples can be multi-modal, using both text and visual cues, mimicking instructions that are often given to human annotators when defining a target concept of interest. Concretely, we propose Foundational FSOD, a new benchmark protocol that evaluates detectors pre-trained on any external datasets and fine-tuned on multi-modal (text and visual) K-shot examples per target class. We repurpose nuImages for Foundational FSOD, benchmark several popular open-source VLMs, and provide an empirical analysis of state-of-the-art methods. Lastly, we discuss our recent CVPR 2024 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 23.9 mAP!

Live content is unavailable. Log in and register to view live content