

Revisiting Few Shot Object Detection with Vision-Language Models

Anish Madan

Neehar Peri

Shu Kong

Deva Ramanan

Remarkable Zero Shot Open-Vocab Detection Performance

Zero-Shot Foundational Models are all we need?

Running an Open-Vocabulary Detector (GLIP) on AV Data

Zero-Shot Foundational Models are all we need? Not Quite!

Running an Open-Vocabulary Detector (GLIP) on AV Data

Off-the-shelf VLM predictions don't match the ground-truth annotations!

Zero-Shot Foundational Models are all we need? Not Quite!

Running an Open-Vocabulary Detector (GLIP) on AV Data

Off-the-shelf VLM predictions don't match the ground-truth annotations! Why does this concept gap exist?

NuImages Labelling Instructions ...

Bicycle

- Human or electric powered 2-wheeled vehicle designed to travel at lower speeds either on road surface, sidewalks or bicycle paths.
 - $\,\circ\,$ If there is a rider, include the rider in the box
 - $\circ\,$ If there is a passenger, include the passenger in the box
 - If there is a pedestrian standing next to the bicycle, do NOT include in the annotation

... differs from Waymo's Labelling Instructions

Cyclist Labeling Specifications

What is labeled

- A cyclist bounding box is created if an object can be recognized as a cyclist, from either lidar data or camera images.
- Bicycles that are parked or do not have a rider are not labeled.
- When a pedestrian is getting onto a bicycle, they are labeled as pedestrian until they are about to get onto the bicycle, and labeled as cyclist after the rider gets into the riding position. Similarly, when a pedestrian is getting off of a bicycle, they are labeled as cyclist while the rider is in the riding position, and labeled as pedestrian once they start getting off the bicycle.
- Bounding boxes are created for:
 - $\circ\,$ a child riding a bicycle, tricycle or toy with wheels
 - unicycles, tricycles, and recumbent bicycles
 - large, multi-seat cyclists

Labelling Instructions are key multi-modal cues

Debris

• Debris or movable object that is left **on the driveable surface** that is too large to be driven over safely, e.g tree branch, full trash bag etc.

Pushable Pullable Object

 Objects that a pedestrian may push or pull. For example dolleys, wheel barrows, garbage-bins with wheels, or shopping carts. Typically not designed to carry humans.

Human Annotators Need Multi-Modal Concept Alignment too!

Visual Examples

Barrier

- → Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular, includes barriers used at construction zones.
- → If there are multiple barriers either connected or just placed next to each other, they should be annotated separately.
- \rightarrow If barriers are installed permanently, then do **NOT** include them.

Human Annotators Need Multi-Modal Concept Alignment too!

Barrier

Rich

Text

- → Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular, includes barriers used at construction zones.
- → If there are multiple barriers either connected or just placed next to each other, they should be annotated separately.
- \rightarrow If barriers are installed permanently, then do **NOT** include them.

Human Annotators Need Multi-Modal Concept Alignment too!

Barrier

- → Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular, includes barriers used at construction zones.
- → If there are multiple barriers either connected or just placed next to each other, they should be annotated separately.
- → If barriers are installed permanently, then do **NOT** include them.

Negatives

Negatives

Can we **Align** Foundation Models like Human Annotators?

Barrier

- → Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular, includes barriers used at construction zones.
- → If there are multiple barriers either connected or just placed next to each other, they should be annotated separately.
- \rightarrow If barriers are installed permanently, then do **NOT** include them.

Can we **Align** Foundation Models like Human Annotators?

Barrier

- → Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular, includes barriers used at construction zones.
- → If there are multiple barriers either connected or just placed next to each other, they should be annotated separately.
- \rightarrow If barriers are installed permanently, then do **NOT** include them.

Yes! By adapting to few multi-modal examples via fine-tuning, prompt tuning, in-context learning

<u>No Base vs. Novel Splits:</u> VLMs like CLIP are trained on private datasets, so we can't define novel

<u>No Base vs. Novel Splits:</u> VLMs like CLIP are trained on private datasets, so we can't define novel

<u>Concept Leakage:</u> Foundation models have been trained on diverse data, so they have seen car, cat, and person (considered novel in COCO)

<u>No Base vs. Novel Splits:</u> VLMs like CLIP are trained on private datasets, so we can't define novel

<u>Concept Leakage:</u> Foundation models have been trained on diverse data, so they have seen car, cat, and person (considered novel in COCO)

<u>Role of Language</u>: Existing setup ignores language cues

Zero-Shot VLMs beat SOTA FSOD Methods

We should embrace

- web-scale pre-training
- concept-leakage by re-framing base vs. novel

We should embrace

- web-scale pre-training
- > concept-leakage by re-framing base vs. novel
- Ianguage cues as additional signal

Foundational FSOD Benchmark

We should embrace

- web-scale pre-training
- concept-leakage by re-framing base vs. novel
- Ianguage cues as additional signal

Repurposing nulmages for Foundational FSOD

2D AV dataset (not typically used for FSOD) with challenging openworld categories like pushable-pullable and debris

Repurposing nulmages for Foundational FSOD

- 2D AV dataset (not typically used for FSOD) with challenging openworld categories like pushable-pullable and debris
- Contains publicly available multi-modal annotator instructions

Evaluation Metric: Mean Average Precision

Confidence	Correct?	Precision	Recall	
0.9		1.0	0.33	
0.7	×	0.5	0.33	
0.5		0.67	0.67	
0.3	×	0.5	0.67	
0.2	×	0.4	0.67	

- COCO-style evaluation for **18 classes**
- > Classes are grouped by frequency: Many, Medium and Few

10-shot Foundational FSOD

Approach	Backbone	Pre-Train Data		Average Precision (AP)			
Approach			All	Many	Med	Few	
Zero-Shot Detection							
Detic [61]	SWIN-B	LVIS, COCO, IN-21K	14.40	25.83	16.59	2.32	
GLIP [29]	SWIN-L	FourODs,GoldG,Cap24M	17.01	23.36	19.86	8.40	
MQ-GLIP-Text 53	SWIN-L	Objects365, FourODs, GoldG, Cap24M	17.01	23.36	19.85	8.41	
Prompt Engineering							
Detic [61]	SWIN-B	LVIS, COCO, IN-21K	14.92	26.48	17.29	2.53	
GLIP [29]	SWIN-L	FourODs, GoldG, Cap24M	17.15	23.82	19.36	9.02	
Standard Fine-Tuning							
RegionCLIP [58]	RN50	CC3M	3.86	6.08	5.13	0.54	
Detic [61]	SWIN-B	LVIS, COCO, IN-21K	16.09	25.46	20	3.73	
Federated Fine-Tuning (Ours)							
Detic [61]	SWIN-B	LVIS, COCO, IN-21K	17.24	28.07	20.71	4.18	
Detic [61] w/ Prompt Engineering	SWIN-B	LVIS, COCO, IN-21K	17.71	28.46	21.14	4.75	
Language Prompt Tuning							
GLIP [29]	SWIN-L	FourODs,GoldG,Cap24M	19.41	22.18	25.16	10.39	
Visual Prompting							
MQ-GLIP-Image [53]	SWIN-L	Objects365,FourODs,GoldG,Cap24M	14.07	24.39	15.89	3.34	
Multi-Modal Prompting							
MQ-GLIP [53]	SWIN-L	Objects365,FourODs,GoldG,Cap24M	21.42	32.19	23.29	10.26	
Multi-Modal Chat Assistants							
GPT-40 Zero-Shot Classification [1]	Private	Private	9.95	16.81	12.11	1.71	
Iterative Prompting: MQ-GLIP	Private	Private	22.03	33.42	24.72	9.41	

1st CVPR Foundational FSOD Challenge

Foundational Few-Shot Object Detection Challenge 🖉 💼

Organized by: foundational_fsod Published ③ Starts on: Apr 10, 2024 8:00:00 PM EST (GMT - 5:00) Ends on: Jun 7, 2099 7:59:59 PM EST (GMT - 5:00)

Challenge Results presented at the **Visual Perception via Learning in an Open World Workshop,** CVPR 2024

Foundational FSOD Challenge: Setup

➤ 10-shot nulmages split

 \geq 2-month timeline for submissions

Constraint: Can pre-train/fine-tune on anything except nulmages and

nuScenes

Foundational FSOD Challenge: Results

8 Teams

50+ Submissions

Foundational FSOD Challenge: Results

50+ Submissions

Realthono Average	Approach		Average Precision (AP)			
All Many			Few			
	ılti-Modal Prompting					
SWIN-L 21.42 32.19	/IQ-GLIP	32.19 23.29) 10.26			
n Results	PR 2024 Competition					
Private 45.35 64.2	PHP_hhh	64.25 53.4	3 20.19			
SWIN-L 32.56 50.21	IJUST KMG	50.21 34.8'	7 15.16			
SWIN-L 31.57 46.59	jyd_cxy_vision	46.59 33.32	2 17.03			
SWIN-L 21.42 32.19 n Results Private 45.35 64.29 SWIN-L 32.56 50.21 SWIN-L 31.57 46.59	Alti-Modal Prompting AQ-GLIP PR 2024 Competition PHP_hhh NJUST KMG jyd_cxy_vision	32.19 23.29 64.25 53.4 50.21 34.8' 46.59 33.3') 1(3 2(7 1; 2 1'			

Leaderboard

Foundational FSOD Challenge: Results

50+ Submissions

Approach	Backbone	Average Precision (AP)			
Approach		All	Many	Med	Few
Multi-Modal Prompting					
MQ-GLIP	SWIN-L	21.42	32.19	23.29	10.26
CVPR 2024 Competition Results					
PHP_hhh	Private	45.35	64.25	53.43	20.19
NJUST KMG	SWIN-L	32.56	50.21	34.87	15.16
zjyd_cxy_vision	SWIN-L	31.57	46.59	33.32	17.03

Leaderboard

Top submission outperforms our best baseline by over **2x**!

Project Page

