Skip to yearly menu bar Skip to main content


Oral Poster

You Only Cache Once: Decoder-Decoder Architectures for Language Models

Yutao Sun · Li Dong · Yi Zhu · Shaohan Huang · Wenhui Wang · Shuming Ma · Quanlu Zhang · Jianyong Wang · Furu Wei

East Exhibit Hall A-C #1902
[ ] [ Project Page ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST
 
Oral presentation: Oral Session 6D: Deep Learning Architecture, Infrastructure
Fri 13 Dec 3:30 p.m. PST — 4:30 p.m. PST

Abstract:

We introduce a decoder-decoder architecture, YOCO, for large language models, which only caches key-value pairs once. It consists of two components, i.e., a cross-decoder stacked upon a self-decoder. The self-decoder efficiently encodes global key-value (KV) caches that are reused by the cross-decoder via cross-attention. The overall model behaves like a decoder-only Transformer, although YOCO only caches once. The design substantially reduces GPU memory demands, yet retains global attention capability. Additionally, the computation flow enables prefilling to early exit without changing the final output, thereby significantly speeding up the prefill stage. Experimental results demonstrate that YOCO achieves favorable performance compared to Transformer in various settings of scaling up model size and number of training tokens. We also extend YOCO to 1M context length with near-perfect needle retrieval accuracy. The profiling results show that YOCO improves inference memory, prefill latency, and throughput by orders of magnitude across context lengths and model sizes.

Live content is unavailable. Log in and register to view live content