Skip to yearly menu bar Skip to main content


Poster

Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals

Hui Zheng · Haiteng Wang · Weibang Jiang · Zhongtao Chen · Li He · Peiyang Lin · Penghu Wei · Guoguang Zhao · Yunzhe Liu

East Exhibit Hall A-C #3901
[ ] [ Project Page ]
Fri 13 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Invasive brain-computer interfaces have garnered significant attention due to their high performance. The current intracranial stereoElectroEncephaloGraphy (sEEG) foundation models typically build univariate representations based on a single channel. Some of them further use Transformer to model the relationship among channels. However, due to the locality and specificity of brain computation, their performance on more difficult tasks, e.g., speech decoding, which demands intricate processing in specific brain regions, is yet to be fully investigated. We hypothesize that building multi-variate representations within certain brain regions can better capture the specific neural processing. To explore this hypothesis, we collect a well-annotated Chinese word-reading sEEG dataset, targeting language-related brain networks, over 12 subjects. Leveraging this benchmark dataset, we developed the Du-IN model that can extract contextual embeddings from specific brain regions through discrete codebook-guided mask modeling. Our model achieves SOTA performance on the downstream 61-word classification task, surpassing all baseline models. Model comparison and ablation analysis reveal that our design choices, including (i) multi-variate representation by fusing channels in vSMC and STG regions and (ii) self-supervision by discrete codebook-guided mask modeling, significantly contribute to these performances. Collectively, our approach, inspired by neuroscience findings, capitalizing on multi-variate neural representation from specific brain regions, is suitable for invasive brain modeling. It marks a promising neuro-inspired AI approach in BCI.

Live content is unavailable. Log in and register to view live content