Skip to yearly menu bar Skip to main content


Spotlight Poster

Croissant: A Metadata Format for ML-Ready Datasets

Mubashara Akhtar · Omar Benjelloun · Costanza Conforti · Luca Foschini · Joan Giner-Miguelez · Pieter Gijsbers · Sujata Goswami · Nitisha Jain · Michalis Karamousadakis · Michael Kuchnik · Satyapriya Krishna · Sylvain Lesage · Quentin Lhoest · Pierre Marcenac · Manil Maskey · Peter Mattson · Luis Oala · Hamidah Oderinwale · Pierre Ruyssen · Tim Santos · Rajat Shinde · Elena Simperl · Arjun Suresh · Goeffry Thomas · Slava Tykhonov · Joaquin Vanschoren · Susheel Varma · Jos van der Velde · Steffen Vogler · Carole-Jean Wu · Luyao Zhang

West Ballroom A-D #5706
[ ] [ Project Page ]
Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Data is a critical resource for Machine Learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms.Croissant makes datasets more discoverable, portable, and interoperable, thereby addressing significant challenges in ML data management and responsible AI. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, enabling easy loading without changes into the most commonly-used ML frameworks, regardless of where the data is stored. Our initial evaluation shows that Croissant metadata is deemed readable, understandable, complete, yet concise by human raters.

Live content is unavailable. Log in and register to view live content