Skip to yearly menu bar Skip to main content


(207 events)   Timezone:  
Show all
Toggle Poster Visibility
Sat Dec 03 05:50 AM -- 06:00 AM (PST) None
Opening remarks
Sat Dec 03 06:00 AM -- 06:30 AM (PST) None
Invited talk: David Pfau, "Deep Learning and Ab-Initio Quantum Chemistry and Materials"
David Pfau · Siddharth Mishra-Sharma
Sat Dec 03 06:30 AM -- 06:45 AM (PST) None
Contributed talk: Kieran Murphy, "Characterizing information loss in a chaotic double pendulum with the Information Bottleneck"
Kieran Murphy · Siddharth Mishra-Sharma
Sat Dec 03 06:45 AM -- 07:15 AM (PST) None
Invited talk: Hiranya Peiris, "Prospects for understanding the physics of the Universe"
Hiranya Peiris · Siddharth Mishra-Sharma
Sat Dec 03 07:15 AM -- 07:30 AM (PST) None
Contributed talk: Marco Aversa, "Physical Data Models in Machine Learning Imaging Pipelines"
Marco Aversa · Siddharth Mishra-Sharma
Sat Dec 03 07:30 AM -- 08:00 AM (PST) None
Invited Talk: Giorgio Parisi
Sat Dec 03 08:00 AM -- 09:00 AM (PST) None
Poster session 1 and break
Sat Dec 03 09:00 AM -- 10:00 AM (PST) None
Panel: Kathleen Creel, Mario Krenn, and Emily Sullivan, "Philosophy of Science in the AI Era"
Sat Dec 03 10:00 AM -- 11:15 AM (PST) None
Lunch
Sat Dec 03 11:15 AM -- 11:45 AM (PST) None
Invited talk: E. Doğuş Çubuk, "Scaling up material discovery via deep learning"
Ekin Dogus Cubuk · Siddharth Mishra-Sharma
Sat Dec 03 11:45 AM -- 12:15 PM (PST) None
Invited talk: Vinicius Mikuni, "Collider Physics Innovations Powered by Machine Learning"
Vinicius Mikuni · Siddharth Mishra-Sharma
Sat Dec 03 12:15 PM -- 12:30 PM (PST) None
Contributed talk: Aurélien Dersy, "Simplifying Polylogarithms with Machine Learning"
Aurelien Dersy · Siddharth Mishra-Sharma
Sat Dec 03 12:30 PM -- 01:00 PM (PST) None
Invited talk: Federico Felici, "Magnetic control of tokamak plasmas through Deep Reinforcement Learning"
Federico Felici · Siddharth Mishra-Sharma
Sat Dec 03 01:00 PM -- 01:15 PM (PST) None
Contributed talk: Alexandre Adam, "Posterior samples of source galaxies in strong gravitational lenses with score-based priors"
Alexandre Adam · Siddharth Mishra-Sharma
Sat Dec 03 01:15 PM -- 01:30 PM (PST) None
Break
Sat Dec 03 01:30 PM -- 02:00 PM (PST) None
Invited talk: Catherine Nakalembe and Hannah Kerner
Catherine Nakalembe · Hannah Kerner · Siddharth Mishra-Sharma
Sat Dec 03 02:00 PM -- 02:05 PM (PST) None
Closing remarks
Sat Dec 03 02:05 PM -- 03:00 PM (PST) None
Poster session 2
None
Molecular Fingerprints for Robust and Efficient ML-Driven Molecular Generation
Ruslan Tazhigulov · Joshua Schiller · Jacob Oppenheim · Max Winston
[ Poster
None
Machine Learning for Chemical Reactions \\A Dance of Datasets and Models
Mathias Schreiner · Arghya Bhowmik · Tejs Vegge · Jonas Busk · Peter Bjørn Jørgensen · Ole Winther
[ Poster
None
A New Task: Deriving Semantic Class Targets for the Physical Sciences
Micah Bowles
[ Poster
None
Training physical networks like neural networks: deep physical neural networks
Logan Wright · Tatsuhiro Onodera · Martin M Stein · Tianyu Wang · Darren Schachter · Zoey Hu · Peter McMahon
[ Poster
None
A Curriculum-Training-Based Strategy for Distributing Collocation Points during Physics-Informed Neural Network Training
Marcus Münzer · Christopher Bard
[ Slides [ Poster
None
Learning latent variable evolution for the functional renormalization group
Matija Medvidović · Alessandro Toschi · Giorgio Sangiovanni · Cesare Franchini · Andy Millis · Anirvan Sengupta · Domenico Di Sante
[ Poster
None
Deformations of Boltzmann Distributions
Bálint Máté · François Fleuret
[ Poster
None
Generating astronomical spectra from photometry with conditional diffusion models
Lars Doorenbos · Stefano Cavuoti · Giuseppe Longo · Massimo Brescia · Raphael Sznitman · Pablo Márquez Neila
[ Poster
None
Identifying AGN host galaxies with convolutional neural networks
Ziting Guo · John Wu · Chelsea Sharon
[ Poster
None
Efficiently Moving Instead of Reweighting Collider Events with Machine Learning
Radha Mastandrea · Benjamin Nachman
[ Poster
None
D-optimal neural exploration of nonlinear physical systems
Matthieu Blanke · marc lelarge
[ Poster
None
NLP Inspired Training Mechanics For Modeling Transient Dynamics
Lalit Ghule · Rishikesh Ranade · Jay Pathak
[ Poster
None
Reducing Down(stream)time: Pretraining Molecular GNNs using Heterogeneous AI Accelerators
Jenna A Bilbrey · Kristina Herman · Henry Sprueill · Sotiris Xantheas · Payel Das · Manuel Lopez Roldan · Mike Kraus · Hatem Helal · Sutanay Choudhury
[ Poster
None
Qubit seriation: Undoing data shuffling using spectral ordering
Atithi Acharya · Manuel Rudolph · Jing Chen · Jacob Miller · Alejandro Perdemo-Ortiz
[ Poster
None
Clustering Behaviour of Physics-Informed Neural Networks: Inverse Modeling of An Idealized Ice Shelf
Yunona Iwasaki · Ching-Yao Lai
[ Poster
None
Renormalization in the neural network-quantum field theory correspondence
Harold Erbin · Vincent Lahoche · Dine Ousmane Samary
[ Poster
None
Combinational-convolution for flow-based sampling algorithm
Akio Tomiya
[ Poster
None
Stabilization and Acceleration of CFD Simulation by Controlling Relaxation Factor Based on Residues: An SNN Based Approach
Sounak Dey · Dighanchal Banerjee · Mithilesh Maurya · Dilshad Ahmad
[ Poster
None
Contrasting random and learned features in deep Bayesian linear regression
Jacob Zavatone-Veth · William Tong · Cengiz Pehlevan
[ Poster
None
DS-GPS : A Deep Statistical Graph Poisson Solver (for faster CFD simulations)
Matthieu Nastorg
[ Poster
None
Dynamical Mean Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon · Cengiz Pehlevan
[ Poster
None
Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild
[ Poster
None
A Neural Network Subgrid Model of the Early Stages of Planet Formation
Thomas Pfeil · Miles Cranmer · Shirley Ho · Philip Armitage · Tilman Birnstiel · Hubert Klahr
[ Poster
None
Validation Diagnostics for SBI algorithms based on Normalizing Flows
Julia Linhart · Alexandre Gramfort · Pedro Rodrigues
[ Poster
None
One Network to Approximate Them All: Amortized Variational Inference of Ising Ground States
Sebastian Sanokowski · Wilhelm Berghammer · Johannes Kofler · Sepp Hochreiter · Sebastian Lehner
[ Poster
None
Hybrid integration of the gravitational N-body problem with Artificial Neural Networks
Veronica Saz Ulibarrena · Simon Portegies Zwart · Elena Sellentin · Barry Koren · Philipp Horn · Maxwell X. Cai
[ Poster
None
Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems
Daniel Kelshaw · Georgios Rigas · Luca Magri
[ Poster
None
Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay-Line Detectors
Marco Knipfer · Sergei Gleyzer · Stefan Meier · Jonas Heimerl · Peter Hommelhoff
[ Poster
None
HubbardNet: Efficient Predictions of the Bose-Hubbard Model Spectrum with Deep Neural Networks
Ziyan Zhu · Marios Mattheakis · Weiwei Pan · Efthimios Kaxiras
[ Poster
None
Neural Fields for Fast and Scalable Interpolation of Geophysical Ocean Variables
Juan Emmanuel Johnson · Redouane Lguensat · ronan fablet · Emmanuel Cosme · Julien Le Sommer
[ Poster
None
Interpretable Encoding of Galaxy Spectra
Yan Liang · Peter Melchior · Sicong Lu
[ Poster
None
Neural Network Prior Mean for Particle Accelerator Injector Tuning
Connie Xu · Ryan Roussel · Auralee Edelen
[ Poster
None
A robust estimator of mutual information for deep learning interpretability
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo
[ Poster
None
Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover’s Distance
Ouail Kitouni · Mike Williams · Niklas S Nolte
[ Poster
None
Physics-Informed Convolutional Neural Networks for Corruption Removal on Dynamical Systems
Daniel Kelshaw · Luca Magri
[ Poster
None
Do graph neural networks learn jet substructure?
Farouk Mokhtar · Raghav Kansal · Javier Duarte
[ Poster
None
Thermophysical Change Detection on the Moon with the Lunar Reconnaissance Orbiter Diviner sensor
Jose Delgado-Centeno · Silvia Bucci · Ziyi Liang · Ben Gaffinet · Valentin T. Bickel · Ben Moseley · Miguel Olivares
[ Poster
None
Characterizing information loss in a chaotic double pendulum with the Information Bottleneck
Kieran Murphy · Danielle S Bassett
[ Poster
None
Detecting structured signals in radio telescope data using RKHS
Russell Tsuchida · Suk Yee Yong
[ Poster
None
Domain Adaptation for Simulation-Based Dark Matter Searches with Strong Gravitational Lensing
Pranath Reddy Kumbam · Sergei Gleyzer · Michael Toomey · Marcos Tidball
[ Poster
None
A hybrid Reduced Basis and Machine-Learning algorithm for building Surrogate Models: a first application to electromagnetism
Alejandro Ribes · Ruben Persicot · Lucas Meyer · Jean-Pierre Ducreux
None
Data-driven discovery of non-Newtonian astronomy via learning non-Euclidean Hamiltonian
Oswin So · Gongjie Li · Evangelos Theodorou · Molei Tao
[ Poster
None
Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain climate models
Lijing Wang · Takuya Kurihana · Aurelien Meray · Ilijana Mastilovic · Satyarth Praveen · Zexuan Xu · Milad Memarzadeh · Alexander Lavin · Haruko Wainwright
[ Poster
None
Normalizing Flows for Fragmentation and Hadronization
Ahmed Youssef · Philip Ilten · Tony Menzo · Jure Zupan · Manuel Szewc · Stephen Mrenna · Michael K. Wilkinson
[ Poster
None
GAN-Flow: A dimension-reduced variational framework for physics-based inverse problems
Agnimitra Dasgupta · Dhruv Patel · Deep Ray · Erik Johnson · Assad Oberai
[ Poster
None
Control and Calibration of GlueX Central Drift Chamber Using Gaussian Process Regression
Diana McSpadden · Torri Jeske · Naomi Jarvis · David Lawrence · Thomas Britton · nikhil kalra
[ Poster
None
The Senseiver: attention-based global field reconstruction from sparse observations
Javier E. Santos · Zachary Fox · Arvind Mohan · Hari Viswanathan · NIcholas Lubbers
[ Poster
None
Skip Connections for High Precision Regressors
Ayan Paul · Fady Bishara · Jennifer Dy
[ Poster
None
Likelihood-Free Frequentist Inference for Calorimetric Muon Energy Measurement in High-Energy Physics
Luca Masserano · Ann Lee · Rafael Izbicki · Mikael Kuusela · tommaso dorigo
[ Poster
None
Uncertainty Aware Deep Learning for Particle Accelerators
Kishansingh Rajput · Malachi Schram · Karthik Somayaji NS
[ Poster
None
Geometric NeuralPDE (GNPnet) Models for Learning Dynamics
Oluwadamilola Fasina · Smita Krishnaswamy · Aditi Krishnapriyan
[ Poster
None
PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling
None
A Self-Supervised Approach to Reconstruction in Sparse X-Ray Computed Tomography
Rey Mendoza · Minh Nguyen · Judith Weng Zhu · Talita Perciano · Vincent Dumont · Juliane Mueller · Vidya Ganapati
[ Poster
None
Energy based models for tomography of quantum spin-lattice systems
Abhijith Jayakumar · Marc Vuffray · Andrey Lokhov
[ Poster
None
Elements of effective machine learning datasets in astronomy
Bernie Boscoe · Tuan Do
[ Poster
None
Adversarial Noise Injection for Learned Turbulence Simulations
Jingtong Su · Julia Kempe · Drummond Fielding · Nikolaos Tsilivis · Miles Cranmer · Shirley Ho
[ Poster
None
Shining light on data
Akshat Kumar · Mohan Sarovar
[ Poster
None
A Novel Automatic Mixed Precision Approach For Physics Informed Training
Jinze Xue · Akshay Subramaniam · Mark Hoemmen
[ Poster
None
Atmospheric retrievals of exoplanets using learned parameterizations of pressure-temperature profiles
Timothy Gebhard · Daniel Angerhausen · Björn Konrad · Eleonora Alei · Sascha Quanz · Bernhard Schölkopf
[ Poster
None
Probabilistic Mixture Modeling For End-Member Extraction in Hyperspectral Data
Oliver Hoidn · Aashwin Mishra · Apurva Mehta
[ Poster
None
Posterior samples of source galaxies in strong gravitational lenses with score-based priors
Alexandre Adam · Adam Coogan · Nikolay Malkin · Ronan Legin · Laurence Perreault-Levasseur · Yashar Hezaveh · Yoshua Bengio
None
Learning Integrable Dynamics with Action-Angle Networks
Ameya Daigavane · Arthur Kosmala · Miles Cranmer · Tess Smidt · Shirley Ho
[ Poster
None
Physics-informed Bayesian Optimization of an Electron Microscope
Desheng Ma
None
Emulating cosmological multifields with generative adversarial networks
Sambatra Andrianomena · Sultan Hassan · Francisco Villaescusa-Navarro
[ Poster
None
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora · Pratik Kakkar · Amit Chakraborty · Biswadip Dey
[ Poster
None
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans · Arnaud Delaunoy · François Rozet · Antoine Wehenkel · Volodimir Begy · Gilles Louppe
[ Poster
None
Modeling halo and central galaxy orientations on the SO(3) manifold with score-based generative models
Yesukhei Jagvaral · Francois Lanusse · Rachel Mandelbaum
[ Poster
None
Geometric path augmentation for inference of sparsely observed stochastic nonlinear systems
Dimitra Maoutsa
[ Poster
None
A probabilistic deep learning model to distinguish cusps and cores in dwarf galaxies
Julen Expósito Márquez · Marc Huertas-Company · Arianna Di Cintio · Chris Brook · Andrea Macciò · Rob Grant · Elena Arjona
[ Poster
None
Multi-Fidelity Transfer Learning for accurate database PDE approximation
Wenzhuo LIU · Mouadh Yagoubi · Marc Schoenauer · David Danan
[ Poster
None
Adaptive Selection of Atomic Fingerprints for High-Dimensional Neural Network Potentials
Johannes Sandberg · Emilie Devijver · Noel Jakse · Thomas Voigtmann
[ Poster
None
HyperFNO: Improving the Generalization Behavior of Fourier Neural Operators
Francesco Alesiani · Makoto Takamoto · Mathias Niepert
[ Poster
None
Fast kinematics modeling for conjunction with lens image modeling
Matthew Gomer · Luca Biggio · Sebastian Ertl · Han Wang · Aymeric Galan · Lyne Van de Vyvere · Dominique Sluse · Georgios Vernardos · Sherry Suyu
[ Poster
None
Continual learning autoencoder training for a particle-in-cell simulation via streaming
Patrick Stiller · Varun Makdani · Franz Poeschel · Richard Pausch · Alexander Debus · Michael Bussmann · Nico Hoffmann
[ Poster
None
HGPflow: Particle reconstruction as hyperedge prediction
Etienne Dreyer · Nilotpal Kakati · Francesco Armando Di Bello
[ Poster
None
Diversity Balancing Generative Adversarial Networks for fast simulation of the Zero Degree Calorimeter in the ALICE experiment at CERN
Jan Dubiński · Kamil Deja · Sandro Wenzel · Przemysław Rokita · Tomasz Trzcinski
[ Poster
None
Identifying Hamiltonian Manifold in Neural Networks
Yeongwoo Song · Hawoong Jeong
[ Poster
None
Physics-Informed Neural Networks as Solvers for the Time-Dependent Schrödinger Equation
Karan Shah · Patrick Stiller · Nico Hoffmann · Attila Cangi
[ Poster
None
A physics-informed search for metric solutions to Ricci flow, their embeddings, and visualisation
Aarjav Jain · Challenger Mishra · Pietro Lió
[ Poster
None
Towards solving model bias in cosmic shear forward modeling
Benjamin Remy · Francois Lanusse · Jean-Luc Starck
[ Poster
None
Physical Data Models in Machine Learning Imaging Pipelines
Marco Aversa · Luis Oala · Christoph Clausen · Roderick Murray-Smith · Bruno Sanguinetti
[ Poster
None
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Maksim Zhdanov · Lisa Randolph · Thomas Kluge · Motoaki Nakatsutsumi · Christian Gutt · Marina Ganeva · Nico Hoffmann
[ Poster
None
Addressing out-of-distribution data for flow-based gravitational wave inference
Maximilian Dax · Stephen Green · Jonas Wildberger · Jonathan Gair · Michael Puerrer · Jakob Macke · Alessandra Buonanno · Bernhard Schölkopf
[ Poster
None
Applications of Differentiable Physics Simulations in Particle Accelerator Modeling
Ryan Roussel · Auralee Edelen
[ Poster
None
Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference
Bingjie Wang · Joel Leja · Victoria Villar · Joshua Speagle
[ Poster
None
Topological Jet Tagging
Dawson Thomas · Sarah Demers · Smita Krishnaswamy · Bastian Rieck
[ Poster
None
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola
[ Poster
None
Decay-aware neural network for event classification in collider physics
Tomoe Kishimoto · Masahiro Morinaga · Masahiko Saito · Junichi Tanaka
[ Poster
None
Phase transitions and structure formation in learning local rules
Bojan Žunkovič · Enej Ilievski
[ Poster
None
ML4LM: Machine Learning for Safely Landing on Mars
David Wu · Wai Tong Chung · Matthias Ihme
[ Poster
None
Amortized Bayesian Inference for Supernovae in the Era of the Vera Rubin Observatory Using Normalizing Flows
Victoria Villar
[ Poster
None
Scalable Bayesian Inference for Finding Strong Gravitational Lenses
Yash Patel · Jeffrey Regier
[ Poster
None
Neuro-Symbolic Partial Differential Equation Solver
Pouria Akbari Mistani · Samira Pakravan · Rajesh Ilango · Sanjay Choudhry · Frederic Gibou
[ Poster
None
From Particles to Fluids: Dimensionality Reduction for Non-Maxwellian Plasma Velocity Distributions Validated in the Fluid Context
Daniel da Silva
[ Poster
None
Neural Network-based Real-Time Parameter Estimation in Electrochemical Sensors with Unknown Confounding Factors
Sarthak Jariwala
[ Poster
None
Emulating Fast Processes in Climate Models
Noah Brenowitz · W. Andre Perkins · Jacqueline M. Nugent · Oliver Watt-Meyer · Spencer K. Clark · Anna Kwa · Brian Henn · Jeremy McGibbon · Christopher S. Bretherton
[ Poster
None
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang
[ Poster
None
Wavelets Beat Monkeys at Adversarial Robustness
Jingtong Su · Julia Kempe
[ Poster
None
First principles physics-informed neural network for quantum wavefunctions and eigenvalue surfaces
Marios Mattheakis · Gabriel R. Schleder · Daniel Larson · Efthimios Kaxiras
[ Poster
None
Neural Inference of Gaussian Processes for Time Series Data of Quasars
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord
[ Poster
None
Strong-Lensing Source Reconstruction with Denoising Diffusion Restoration Models
Konstantin Karchev · Noemi Anau Montel · Adam Coogan · Christoph Weniger
[ Poster
None
Score-based Seismic Inverse Problems
Sriram Ravula · Dimitri Voytan · Elad Liebman · Ram Tuvi · Yash Gandhi · Hamza Ghani · Alex Ardel · Mrinal Sen · Alex Dimakis
[ Poster
None
Deep-pretrained-FWI: combining supervised learning with physics-informed neural network
ANA PAULA MULLER · Clecio Roque Bom · Jessé Carvalho Costa · Elisângela Lopes Faria · Marcelo Portes de Albuquerque · Marcio Portes de Albuquerque
[ Poster
None
Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar
[ Poster
None
Recovering Galaxy Cluster Convergence from Lensed CMB with Generative Adversarial Networks
Liam Parker · Dongwon Han · Shirley Ho · Pablo Lemos
[ Poster
None
Differentiable Physics-based Greenhouse Simulation
Nhat M. Nguyen · Hieu Tran · Minh Duong · Hanh Bui · Kenneth Tran
[ Slides [ Poster
None
ClimFormer - a Spherical Transformer model for long-term climate projections
Salva Rühling Cachay · Peetak Mitra · Sookyung Kim · Subhashis Hazarika · Haruki Hirasawa · Dipti Hingmire · Hansi Singh · Kalai Ramea
[ Poster
None
Computing the Bayes-optimal classifier and exact maximum likelihood estimator with a semi-realistic generative model for jet physics
Kyle Cranmer · Matthew Drnevich · Lauren Greenspan · Sebastian Macaluso · Duccio Pappadopulo
[ Poster
None
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
Jan Offermann · Alexander Bogatskiy · Timothy Hoffman · David W Miller
[ Poster
None
FO-PINNs: A First-Order formulation for Physics~Informed Neural Networks
Rini Jasmine Gladstone · Mohammad Amin Nabian · Hadi Meidani
[ Poster
None
Predicting Full-Field Turbulent Flows Using Fourier Neural Operator
Peter Renn · Sahin Lale · Cong Wang · Zongyi Li · Anima Anandkumar · Morteza Gharib
[ Poster
None
Why are deep learning-based models of geophysical turbulence long-term unstable?
Ashesh Chattopadhyay · Pedram Hassanzadeh
[ Poster
None
Graph Structure from Point Clouds: Geometric Attention is All You Need
Daniel Murnane
[ Poster
None
One-Class Dense Networks for Anomaly Detection
Norman Karr · Benjamin Nachman · David Shih
[ Poster
None
Self-supervised detection of atmospheric phenomena from remotely sensed synthetic aperture radar imagery
Yannik Glaser · Peter Sadowski · Justin Stopa
[ Poster
None
Anomaly Detection with Multiple Reference Datasets in High Energy Physics
Mayee Chen · Benjamin Nachman · Frederic Sala
[ Poster
None
Using Shadows to Learn Ground State Properties of Quantum Hamiltonians
Viet T. Tran · Laura Lewis · Johannes Kofler · Hsin-Yuan Huang · Richard Kueng · Sepp Hochreiter · Sebastian Lehner
[ Poster
None
Score Matching via Differentiable Physics
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey
[ Poster
None
On Using Deep Learning Proxies as Forward Models in Optimization Problems
Fatima Albreiki · Nidhal Belayouni · Deepak Gupta
[ Poster
None
Do Better QM9 Models Extrapolate as Better Quantum Chemical Property Predictors?
YUCHENG ZHANG · Nontawat Charoenphakdee · So Takamoto
[ Poster
None
Time-aware Bayesian optimization for adaptive particle accelerator tuning
Nikita Kuklev · Yine Sun · Hairong Shang · Michael Borland · Gregory Fystro
[ Poster
None
Inferring molecular complexity from mass spectrometry data using machine learning
Timothy Gebhard · Aaron C. Bell · Jian Gong · Jaden J. A. Hastings · George Fricke · Nathalie Cabrol · Scott Sandford · Michael Phillips · Kimberley Warren-Rhodes · Atilim Gunes Baydin
[ Poster
None
Detection is truncation: studying source populations with truncated marginal neural ratio estimation
Noemi Anau Montel · Christoph Weniger
[ Poster
None
Cosmology from Galaxy Redshift Surveys with PointNet
Sotiris Anagnostidis · Arne Thomsen · Alexandre Refregier · Tomasz Kacprzak · Luca Biggio · Thomas Hofmann · Tilman Tröster
[ Slides [ Poster
None
Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs
Georg Kohl · Liwei Chen · Nils Thuerey
[ Poster
None
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
Jesse Cresswell · Brendan Ross · Gabriel Loaiza-Ganem · Humberto Reyes-Gonzalez · Marco Letizia · Anthony Caterini
[ Poster
None
Graphical Models are All You Need: Per-interaction reconstruction uncertainties in a dark matter detection experiment
Christina Peters · Aaron Higuera · Shixiao Liang · Waheed Bajwa · Christopher Tunnell
[ Poster
None
SE(3)-equivariant self-attention via invariant features
Nan Chen · Soledad Villar
[ Poster
None
Physics-Driven Convolutional Autoencoder Approach for CFD Data Compressions
Alberto Olmo · Ahmed Zamzam · Andrew Glaws · Ryan King
[ Poster
None
Deconvolving Detector Effects for Distribution Moments
Krish Desai · Benjamin Nachman · Jesse Thaler
[ Poster
None
Deep Learning Modeling of Subgrid Physics in Cosmological N-body Simulations
Georgios Markos Chatziloizos · Francois Lanusse · Tristan Cazenave
[ Poster
None
Applying Deep Reinforcement Learning to the HP Model for Protein Structure Prediction
Kaiyuan Yang · Houjing Huang · Olafs Vandans · Adithyavairavan Murali · Fujia Tian · Roland Yap · Liang Dai
[ Poster
None
Learning dynamical systems: an example from open quantum system dynamics.
Pietro Novelli
None
Flexible learning of quantum states with generative query neural networks
Yan Zhu · Ya-Dong Wu · Ge Bai · Dong-Sheng Wang · Yuexuan Wang · Giulio Chiribella
None
Towards Creating Benchmark Datasets of Universal Neural Network Potential for Material Discovery
So Takamoto · Chikashi Shinagawa · Nontawat Charoenphakdee
[ Poster
None
Finding active galactic nuclei through Fink
Etienne Russeil · Emille Ishida · Julien Peloton · Anais Möller · Roman Le Montagner
[ Poster
None
A fast and flexible machine learning approach to data quality monitoring
Marco Letizia · Gaia Grosso · Andrea Wulzer · Marco Zanetti · Jacopo Pazzini · Marco Rando · Nicolò Lai
[ Poster
None
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
David Ruhe · Kaze Wong · Miles Cranmer · Patrick Forré
[ Poster
None
How good is the Standard Model? Machine learning multivariate Goodness of Fit tests
Gaia Grosso · Marco Letizia · Andrea Wulzer · Maurizio Pierini
[ Poster
None
Particle-level Compression for New Physics Searches
Yifeng Huang · Jack Collins · Benjamin Nachman · Simon Knapen · Daniel Whiteson
[ Poster
None
Towards a non-Gaussian Generative Model of large-scale Reionization Maps
Yu-Heng Lin · Sultan Hassan · Bruno Régaldo-Saint Blancard · Michael Eickenberg · Chirag Modi
[ Poster
None
Learning the nonlinear manifold of extreme aerodynamics
Kai Fukami · Kunihiko Taira
[ Poster
None
Can denoising diffusion probabilistic models generate realistic astrophysical fields?
Nayantara Mudur · Douglas P. Finkbeiner
[ Poster
None
Plausible Adversarial Attacks on Direct Parameter Inference Models in Astrophysics
Benjamin Horowitz · Peter Melchior
[ Poster
None
Source Identification and Field Reconstruction of Advection-Diffusion Process from Sparse Sensor Measurements
Arka Daw · Kyongmin Yeo · Anuj Karpatne ·
[ Poster
None
Statistical Inference for Coadded Astronomical Images
Mallory Wang · Ismael Mendoza · Jeffrey Regier · Camille Avestruz · Cheng Wang
[ Poster
None
Differentiable composition for model discovery
Omer Rochman Sharabi · Gilles Louppe
[ Poster
None
DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre
[ Poster
None
Tensor networks for active inference with discrete observation spaces
Samuel T. Wauthier · Bram Vanhecke · Tim Verbelen · Bart Dhoedt
[ Poster
None
Employing CycleGANs to Generate Realistic STEM Images for Machine Learning
Abid Khan · Chia-Hao Lee · Pinshane Y. Huang · Bryan Clark
[ Poster
None
CAPE: Channel-Attention-Based PDE Parameter Embeddings for SciML
Makoto Takamoto · Francesco Alesiani · Mathias Niepert
[ Poster
None
One-shot learning for solution operators of partial differential equations
Lu Lu · Anran Jiao · Jay Pathak · Rishikesh Ranade · Haiyang He
[ Poster
None
Simplifying Polylogarithms with Machine Learning
Aurelien Dersy · Matthew Schwartz · Xiaoyuan Zhang
[ Poster
None
Machine learning for complete intersection Calabi-Yau manifolds
Harold Erbin · Mohamed Tamaazousti · Riccardo Finotello
[ Poster
None
Generating Calorimeter Showers as Point Clouds
Simon Schnake · Dirk Krücker · Kerstin Borras
[ Poster
None
SuNeRF: Validation of a 3D Global Reconstruction of the Solar Corona Using Simulated EUV Images
Kyriaki-Margarita Bintsi · Robert Jarolim · Benoit Tremblay · Miraflor Santos · Anna Jungbluth · James Mason · Sairam Sundaresan · Angelos Vourlidas · Cooper Downs · Ronald Caplan · Andres Munoz-Jaramillo
[ Poster
None
Machine-learned climate model corrections from a global storm-resolving model
Anna Kwa
[ Poster
None
Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows
Raphael Pellegrin · Blake Bullwinkel · Marios Mattheakis · Pavlos Protopapas
[ Poster
None
Ad-hoc Pulse Shape Simulation using Cyclic Positional U-Net
Aobo Li
[ Poster
None
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Max Lamparth · Ludwig Böss · Ulrich Steinwandel · Klaus Dolag
[ Poster
None
Set-Conditional Set Generation for Particle Physics
Sanmay Ganguly · Lukas Heinrich · Nilotpal Kakati · Nathalie Soybelman
[ Poster
None
Lyapunov Regularized Forecaster
Rong Zheng · Rose Yu
[ Poster
None
Super-resolving Dark Matter Halos using Generative Deep Learning
David Schaurecker
[ Poster
None
Astronomical Image Coaddition with Bundle-Adjusting Radiance Fields
Harlan Hutton · Harshitha Palegar · Shirley Ho · Miles Cranmer · Peter Melchior · Jenna Eubank
[ Poster
None
Certified data-driven physics-informed greedy auto-encoder simulator
Xiaolong He · Youngsoo Choi · William Fries · Jon Belof · Jiun-Shyan Chen
[ Poster
None
Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels
Shreshth A Malik · Nora Eisner · Chris Lintott · Yarin Gal
[ Poster
None
Insight into cloud processes from unsupervised classification with a rotation-invariant autoencoder
Takuya Kurihana · James Franke · Ian Foster · Ziwei Wang · Elisabeth Moyer
[ Poster
None
Learning Electron Bunch Distribution along a FEL Beamline by Normalising Flows
Anna Willmann · Jurjen Pieter Couperus Cabadağ · Yen-Yu Chang · Richard Pausch · Amin Ghaith · Alexander Debus · Arie Irman · Michael Bussmann · Ulrich Schramm · Nico Hoffmann
[ Poster
None
Closing the resolution gap in Lyman alpha simulations with deep learning
Cooper Jacobus · Peter Harrington · Zarija Lukić
[ Poster
None
Decorrelation with Conditional Normalizing Flows
Samuel Klein · Tobias Golling
[ Poster
None
Real-time Health Monitoring of Heat Exchangers using Hypernetworks and PINNs
Ritam Majumdar · Vishal Jadhav · Anirudh Deodhar · Shirish Karande · Lovekesh Vig · Venkataramana Runkana
[ Poster
None
Galaxy Morphological Classification with Deformable Attention Transformer
SEOKUN KANG · Min-Su Shin · Taehwan Kim
[ Poster
None
Learning-based solutions to nonlinear hyperbolic PDEs: Empirical insights on generalization errors
Bilal Thonnam Thodi · Sai Venkata Ramana Ambadipudi · Saif Eddin Jabari
[ Poster
None
Geometry-aware Autoregressive Models for Calorimeter Shower Simulations
Junze Liu · Aishik Ghosh · Dylan Smith · Pierre Baldi · Daniel Whiteson
[ Poster
None
De-noising non-Gaussian fields in cosmology with normalizing flows
Adam Rouhiainen · Moritz Münchmeyer
[ Poster
None
Emulating cosmological growth functions with B-Splines
Ngai Pok Kwan · Chirag Modi · Yin Li · Shirley Ho
[ Poster
None
Simulation-based inference of the 2D ex-situ stellar mass fraction distribution of galaxies using variational autoencoders
Eirini Angeloudi · Marc Huertas-Company · Jesús Falcón-Barroso · Regina Sarmiento · Daniel Walo-Martín · Annalisa Pillepich · Jesús Vega Ferrero
[ Poster
None
Physics solutions for privacy leaks in machine learning
Alejandro Pozas-Kerstjens · Senaida Hernandez-Santana · José Ramón Pareja Monturiol · Marco Castrillon Lopez · Giannicola Scarpa · Carlos E. Gonzalez-Guillen · David Perez-Garcia
[ Poster
None
Uncertainty quantification methods for ML-based surrogate models of scientific applications
Kishore Basu · Yujia Hao · Delphine Hintz · Dev Shah · Aaron Palmer · Gurpreet Singh Hora · Darian Nwankwo · Laurent White
[ Poster
None
Improved Training of Physics-informed Neural Networks using Energy-Based priors: A Study on Electrical Impedance Tomography
Akarsh Pokkunuru · Pedram Rooshenas · Thilo Strauss · Anuj Abhishek · Taufiquar Khan
[ Poster
None
Intra-Event Aware Imitation Game for Fast Detector Simulation
Hosein Hashemi · Nikolai Hartmann · Sahand Sharifzadeh · James Kahn · Thomas Kuhr
[ Poster
None
Improving Generalization with Physical Equations
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen
[ Poster
None
Point Cloud Generation using Transformer Encoders and Normalising Flows
Benno Käch · Dirk Krücker · Isabell Melzer
[ Poster
None
Leveraging the Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller · Robin Greif · Frank Jenko · Nils Thuerey
[ Poster
None
HIGlow: Conditional Normalizing Flows for High-Fidelity HI Map Modeling
Roy Friedman · Sultan Hassan
[ Poster
None
Learning Feynman Diagrams using Graph Neural Networks
Alexander Norcliffe · Harrison Mitchell · Pietro Lió
[ Slides [ Poster
None
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
Som Dhulipala · Yifeng Che · Michael Shields
[ Poster
None
Offline Model-Based Reinforcement Learning for Tokamak Control
Ian Char · Joseph Abbate · Laszlo Bardoczi · Mark Boyer · Youngseog Chung · Rory Conlin · Keith Erickson · Viraj Mehta · Nathan Richner · Egemen Kolemen · Jeff Schneider
[ Poster
None
Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics
Rikab Gambhir · Jesse Thaler · Benjamin Nachman
[ Poster