Skip to yearly menu bar Skip to main content


Poster

Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models

ShengYun Peng · Pin-Yu Chen · Matthew Hull · Duen Horng Chau

East Exhibit Hall A-C #4403
[ ] [ Project Page ]
Wed 11 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Safety alignment is crucial to ensure that large language models (LLMs) behave in ways that align with human preferences and prevent harmful actions during inference. However, recent studies show that the alignment can be easily compromised through finetuning with only a few adversarially designed training examples. We aim to measure the risks in finetuning LLMs through navigating the LLM safety landscape. We discover a new phenomenon observed universally in the model parameter space of popular open-source LLMs, termed as “safety basin”: random perturbations to model weights maintain the safety level of the original aligned model within its local neighborhood. However, outside this local region, safety is fully compromised, exhibiting a sharp, step-like drop. This safety basin contrasts sharply with the LLM capability landscape, where model performance peaks at the origin and gradually declines as random perturbation increases. Our discovery inspires us to propose the new VISAGE safety metric that measures the safety in LLM finetuning by probing its safety landscape. Visualizing the safety landscape of the aligned model enables us to understand how finetuning compromises safety by dragging the model away from the safety basin. The LLM safety landscape also highlights the system prompt’s critical role in protecting a model, and that such protection transfers to its perturbed variants within the safety basin. These observations from our safety landscape research provide newinsights for future work on LLM safety community. Our code is publicly available at https://github.com/ShengYun-Peng/llm-landscape.

Live content is unavailable. Log in and register to view live content