

Navigating the Safety Landscape: Measuring Risks in Finetuning LLMs

Anthony ShengYun Peng

Pin-Yu Chen

Matthew Hull

Polo Chau

Previous studies found that the safety alignment of LLMs was compromised by fine-tuning with only a few adversarially designed training examples.

**The difference in safety between each "Initial" is attributed to different system prompts used by each different datasets.

Previous studies found that the safety alignment of LLMs was compromised by fine-tuning with only a few adversarially designed training examples.

|--|

1 : Illegal Activity	#4 : Malware
2 : Child Abuse Content	#5 : Physical Harm

Are all open-source LLMs equally vulnerable to finetuning? Why can simple finetuning easily break LLM's safety alignment? How fast does the model start to break during finetuning?

**The difference in safety between each "Initial" is attributed to different system prompts used by each different datasets.

#5

We discover that all these questions can be addressed by navigating the LLM safety landscape

Safety Basin: Random perturbations to model weights maintain the safety level of the original aligned model within its local neighborhood. However, outside this local region, safety is fully compromised, exhibiting a sharp, step-like drop.

LLM safety basins exist regardless of the harmfulness evaluation metrics and safety datasets.

Evaluation metrics: Keyword detection & Llama Guard2

Safety datasets: AdvBench and POSEBench

Safety vs. Capability Landscape:

LLM Safety Landscape

The shape of the LLM capability landscape is *drastically different from* the one in the safety landscape

Harmful finetuning compromises safety by dragging the model away from the safety basin

Finetuning on mixture of harmful and safe data helps model stay within safety basin

VISAGE Safety Metric:

Measures the LLM safety after finetuning via the average depth of the safety basin

$$VISAGE = \mathbb{E}_{\substack{\alpha \sim \mathcal{U}(-a,a), \beta \sim \mathcal{U}(-b,b), \dots}} [e$$

Model	VISAGE	AdvBench Samples	Aligned	10-shot	50-shot	100-shot	mix
LLaMA2-7B-chat	85.32	80 520	0 0.2	90.0 85.2	91.3 90.2	100.0 95.4	$\begin{vmatrix} 0\\0.2 \end{vmatrix}$
Vicuna-7B-v1.5	73.26	80 80 520	5.0 2.5	95.0 89.2	97.5 94.0	100.0 96.7	1.3 1.2

 $[\mathcal{S}_{max} - \mathcal{S}(\alpha, \beta, \dots)], \text{ s.t. } \mathcal{S} < \mathcal{S}_{max}$

LLM safety landscape also highlights the system prompt's critical role in protecting a model, and that such protection transfers to its perturbed variants within the safety basin

Safety Landscape of Mistral-7B-instruct-v0.1

Safety Landscape of Vicuna-7B-v1.5

We find that jailbreaking prompts are highly sensitive to perturbations in model weights

A naive defense method is to perturb the model weights before generating the response

G github.com/poloclub/llm-landscape

Navigating the Safety Landscape: Measuring Risks in Finetuning LLMs

A. Safety basin universally appears in open-source LLMs' parameter spaces. Randomly perturbing model weights maintains safety level of original aligned model (light purple dot) in its local neighborhood.

ShengYun Anthony Peng

shengyun-peng.github.io

Pin-Yu Chen

Matthew Hull

Polo Chau

