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Previous studies found that the safety alignment of LLMs was compromised by fine-tuning 
with only a few adversarially designed training examples. 

Image credit to Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To! 
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Are all open-source LLMs equally vulnerable to finetuning?  
Why can simple finetuning easily break LLM’s safety alignment?  
How fast does the model start to break during finetuning? 



Safety Basin: Random perturbations to model weights maintain the safety level of the original aligned model within its 
local neighborhood. However, outside this local region, safety is fully compromised, exhibiting a sharp, step-like drop. 

We discover that all these questions can be addressed by navigating the LLM safety landscape



LLM safety basins exist regardless of the harmfulness evaluation metrics and safety datasets.  
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Safety vs. Capability Landscape:  
The shape of the LLM capability landscape is drastically different from the one in the safety landscape 
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Harmful finetuning compromises safety by dragging the model away from the safety basin 



VISAGE Safety Metric:  
Measures the LLM safety after finetuning via the average depth of the safety basin 



LLM safety landscape also highlights the system prompt’s critical role in protecting a 
model, and that such protection transfers to its perturbed variants within the safety basin  
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We find that jailbreaking prompts are highly sensitive to perturbations in model weights
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A naive defense method is to perturb the model weights before generating the response
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