Poster
An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations
Weimin Bai · Yifei Wang · Wenzheng Chen · He Sun
East Exhibit Hall A-C #2803
Diffusion models excel in solving imaging inverse problems due to their ability to model complex image priors. However, their reliance on large, clean datasets for training limits their practical use where clean data is scarce. In this paper, we propose an expectation-maximization (EM) approach to train diffusion models from corrupted observations. Our method alternates between reconstructing clean images from corrupted data using a known diffusion model (E-step) and refining diffusion model weights based on these reconstructions (M-step). This iterative process leads the learned diffusion model to gradually converge to the true clean data distribution. We validate our method through extensive experiments on diverse computational imaging tasks, including random inpainting, denoising, and deblurring, achieving new state-of-the-art performance.
Live content is unavailable. Log in and register to view live content