

An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations

Weimin Bai, Yifei Wang, Wenzheng Chen, He Sun Peking University

Diffusion Models

Clean Dataset for Training: FFHQ

What about few clean images for training?

Corrupted Observations are Sufficient

Clean Image

An example in super-resolution fluorescent microscopy

EMDiffusion: Learn Generative Image Priors from Corrupted Observations

Initialization: Training Diffusion with Limited Clean Data

(e) 50 clean images for training the initial diffusion model

E-step: Diffusion Posterior Sampling

$p(x|y) \propto p(y|x) \ p(x)$

E-step: Reconstruct images from corrupted observations using current generative image prior

[1] Diffusion Posterior Sampling for General Noisy Inverse Problems. Hyungjin Chung, et al. ICLR 2023.

M-step: Updating Diffusion Model's Weights

$p(x|y) \propto p(y|x) p(x)$

M-step: Refining generative image prior using reconstructions

EMDiffusion: Learn Generative Image Priors from Corrupted Observations

Progressive Learning Process

$p(x|y) \propto p(y|x)$ p(x)

Learned Diffusion Model

Masked Observations

Generated Samples

Learned Diffusion Model

Generated Samples

Learned Diffusion Model

Diffusion

Noisy Observations

Generated Samples

Quantitative Comparison

	CIFAR10-Inpainting			CIFAR10-Denoising			CelebA-Deblurring		
Method	PSNR ↑	LPIPS↓	FID↓	PSNR ↑	LPIPS↓	FID↓	PSNR ↑	LPIPS↓	FID↓
Observations	13.49	0.295	234.47	18.05	0.047	132.59	22.47	0.365	72.83
DPS w/ clean prior	25.44	0.008	7.08	25.91	0.010	7.08	29.05	0.013	10.24
Noise2Self [3]	-	-	-	21.32	0.227	<u>92.06</u>	-	-	-
SURE-Score [1]	15.75	0.182	220.01	22.42	0.138	132.61	22.07	0.383	191.96
AmbientDiffusion [14]	<u>20.57</u>	0.027	28.88	21.37	<u>0.033</u>	114.13	21.16	<u>0.158</u>	83.99
Ours	24.70	0.009	21.08	23.16	0.022	86.47	23.74	0.103	<u>91.89</u>

Initialization and Annealing of Diffusion Prior

32 24 Inpainting 30 Denoising 22 28 Deblurring 20 26 PSNR UNSA 54 18 22 16 20 14 18 12 16 10 500 ID 100 ID 50 ID 10 ID 50 OOD Data

ID: In-distribution clean images OOD: Out-of-distribution clean images

 $p(x|y) \propto p(y|x) p^{\lambda}(x)$

Scaling factor controls the strength of prior

Reset of Diffusion Model Weights

Conclusion

EMDiffusion: Learn from Corruption

Without large-scale clean images, Diffusion models can still be **trained**

- EM-Diffusion: E-step (DPS) + M-step (Diffusion Model Training);
- Training data: large-scale corrupted observations
- Future work: eliminate the initialization dependency on clean data.

 $p(x|y) \propto p(y|x) p(x)$