Poster
Semantic Feature Learning for Universal Unsupervised Cross-Domain Retrieval
Lixu Wang · Xinyu Du · Qi Zhu
East Exhibit Hall A-C #3405
Cross-domain retrieval (CDR) is finding increasingly broad applications across various domains. However, existing efforts have several major limitations, with the most critical being their reliance on accurate supervision. Recent studies thus focus on achieving unsupervised CDR, but they typically assume that the category spaces across domains are identical, an assumption that is often unrealistic in real-world scenarios. This is because only through dedicated and comprehensive analysis can the category composition of a data domain be obtained, which contradicts the premise of unsupervised scenarios. Therefore, in this work, we introduce the problem of Universal Unsupervised Cross-Domain Retrieval (U^2CDR) for the first time and design a two-stage semantic feature learning framework to address it. In the first stage, a cross-domain unified prototypical structure is established under the guidance of an instance-prototype-mixed contrastive loss and a semantic-enhanced loss, to counteract category space differences. In the second stage, through a modified adversarial training mechanism, we ensure minimal changes for the established prototypical structure during domain alignment, enabling more accurate nearest-neighbor searching. Extensive experiments across multiple datasets and scenarios, including close-set, partial, and open-set CDR, demonstrate that our approach significantly outperforms existing state-of-the-art CDR methods and other related methods in solving U^2CDR challenges.
Live content is unavailable. Log in and register to view live content