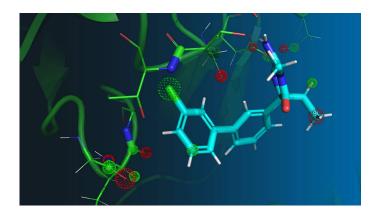

Semantic Feature Learning for Universal Unsupervised Cross-domain Retrieval

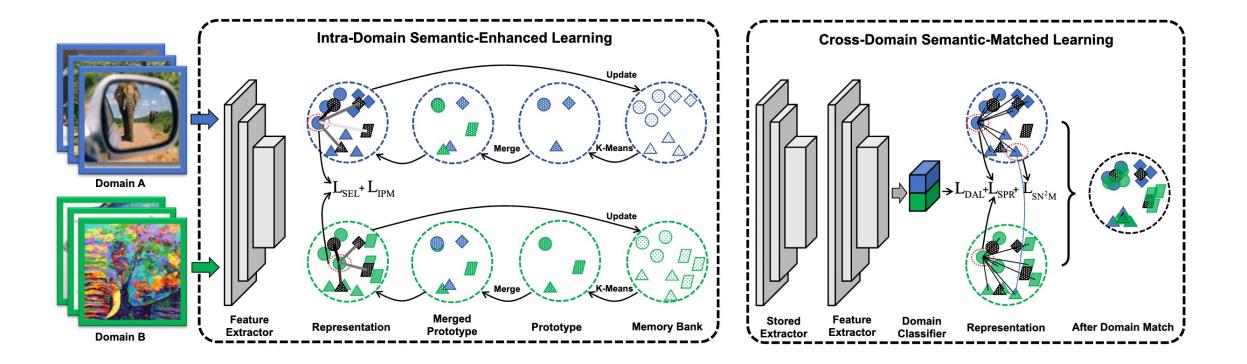
Lixu Wang¹, Xinyu Du², Qi Zhu¹


1. Northwestern University, 2. General Motors Global R&D

NeurIPS 2024

Background

Challenges

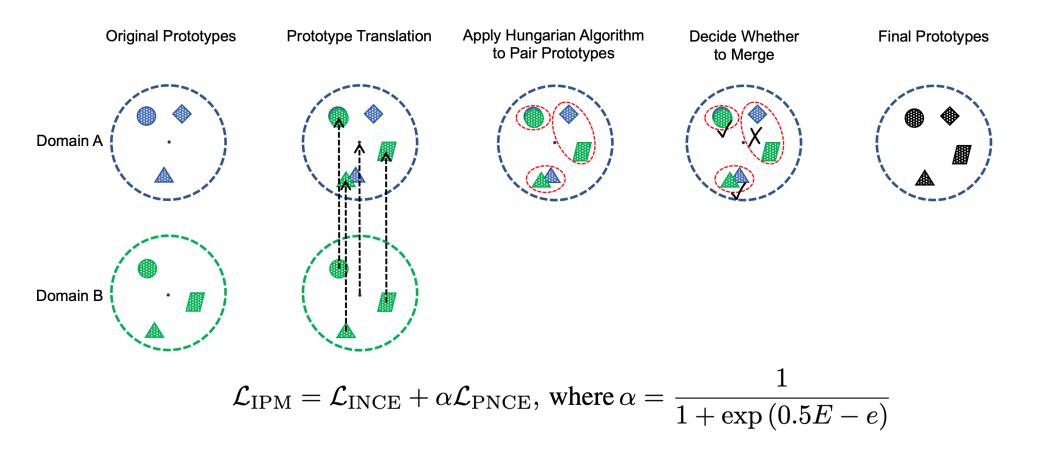

- Images are unlabeled
- The semantic categories across image databases are uncertain

Problem Formulation

- Domains A and B are distinct but semantically relevant, and their label space may be different.
- Retrieval process

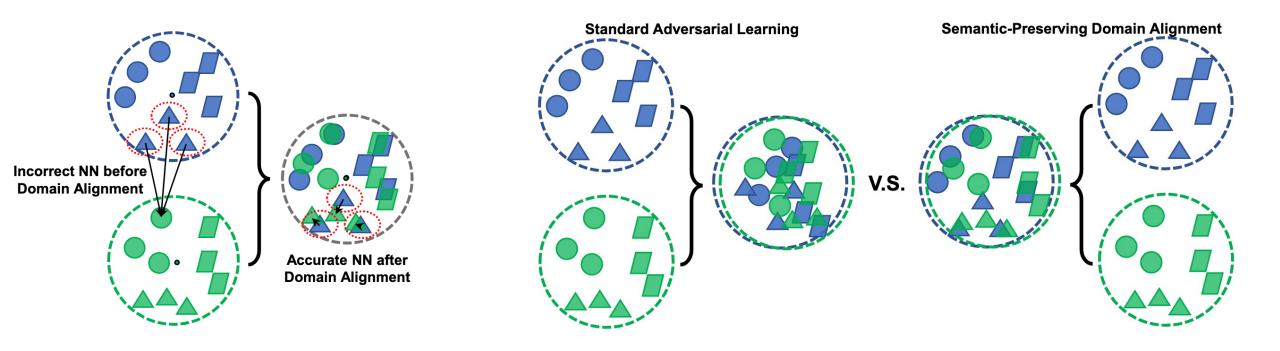
$$R(f_{\theta}, \boldsymbol{x}_{i}^{\mathrm{A}}) = \begin{cases} \text{null, if } y_{i}^{\mathrm{A}} \in \mathcal{Y}^{\mathrm{A}} \setminus \mathcal{Y}^{\mathrm{B}} \\ \text{sort}_{\uparrow}(\mathcal{S})[1:k], \text{ otherwise} \end{cases}$$

UEM

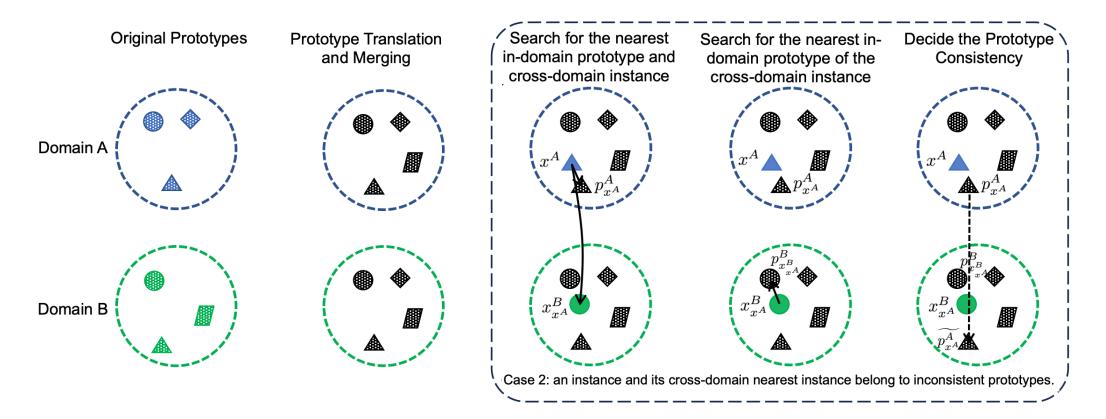

Intra-Domain Semantic-Enhanced Learning

- Challenges of applying instance discrimination (ID) to learn categorical semantics in universal unsupervised cross-domain retrieval
 - Distinct label spaces make ID learn distinct categorical structure

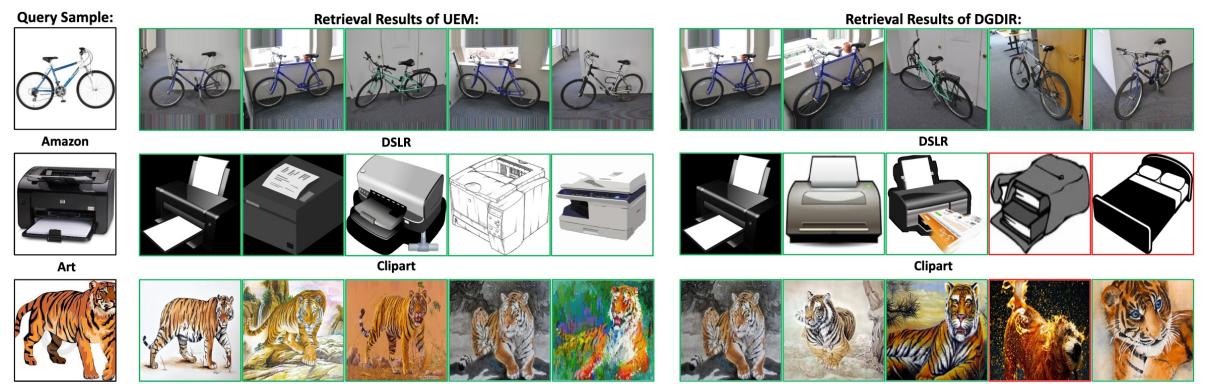
Theorem 1 (Geometry Distinctness): Suppose data distributions of two domains (A and B) have mutually disjoint supports, and they are uniform over these supports. Assuming the support sets of domains A and B are not identical, the optimal feature extractors that minimize the instance discrimination loss of different domains present distinct geometric feature spaces.


Intra-Domain Semantic-Enhanced Learning

• Our solution: pre-set a unified prototypical structure across domains


Cross-Domain Semantic-Matched Learning

• Semantic-Preserving Domain Alignment


Cross-Domain Semantic-Matched Learning

• Switchable Nearest Neighboring Match

Experiments

Closed-set Cross-domain Retrieval

Clipart

Painting

Painting

Experiments

Partial Cross-domain Retrieval on Office-Home

CDS $22.0_{\pm 1.1} 31.1_{\pm 0.7} 32.5_{\pm 2.0} 26.5_{\pm 1.0} 25.6_{\pm 0.2} 27.9_{\pm 1.5} 30.0_{\pm 0.9} 31.8_{\pm 1.1} 40.5_{\pm 2.7} 32.3_{\pm 1.8} 25.5_{\pm 1.2} 37.6_{\pm 3.0} 30.3_{\pm 1.1}$ PCS $24.5_{\pm 0.4} 36.5_{\pm 1.2} 38.8_{\pm 2.0} 24.9_{\pm 1.6} 28.8_{\pm 1.1} 29.0_{\pm 1.0} 28.6_{\pm 2.1} 35.3_{\pm 0.7} 41.7_{\pm 1.4} 37.5_{\pm 2.0} 26.9_{\pm 1.6} 40.0_{\pm 0.9} 32.7_{\pm 0.8}$ DARL $25.5_{\pm 1.5} 34.7_{\pm 2.0} 29.8_{\pm 3.1} 25.0_{\pm 1.9} 23.9_{\pm 1.7} 27.5_{\pm 1.5} 26.8_{\pm 2.6} 31.9_{\pm 1.1} 40.0_{\pm 2.3} 35.5_{\pm 1.4} 27.7_{\pm 2.0} 40.0_{\pm 1.5} 30.7_{\pm 1.6}$ DN2A $25.9_{\pm 0.9} 37.0_{\pm 1.4} 29.5_{\pm 2.0} 25.2_{\pm 1.0} 27.0_{\pm 0.5} 30.5_{\pm 1.1} 29.0_{\pm 1.3} 31.5_{\pm 0.7} 40.6_{\pm 0.4} 35.7_{\pm 1.7} 28.0_{\pm 0.6} 41.0_{\pm 1.1} 31.7_{\pm 0.5}$ UCDIR $23.0_{\pm 1.0} 28.7_{\pm 2.2} 31.0_{\pm 0.9} 26.0_{\pm 1.6} 22.0_{\pm 1.1} 23.5_{\pm 1.6} 31.1_{\pm 1.5} 30.4_{\pm 0.2} 40.2_{\pm 0.6} 36.9_{\pm 1.2} 27.0_{\pm 2.1} 36.8_{\pm 0.7} 29.7_{\pm 0.7}$ CoDA $22.5_{\pm 1.2} 34.2_{\pm 1.0} 35.7_{\pm 2.0} 25.0_{\pm 1.7} 29.5_{\pm 0.8} 30.0_{\pm 0.9} 30.7_{\pm 1.1} 32.0_{\pm 1.5} 43.2_{\pm 1.3} 35.2_{\pm 2.2} 28.5_{\pm 1.4} 41.3_{\pm 0.3} 32.3_{\pm 0.7}$ DGDIR $24.4_{\pm 0.5} 30.9_{\pm 2.0} 41.0_{\pm 0.7} 27.2_{\pm 1.2} 30.5_{\pm 2.4} 29.6_{\pm 1.7} 30.4_{\pm 2.6} 33.2_{\pm 1.0} 45.5_{\pm 0.2} 37.1_{\pm 1.1} 30.9_{\pm 1.5} 42.0_{\pm 1.0} 33.6_{\pm 0.5}$ Ours $40.5_{\pm 1.4} 45.8_{\pm 2.0} 48.0_{\pm 2.1} 35.1_{\pm 1.0} 39.2_{\pm 0.5} 41.1_{\pm 0.9} 52.4_{\pm 3.0} 46.0_{\pm 2.1} 55.0_{\pm 1.7} 749.0_{\pm 2.1} 43.1_{\pm 1.0} 56.7_{\pm 1.2} 46.0_{\pm 1.1}$

Open-set Cross-domain Retrieval on DomainNet

Methods	Qu-	→Cl	Cl-	→Pa	Pa-	→In	In–	→Sk	Sk-	→Re	Av	/g.
	Shared-set mAP@All / Open-set Acc											
CDS	22.4	58.9	34.5	65.2	25.5	60.7	25.0	59.2	33.7	64.9	28.2	61.8
PCS	23.3	57.8	34.2	67.8	24.9	60.5	27.8	65.4	34.7	66.9	29.0	63.7
DARL	21.9	54.4	32.5	60.2	22.0	53.9	26.6	60.6	32.3	62.8	27.1	58.4
DN2A	22.7	56.6	33.4	60.7	21.9	55.2	24.8	57.8	34.0	61.2	27.4	58.3
UCDIR	24.4	59.0	34.4	67.0	26.7	62.9	25.6	63.4	35.5	68.2	29.3	64.1
CoDA	24.2	58.8	35.6	66.6	27.0	61.1	24.9	58.0	34.6	62.9	29.3	61.5
DGDIR	23.5	57.5	36.0	68.3	25.8	60.6	25.8	59.1	35.0	64.3	29.2	62.0
Ours	30.3	72.9	40.2	88.1	36.0	82.5	31.1	78.2	36.6	83.0	34.8	80.9

Ablation Study

Variations	Offi	ce-31	Office-Home DomainNet							
	Shared-set mAP@All / Open-set Acc									
Ours w/o P.M.	68.3	78.8	45.7	72.6	30.9	70.2				
Ours w/o SEL	72.2	88.3	47.5	81.7	33.0	76.4				
Ours w/o SPDA	62.2	61.9	39.0	60.8	24.4	60.5				
Ours w/o SN^2M	75.0	89.2	48.8	82.8	33.3	80.5				
Ours	77.4	92.5	50.2	86.7	34.8	80.9				