Workshop
|
|
Sample-efficient Adversarial Imitation Learning
Dahuin Jung · Hyungyu Lee · Sungroh Yoon
|
|
Poster
|
|
Pre-trained Adversarial Perturbations
Yuanhao Ban · Yinpeng Dong
|
|
Poster
|
Tue 9:00
|
How Sampling Impacts the Robustness of Stochastic Neural Networks
Sina Däubener · Asja Fischer
|
|
Poster
|
Thu 14:00
|
Adversarial Task Up-sampling for Meta-learning
Yichen WU · Long-Kai Huang · Ying Wei
|
|
Poster
|
Tue 14:00
|
Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization
Omar Montasser · Steve Hanneke · Nati Srebro
|
|
Poster
|
Tue 9:00
|
Retrospective Adversarial Replay for Continual Learning
Lilly Kumari · Shengjie Wang · Tianyi Zhou · Jeff A Bilmes
|
|
Workshop
|
|
An Adversarial Active Sampling-based Data Augmentation Framework for Manufacturable Chip Design
Mingjie Liu · Haoyu Yang · David Pan · Brucek Khailany · Mark Ren
|
|
Poster
|
Wed 9:00
|
Boosting Barely Robust Learners: A New Perspective on Adversarial Robustness
Avrim Blum · Omar Montasser · Greg Shakhnarovich · Hongyang Zhang
|
|
Poster
|
Thu 9:00
|
A Characterization of Semi-Supervised Adversarially Robust PAC Learnability
Idan Attias · Steve Hanneke · Yishay Mansour
|
|
Workshop
|
|
Tabular Data Generation: Can We Fool XGBoost ?
EL Hacen Zein · Tanguy Urvoy
|
|
Poster
|
Tue 14:00
|
Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model
Gen Li · Yuejie Chi · Yuting Wei · Yuxin Chen
|
|