firstbacksecondback
205 Results
Workshop
|
Fri 14:00 |
The Largest Knowledge Graph in Materials Science - Entities, Relations, and Link Prediction through Graph Representation Learning Vineeth Venugopal · Sumit Pai · Elsa Olivetti |
|
Poster
|
Wed 9:00 |
Learning Bipartite Graphs: Heavy Tails and Multiple Components José Vinícius de Miranda Cardoso · Jiaxi Ying · Daniel Palomar |
|
Poster
|
Learning Graph-embedded Key-event Back-tracing for Object Tracking in Event Clouds Zhiyu Zhu · Junhui Hou · Xianqiang Lyu |
||
Poster
|
Thu 14:00 |
DHRL: A Graph-Based Approach for Long-Horizon and Sparse Hierarchical Reinforcement Learning Seungjae Lee · Jigang Kim · Inkyu Jang · H. Jin Kim |
|
Poster
|
Wed 14:00 |
Deep Bidirectional Language-Knowledge Graph Pretraining Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec |
|
Poster
|
Thu 9:00 |
Learning NP-Hard Multi-Agent Assignment Planning using GNN: Inference on a Random Graph and Provable Auction-Fitted Q-learning HYUNWOOK KANG · Taehwan Kwon · Jinkyoo Park · James R. Morrison |
|
Poster
|
Thu 9:00 |
GREED: A Neural Framework for Learning Graph Distance Functions Rishabh Ranjan · Siddharth Grover · Sourav Medya · Venkatesan Chakaravarthy · Yogish Sabharwal · Sayan Ranu |
|
Poster
|
Wed 9:00 |
Large-Scale Differentiable Causal Discovery of Factor Graphs Romain Lopez · Jan-Christian Huetter · Jonathan Pritchard · Aviv Regev |
|
Workshop
|
Fri 6:50 |
Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh |
|
Poster
|
Tue 9:00 |
OTKGE: Multi-modal Knowledge Graph Embeddings via Optimal Transport Zongsheng Cao · Qianqian Xu · Zhiyong Yang · Yuan He · Xiaochun Cao · Qingming Huang |
|
Workshop
|
GLINKX: A Unified Framework for Large-scale Homophilous and Heterophilous Graphs Marios Papachristou · Rishab Goel · Frank Portman · Matthew Miller · Rong Jin |
||
Poster
|
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng |