Skip to yearly menu bar Skip to main content


Orals & Spotlights Track 32: Optimization

Hamed Hassani · Jeffrey A Bilmes


Chat is not available.

Thu 10 Dec. 18:00 - 18:15 PST

Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization

Jonathan Lacotte · Mert Pilanci

We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching. We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT). While current randomized solvers for least-squares optimization prescribe an embedding dimension at least greater than the data dimension, we show that the embedding dimension can be reduced to the effective dimension of the optimization problem, and still preserve high-probability convergence guarantees. In this regard, we derive sharp matrix deviation inequalities over ellipsoids for both Gaussian and SRHT embeddings. Specifically, we improve on the constant of a classical Gaussian concentration bound whereas, for SRHT embeddings, our deviation inequality involves a novel technical approach. Leveraging these bounds, we are able to design a practical and adaptive algorithm which does not require to know the effective dimension beforehand. Our method starts with an initial embedding dimension equal to 1 and, over iterations, increases the embedding dimension up to the effective one at most. Hence, our algorithm improves the state-of-the-art computational complexity for solving regularized least-squares problems. Further, we show numerically that it outperforms standard iterative solvers such as the conjugate gradient method and its pre-conditioned version on several standard machine learning datasets.

Thu 10 Dec. 18:15 - 18:30 PST

The Primal-Dual method for Learning Augmented Algorithms

Etienne Bamas · Andreas Maggiori · Ola Svensson

The extension of classical online algorithms when provided with predictions is a new and active research area. In this paper, we extend the primal-dual method for online algorithms in order to incorporate predictions that advise the online algorithm about the next action to take. We use this framework to obtain novel algorithms for a variety of online covering problems. We compare our algorithms to the cost of the true and predicted offline optimal solutions and show that these algorithms outperform any online algorithm when the prediction is accurate while maintaining good guarantees when the prediction is misleading.

Thu 10 Dec. 18:30 - 18:45 PST

Fully Dynamic Algorithm for Constrained Submodular Optimization

Silvio Lattanzi · Slobodan Mitrović · Ashkan Norouzi-Fard · Jakub Tarnawski · Morteza Zadimoghaddam

The task of maximizing a monotone submodular function under a cardinality constraint is at the core of many machine learning and data mining applications, including data summarization, sparse regression and coverage problems. We study this classic problem in the fully dynamic setting, where elements can be both inserted and removed. Our main result is a randomized algorithm that maintains an efficient data structure with a poly-logarithmic amortized update time and yields a $(1/2-epsilon)$-approximate solution. We complement our theoretical analysis with an empirical study of the performance of our algorithm.

Thu 10 Dec. 18:45 - 19:00 PST


Thu 10 Dec. 19:00 - 19:10 PST

Submodular Maximization Through Barrier Functions

Ashwinkumar Badanidiyuru · Amin Karbasi · Ehsan Kazemi · Jan Vondrak

In this paper, we introduce a novel technique for constrained submodular maximization, inspired by barrier functions in continuous optimization. This connection not only improves the running time for constrained submodular maximization but also provides the state of the art guarantee. More precisely, for maximizing a monotone submodular function subject to the combination of a $k$-matchoid and $\ell$-knapsack constraints (for $\ell\leq k$), we propose a potential function that can be approximately minimized. Once we minimize the potential function up to an $\epsilon$ error, it is guaranteed that we have found a feasible set with a $2(k+1+\epsilon)$-approximation factor which can indeed be further improved to $(k+1+\epsilon)$ by an enumeration technique. We extensively evaluate the performance of our proposed algorithm over several real-world applications, including a movie recommendation system, summarization tasks for YouTube videos, Twitter feeds and Yelp business locations, and a set cover problem.

Thu 10 Dec. 19:10 - 19:20 PST

Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method

Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh

We consider the classical setting of optimizing a nonsmooth Lipschitz continuous convex function over a convex constraint set, when having access to a (stochastic) first-order oracle (FO) for the function and a projection oracle (PO) for the constraint set. It is well known that to achieve $\epsilon$-suboptimality in high-dimensions, $\Theta(\epsilon^{-2})$ FO calls are necessary. This is achieved by the projected subgradient method (PGD). However, PGD also entails $O(\epsilon^{-2})$ PO calls, which may be computationally costlier than FO calls (e.g. nuclear norm constraints). Improving this PO calls complexity of PGD is largely unexplored, despite the fundamental nature of this problem and extensive literature. We present first such improvement. This only requires a mild assumption that the objective function, when extended to a slightly larger neighborhood of the constraint set, still remains Lipschitz and accessible via FO. In particular, we introduce MOPES method, which carefully combines Moreau-Yosida smoothing and accelerated first-order schemes. This is guaranteed to find a feasible $\epsilon$-suboptimal solution using only $O(\epsilon^{-1})$ PO calls and optimal $O(\epsilon^{-2})$ FO calls. Further, instead of a PO if we only have a linear minimization oracle (LMO, a la Frank-Wolfe) to access the constraint set, an extension of our method, MOLES, finds a feasible $\epsilon$-suboptimal solution using $O(\epsilon^{-2})$ LMO calls and FO calls---both match known lower bounds, resolving a question left open since White (1993). Our experiments confirm that these methods achieve significant speedups over the state-of-the-art, for a problem with costly PO and LMO calls.

Thu 10 Dec. 19:20 - 19:30 PST

A Single Recipe for Online Submodular Maximization with Adversarial or Stochastic Constraints

Omid Sadeghi · Prasanna Raut · Maryam Fazel

In this paper, we consider an online optimization problem in which the reward functions are DR-submodular, and in addition to maximizing the total reward, the sequence of decisions must satisfy some convex constraints on average. Specifically, at each round $t\in\{1,\dots,T\}$, upon committing to an action $x_t$, a DR-submodular utility function $f_t(\cdot)$ and a convex constraint function $g_t(\cdot)$ are revealed, and the goal is to maximize the overall utility while ensuring the average of the constraint functions $\frac{1}{T}\sum_{t=1}^T g_t(x_t)$ is non-positive. Such cumulative constraints arise naturally in applications where the average resource consumption is required to remain below a prespecified threshold. We study this problem under an adversarial model and a stochastic model for the convex constraints, where the functions $g_t$ can vary arbitrarily or according to an i.i.d. process over time slots $t\in\{1,\dots,T\}$, respectively. We propose a single algorithm which achieves sub-linear (with respect to $T$) regret as well as sub-linear constraint violation bounds in both settings, without prior knowledge of the regime. Prior works have studied this problem in the special case of linear constraint functions. Our results not only improve upon the existing bounds under linear cumulative constraints, but also give the first sub-linear bounds for general convex long-term constraints.

Thu 10 Dec. 19:30 - 19:40 PST

How many samples is a good initial point worth in Low-rank Matrix Recovery?

Jialun Zhang · Richard Y Zhang

Given a sufficiently large amount of labeled data, the nonconvex low-rank matrix recovery problem contains no spurious local minima, so a local optimization algorithm is guaranteed to converge to a global minimum starting from any initial guess. However, the actual amount of data needed by this theoretical guarantee is very pessimistic, as it must prevent spurious local minima from existing anywhere, including at adversarial locations. In contrast, prior work based on good initial guesses have more realistic data requirements, because they allow spurious local minima to exist outside of a neighborhood of the solution. In this paper, we quantify the relationship between the quality of the initial guess and the corresponding reduction in data requirements. Using the restricted isometry constant as a surrogate for sample complexity, we compute a sharp “threshold” number of samples needed to prevent each specific point on the optimization landscape from becoming a spurious local minima. Optimizing the threshold over regions of the landscape, we see that, for initial points not too close to the ground truth, a linear improvement in the quality of the initial guess amounts to a constant factor improvement in the sample complexity.

Thu 10 Dec. 19:40 - 19:50 PST

Joint Q&A for Preceeding Spotlights

Thu 10 Dec. 19:50 - 20:00 PST

Projection Robust Wasserstein Distance and Riemannian Optimization

Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan

Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work suggests that this quantity is more robust than the standard Wasserstein distance, in particular when comparing probability measures in high-dimensions. However, it is ruled out for practical application because the optimization model is essentially non-convex and non-smooth which makes the computation intractable. Our contribution in this paper is to revisit the original motivation behind WPP/PRW, but take the hard route of showing that, despite its non-convexity and lack of nonsmoothness, and even despite some hardness results proved by~\citet{Niles-2019-Estimation} in a minimax sense, the original formulation for PRW/WPP \textit{can} be efficiently computed in practice using Riemannian optimization, yielding in relevant cases better behavior than its convex relaxation. More specifically, we provide three simple algorithms with solid theoretical guarantee on their complexity bound (one in the appendix), and demonstrate their effectiveness and efficiency by conducing extensive experiments on synthetic and real data. This paper provides a first step into a computational theory of the PRW distance and provides the links between optimal transport and Riemannian optimization.

Thu 10 Dec. 20:00 - 20:10 PST

A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval

Fan Wu · Patrick Rebeschini

We analyze continuous-time mirror descent applied to sparse phase retrieval, which is the problem of recovering sparse signals from a set of magnitude-only measurements. We apply mirror descent to the unconstrained empirical risk minimization problem (batch setting), using the square loss and square measurements. We provide a full convergence analysis of the algorithm in this non-convex setting and prove that, with the hypentropy mirror map, mirror descent recovers any $k$-sparse vector $\mathbf{x}^\star\in\mathbb{R}^n$ with minimum (in modulus) non-zero entry on the order of $\| \mathbf{x}^\star \|_2/\sqrt{k}$ from $k^2$ Gaussian measurements, modulo logarithmic terms. This yields a simple algorithm which, unlike most existing approaches to sparse phase retrieval, adapts to the sparsity level, without including thresholding steps or adding regularization terms. Our results also provide a principled theoretical understanding for Hadamard Wirtinger flow [54], as Euclidean gradient descent applied to the empirical risk problem with Hadamard parametrization can be recovered as a first-order approximation to mirror descent in discrete time.

Thu 10 Dec. 20:10 - 20:20 PST

SGD with shuffling: optimal rates without component convexity and large epoch requirements

Kwangjun Ahn · Chulhee Yun · Suvrit Sra

We study without-replacement SGD for solving finite-sum optimization problems. Specifically, depending on how the indices of the finite-sum are shuffled, we consider the RandomShuffle (shuffle at the beginning of each epoch) and SingleShuffle (shuffle only once) algorithms. First, we establish minimax optimal convergence rates of these algorithms up to poly-log factors. Notably, our analysis is general enough to cover gradient dominated nonconvex costs, and does not rely on the convexity of individual component functions unlike existing optimal convergence results. Secondly, assuming convexity of the individual components, we further sharpen the tight convergence results for RandomShuffle by removing the drawbacks common to all prior arts: large number of epochs required for the results to hold, and extra poly-log factor gaps to the lower bound.

Thu 10 Dec. 20:20 - 20:30 PST

No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix

Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras

Understanding the behavior of no-regret dynamics in general N-player games is a fundamental question in online learning and game theory. A folk result in the field states that, in finite games, the empirical frequency of play under no-regret learning converges to the game’s set of coarse correlated equilibria. By contrast, our understanding of how the day-to-day behavior of the dynamics correlates to the game’s Nash equilibria is much more limited, and only partial results are known for certain classes of games (such as zero-sum or congestion games). In this paper, we study the dynamics of follow the regularized leader (FTRL), arguably the most well-studied class of no-regret dynamics, and we establish a sweeping negative result showing that the notion of mixed Nash equilibrium is antithetical to no-regret learning. Specifically, we show that any Nash equilibrium which is not strict (in that every player has a unique best response) cannot be stable and attracting under the dynamics of FTRL. This result has significant implications for predicting the outcome of a learning process as it shows unequivocally that only strict (and hence, pure) Nash equilibria can emerge as stable limit points thereof.

Thu 10 Dec. 20:30 - 20:40 PST

Joint Q&A for Preceeding Spotlights

Thu 10 Dec. 20:40 - 21:00 PST