Skip to yearly menu bar Skip to main content

Workshop: Machine Learning for Engineering Modeling, Simulation and Design

Simultaneous Process Design and Control Optimization using Reinforcement Learning

Steven Sachio · Antonio del Rio Chanona · Panagiotis Petsagkourakis


With the ever-increasing numbers in population and quality in healthcare, it is inevitable for the demand of energy and natural resources to rise. Therefore, it is important to design highly efficient and sustainable chemical processes in the pursuit of sustainability. The performance of a chemical plant is highly affected by its design and control. A design cannot be evaluated without its controls and vice versa. To optimally address design and control simultaneously, one must formulate a bi-level mixed-integer nonlinear program with a dynamic optimization problem as the inner problem; this, is intractable. However, by computing an optimal policy using reinforcement learning, a controller with close-form expression can be found and embedded into the mathematical program. In this work, an approach using a policy gradient method along with mathematical programming to solve the problem simultaneously is proposed. The approach was tested in two case studies and the performance of the controller was evaluated. It was shown that the proposed approach outperforms current state-of-the-art control strategies. This opens a whole new range of possibilities to address the simultaneous design and control of engineering systems.

Chat is not available.