Processing math: 100%
Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

95 Results

<<   <   Page 3 of 8   >   >>
Poster
Wed 18:30 Gradient descent GAN optimization is locally stable
Vaishnavh Nagarajan · J. Zico Kolter
Poster
Mon 18:30 Large-Scale Quadratically Constrained Quadratic Program via Low-Discrepancy Sequences
Kinjal Basu · Ankan Saha · Shaunak Chatterjee
Poster
Mon 18:30 Influence Maximization with ε-Almost Submodular Threshold Functions
Qiang Li · Wei Chen · Institute of Computing Xiaoming Sun · Institute of Computing Jialin Zhang
Poster
Tue 18:30 Deep Mean-Shift Priors for Image Restoration
Siavash Arjomand Bigdeli · Matthias Zwicker · Paolo Favaro · Meiguang Jin
Poster
Wed 18:30 Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu
Poster
Tue 18:30 Gradient Descent Can Take Exponential Time to Escape Saddle Points
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos
Poster
Tue 18:30 Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
Ziming Zhang · Matthew Brand
Poster
Tue 18:30 Finite sample analysis of the GTD Policy Evaluation Algorithms in Markov Setting
Yue Wang · Wei Chen · Yuting Liu · Zhi-Ming Ma · Tie-Yan Liu
Poster
Wed 18:30 Multi-Information Source Optimization
Matthias Poloczek · Jialei Wang · Peter Frazier
Poster
Wed 18:30 Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer · Itay Hubara · Daniel Soudry
Poster
Mon 18:30 Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds
Yuanyuan Liu · Fanhua Shang · James Cheng · Hong Cheng · Licheng Jiao
Poster
Mon 18:30 On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks
Arturs Backurs · Piotr Indyk · Ludwig Schmidt