Skip to yearly menu bar Skip to main content


Workshop

New Directions in Multiple Kernel Learning

Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach

Hilton: Mt Currie North

Sat 11 Dec, 7:30 a.m. PST

Research on Multiple Kernel Learning (MKL) has matured to the point where efficient systems can be applied out of the box to various application domains. In contrast to last year's workshop, which evaluated the achievements of MKL in the past decade, this workshop looks beyond the standard setting and investigates new directions for MKL.

In particular, we focus on two topics:
1. There are three research areas, which are closely related, but have traditionally been treated separately: learning the kernel, learning distance metrics, and learning the covariance function of a Gaussian process. We therefore would like to bring together researchers from these areas to find a unifying view, explore connections, and exchange ideas.
2. We ask for novel contributions that take new directions, propose innovative approaches, and take unconventional views. This includes research, which goes beyond the limited classical sum-of-kernels setup, finds new ways of combining kernels, or applies MKL in more complex settings.

Taking advantage of the broad variety of research topics at NIPS, the workshop aims to foster collaboration across the borders of the traditional multiple kernel learning community.

Live content is unavailable. Log in and register to view live content