Skip to yearly menu bar Skip to main content


Poster

A Novel Kernel for Learning a Neuron Model from Spike Train Data

Nicholas K Fisher · Arunava Banerjee


Abstract:

From a functional viewpoint, a spiking neuron is a device that transforms input spike trains on its various synapses into an output spike train on its axon. We demonstrate in this paper that the function mapping underlying the device can be tractably learned based on input and output spike train data alone. We begin by posing the problem in a classification based framework. We then derive a novel kernel for an SRM0 model that is based on PSP and AHP like functions. With the kernel we demonstrate how the learning problem can be posed as a Quadratic Program. Experimental results demonstrate the strength of our approach.

Live content is unavailable. Log in and register to view live content