Workshop
|
|
Amortized Decision-Aware Bayesian Experimental Design
Daolang Huang · Yujia Guo · Luigi Acerbi · Samuel Kaski
|
|
Workshop
|
Sat 12:00
|
Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
Drew Nguyen · Reese Pathak · Anastasios Angelopoulos · Stephen Bates · Michael Jordan
|
|
Poster
|
Thu 16:30
|
A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems
Mohammad-Amin Charusaie · Samira Samadi
|
|
Poster
|
Fri 16:30
|
Achieving ~O(1/ϵ) Sample Complexity for Constrained Markov Decision Process
Jiashuo Jiang · Yinyu Ye
|
|
Poster
|
Fri 16:30
|
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic · Hélène Halconruy · Timothée Devergne · Karim Lounici · Massimiliano Pontil
|
|
Workshop
|
|
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li · Yuanzhi Li
|
|
Poster
|
Thu 11:00
|
Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes
Asaf Cassel · Aviv Rosenberg
|
|
Poster
|
Wed 16:30
|
Safe Time-Varying Optimization based on Gaussian Processes with Spatio-Temporal Kernel
Jialin Li · Marta Zagorowska · Giulia De Pasquale · Alisa Rupenyan · John Lygeros
|
|
Poster
|
Fri 16:30
|
Universal Rates of Empirical Risk Minimization
Steve Hanneke · Mingyue Xu
|
|
Workshop
|
|
Adversarial Attacks as Near-Zero Eigenvalues in the Empirical Kernel of Neural Networks
Ouns El Harzli · Bernardo Grau
|
|
Workshop
|
Sat 15:45
|
LLMs for Causal Inference
Jonathan Choi
|
|
Poster
|
Wed 16:30
|
Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond
Alan Jeffares · Alicia Curth · Mihaela van der Schaar
|
|