Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

16 Results

<<   <   Page 1 of 2   >   >>
Workshop
Amortized Decision-Aware Bayesian Experimental Design
Daolang Huang · Yujia Guo · Luigi Acerbi · Samuel Kaski
Workshop
Sat 12:00 Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
Drew Nguyen · Reese Pathak · Anastasios Angelopoulos · Stephen Bates · Michael Jordan
Poster
Thu 16:30 A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems
Mohammad-Amin Charusaie · Samira Samadi
Poster
Fri 16:30 Achieving O~(1/ϵ) Sample Complexity for Constrained Markov Decision Process
Jiashuo Jiang · Yinyu Ye
Poster
Fri 16:30 Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic · Hélène Halconruy · Timothée Devergne · Karim Lounici · Massimiliano Pontil
Workshop
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li · Yuanzhi Li
Poster
Thu 11:00 Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes
Asaf Cassel · Aviv Rosenberg
Poster
Wed 16:30 Safe Time-Varying Optimization based on Gaussian Processes with Spatio-Temporal Kernel
Jialin Li · Marta Zagorowska · Giulia De Pasquale · Alisa Rupenyan · John Lygeros
Poster
Fri 16:30 Universal Rates of Empirical Risk Minimization
Steve Hanneke · Mingyue Xu
Workshop
Adversarial Attacks as Near-Zero Eigenvalues in the Empirical Kernel of Neural Networks
Ouns El Harzli · Bernardo Grau
Workshop
Sat 15:45 LLMs for Causal Inference
Jonathan Choi
Poster
Wed 16:30 Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond
Alan Jeffares · Alicia Curth · Mihaela van der Schaar