Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

22 Results

<<   <   Page 1 of 2   >   >>
Poster
Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks
Wenlin Chen · Hong Ge
Competition
Sat 13:50 #1st Place- MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
Fabien Casenave
Poster
Fri 16:30 Geometric Analysis of Nonlinear Manifold Clustering
Nimita Shinde · Tianjiao Ding · Daniel Robinson · Rene Vidal
Workshop
Sun 15:30 Contributed talk: The State of Julia for Scientific Machine Learning
Edward Berman
Workshop
BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration
Stefanos Pertigkiozoglou · Evangelos Chatzipantazis · Kostas Daniilidis
Workshop
Knowledge Distillation for Teaching Symmetry Invariances
Patrick Odagiu · Nicole Nobili · Fabian Dionys Schrag · Yves Bicker · Yuhui Ding
Workshop
Convergence of Manifold Filter-Combine Networks
David R Johnson · Joyce Chew · Siddharth Viswanath · Edward De Brouwer · Deanna Needell · Smita Krishnaswamy · Michael Perlmutter
Workshop
Gradient of Clifford Neural Networks
Takashi Maruyama · Francesco Alesiani
Workshop
Geometric Deep Learning with Quasiconformal Neural Networks: An Introduction
Nico Alvarado · Hans Lobel
Poster
Thu 16:30 Empowering Active Learning for 3D Molecular Graphs with Geometric Graph Isomorphism
Ronast Subedi · Lu Wei · Wenhan Gao · Shayok Chakraborty · Yi Liu
Workshop
Does equivariance matter at scale?
Johann Brehmer · Sönke Behrends · Pim de Haan · Taco Cohen
Workshop
The State of Julia for Scientific Machine Learning
Edward Berman · Jacob Ginesin