Skip to yearly menu bar Skip to main content


Poster

FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving

Xiaohan Lin · Qingxing Cao · Yinya Huang · Haiming Wang · Jianqiao Lu · Zhengying Liu · Linqi Song · Xiaodan Liang


Abstract:

Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3-8B solves 17.39% (69→81) more problems, and Mistral-7B 12% (75→84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.

Live content is unavailable. Log in and register to view live content