Poster
CogVLM: Visual Expert for Pretrained Language Models
Weihan Wang · Qingsong Lv · Wenmeng Yu · Wenyi Hong · Ji Qi · Yan Wang · Junhui Ji · Zhuoyi Yang · Lei Zhao · Song XiXuan · Jiazheng Xu · Keqin Chen · Bin Xu · Juanzi Li · Yuxiao Dong · Ming Ding · Jie Tang
West Ballroom A-D #6902
We introduce CogVLM, a powerful open-source visual language foundation model. Different from the popular \emph{shallow alignment} method which maps image features into the input space of language model, CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers. As a result, CogVLM enables a deep fusion of vision language features without sacrificing any performance on NLP tasks. CogVLM-17B achieves state-of-the-art performance on 17 classic cross-modal benchmarks, including 1) image captioning datasets: NoCaps, Flicker30k, 2) VQA datasets: OKVQA, TextVQA, OCRVQA, ScienceQA, 3) LVLM benchmarks: MM-Vet, MMBench, SEED-Bench, LLaVABench, POPE, MMMU, MathVista, 4) visual grounding datasets: RefCOCO, RefCOCO+, RefCOCOg, Visual7W. Codes and checkpoints are available at Github.
Live content is unavailable. Log in and register to view live content