Skip to yearly menu bar Skip to main content


Poster

Knowledge Composition using Task Vectors with Learned Anisotropic Scaling

Frederic Z. Zhang · Paul Albert · Cristian Rodriguez-Opazo · Anton van den Hengel · Ehsan Abbasnejad

East Exhibit Hall A-C #3506
[ ] [ Project Page ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Pre-trained models produce strong generic representations that can be adapted via fine-tuning on specialised datasets. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning that enables the model to capture these specialised representations. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks enables modular learning that effectively leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labelled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a parameter-efficient fine-tuning method, particularly with less data, and demonstrate that it can be easily scaled up for higher performance.

Live content is unavailable. Log in and register to view live content