Poster
LLM-Check: Investigating Detection of Hallucinations in Large Language Models
Gaurang Sriramanan · Siddhant Bharti · Vinu Sankar Sadasivan · Shoumik Saha · Priyatham Kattakinda · Soheil Feizi
East Exhibit Hall A-C #3409
While Large Language Models (LLMs) have become immensely popular due to their outstanding performance on a broad range of tasks, these models are prone to producing hallucinations— outputs that are fallacious or fabricated yet often appear plausible or tenable at a glance. In this paper, we conduct a comprehensive investigation into the nature of hallucinations within LLMs and furthermore explore effective techniques for detecting such inaccuracies in various real-world settings. Prior approaches to detect hallucinations in LLM outputs, such as consistency checks or retrieval-based methods, typically assume access to multiple model responses or large databases. These techniques, however, tend to be computationally expensive in practice, thereby limiting their applicability to real-time analysis. In contrast, in this work, we seek to identify hallucinations within a single response in both white-box and black-box settings by analyzing the internal hidden states, attention maps, and output prediction probabilities of an auxiliary LLM. In addition, we also study hallucination detection in scenarios where ground-truth references are also available, such as in the setting of Retrieval-Augmented Generation (RAG). We demonstrate that the proposed detection methods are extremely compute-efficient, with speedups of up to 45x and 450x over other baselines, while achieving significant improvements in detection performance over diverse datasets.
Live content is unavailable. Log in and register to view live content