Poster
Robust Sparse Regression with Non-Isotropic Designs
Chih-Hung Liu · Gleb Novikov
West Ballroom A-D #7109
[
Abstract
]
Thu 12 Dec 4:30 p.m. PST
— 7:30 p.m. PST
Abstract:
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries: oblivious and adaptive.Consider the model $y^*=X^*\beta^*+ \eta$ where $X^*$ is an $n\times d$ random design matrix, $\beta^*\in \mathbb{R}^d$ is a $k$-sparse vector, and the noise $\eta$ is independent of $X^*$ and chosen by the \emph{oblivious adversary}. Apart from the independence of $X^*$, we only require a small fraction entries of $\eta$ to have magnitude at most $1$. The \emph{adaptive adversary} is allowed to arbitrarily corrupt an $\varepsilon$-fraction of the samples $(X_1^*, y_1^*),\ldots, (X_n^*, y_n^*)$.Given the $\varepsilon$-corrupted samples $(X_1, y_1),\ldots, (X_n, y_n)$, the goal is to estimate $\beta^*$. We assume that the rows of $X^*$ are iid samples from some $d$-dimensional distribution $\mathcal{D}$ with zero mean and (unknown) covariance matrix $\Sigma$ with bounded condition number.We design several robust algorithms that outperform the state of the art even in the special case of Gaussian noise $\eta \sim N(0,1)^n$. In particular, we provide a polynomial-time algorithm that with high probability recovers $\beta^*$ up to error $O(\sqrt{\varepsilon})$ as long as $n \ge \tilde{O}(k^2/\varepsilon)$, only assuming some bounds on the third and the fourth moments of $\mathcal{D}$. In addition, prior to this work, even in the special case of Gaussian design $\mathcal{D} = N(0,\Sigma)$ and noise $\eta \sim N(0,1)$, no polynomial time algorithm was known to achieve error $o(\sqrt{\varepsilon})$ in the sparse setting $n < d^2$. We show that under some assumptions on the fourth and the eighth moments of $\mathcal{D}$, there is a polynomial-time algorithm that achieves error $o(\sqrt{\varepsilon})$ as long as $n \ge \tilde{O}(k^4 / \varepsilon^3)$. For Gaussian distribution $\mathcal{D} = N(0,\Sigma)$, this algorithm achieves error $O(\varepsilon^{3/4})$. Moreover, our algorithm achieves error $o(\sqrt{\varepsilon})$ for all log-concave distributions if $\varepsilon \le 1/\text{polylog(d)}$. Our algorithms are based on the filtering of the covariates that uses sum-of-squares relaxations, and weighted Huber loss minimization with $\ell_1$ regularizer. We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries. Furthermore, we complement our algorithmic results with Statistical Query lower bounds, providing evidence that our estimators are likely to have nearly optimal sample complexity.
Live content is unavailable. Log in and register to view live content