Skip to yearly menu bar Skip to main content


Spotlight Poster

Identifying Equivalent Training Dynamics

William Redman · Juan Bello-Rivas · Maria Fonoberova · Ryan Mohr · Yannis Kevrekidis · Igor Mezic

East Exhibit Hall A-C #3405
[ ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Study of the nonlinear evolution deep neural network (DNN) parameters undergo during training has uncovered regimes of distinct dynamical behavior. While a detailed understanding of these phenomena has the potential to advance improvements in training efficiency and robustness, the lack of methods for identifying when DNN models have equivalent dynamics limits the insight that can be gained from prior work. Topological conjugacy, a notion from dynamical systems theory, provides a precise definition of dynamical equivalence, offering a possible route to address this need. However, topological conjugacies have historically been challenging to compute. By leveraging advances in Koopman operator theory, we develop a framework for identifying conjugate and non-conjugate training dynamics. To validate our approach, we demonstrate that it can correctly identify a known equivalence between online mirror descent and online gradient descent. We then utilize it to: identify non-conjugate training dynamics between shallow and wide fully connected neural networks; characterize the early phase of training dynamics in convolutional neural networks; uncover non-conjugate training dynamics in Transformers that do and do not undergo grokking. Our results, across a range of DNN architectures, illustrate the flexibility of our framework and highlight its potential for shedding new light on training dynamics.

Live content is unavailable. Log in and register to view live content