Skip to yearly menu bar Skip to main content


Poster

Persistent Test-time Adaptation in Recurring Testing Scenarios

Trung Hieu Hoang · MinhDuc Vo · Minh Do

West Ballroom A-D #6701
[ ] [ Project Page ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract: Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously. Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods. To answer this question, we introduce a diagnostic setting - **recurring TTA** where environments not only change but also recur over time, creating an extensive data stream. This setting allows us to examine the error accumulation of TTA models, in the most basic scenario, when they are regularly exposed to previous testing environments. Furthermore, we simulate a TTA process on a simple yet representative $\epsilon$-**perturbed Gaussian Mixture Model Classifier**, deriving theoretical insights into the dataset- and algorithm-dependent factors contributing to gradual performance degradation. Our investigation leads us to propose **persistent TTA (PeTTA)**, which senses when the model is diverging towards collapse and adjusts the adaptation strategy, striking a balance between the dual objectives of adaptation and model collapse prevention. The supreme stability of PeTTA over existing approaches, in the face of lifelong TTA scenarios, has been demonstrated over comprehensive experiments on various benchmarks. Our project page is available at [https://hthieu166.github.io/petta](https://hthieu166.github.io/petta).

Live content is unavailable. Log in and register to view live content