Skip to yearly menu bar Skip to main content


Poster

Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis

Zhiyuan Min · Yawei Luo · Jianwen Sun · Yi Yang

East Exhibit Hall A-C #1411
[ ] [ Project Page ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Generalizable 3D Gaussian splitting (3DGS) can reconstruct new scenes from sparse-view observations in a feed-forward inference manner, eliminating the need for scene-specific retraining required in conventional 3DGS. However, existing methods rely heavily on epipolar priors, which can be unreliable in complex real-world scenes, particularly in non-overlapping and occluded regions. In this paper, we propose eFreeSplat, an efficient feed-forward 3DGS-based model for generalizable novel view synthesis that operates independently of epipolar line constraints. To enhance multiview feature extraction with 3D perception, we employ a self-supervised Vision Transformer (ViT) with cross-view completion pre-training on large-scale datasets. Additionally, we introduce an Iterative Cross-view Gaussians Alignment method to ensure consistent depth scales across different views. Our eFreeSplat represents a new paradigm for generalizable novel view synthesis. We evaluate eFreeSplat on wide-baseline novel view synthesis tasks using the RealEstate10K and ACID datasets. Extensive experiments demonstrate that eFreeSplat surpasses state-of-the-art baselines that rely on epipolar priors, achieving superior geometry reconstruction and novel view synthesis quality.

Live content is unavailable. Log in and register to view live content