Skip to yearly menu bar Skip to main content


Poster

Guided Trajectory Generation with Diffusion Models for Offline Model-based Optimization

Taeyoung Yun · Sujin Yun · Jaewoo Lee · Jinkyoo Park

West Ballroom A-D #6201
[ ]
Wed 11 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Optimizing complex and high-dimensional black-box functions is ubiquitous in science and engineering fields. Unfortunately, the online evaluation of these functions is restricted due to time and safety constraints in most cases. In offline model-based optimization (MBO), we aim to find a design that maximizes the target function using only a pre-existing offline dataset. While prior methods consider forward or inverse approaches to address the problem, these approaches are limited by conservatism and the difficulty of learning highly multi-modal mappings. Recently, there has been an emerging paradigm of learning to improve solutions with synthetic trajectories constructed from the offline dataset. In this paper, we introduce a novel conditional generative modeling approach to produce trajectories toward high-scoring regions. First, we construct synthetic trajectories toward high-scoring regions using the dataset while injecting locality bias for consistent improvement directions. Then, we train a conditional diffusion model to generate trajectories conditioned on their scores. Lastly, we sample multiple trajectories from the trained model with guidance to explore high-scoring regions beyond the dataset and select high-fidelity designs among generated trajectories with the proxy function. Extensive experiment results demonstrate that our method outperforms competitive baselines on Design-Bench and its practical variants. The code is publicly available in https://anonymous.4open.science/r/GTG-0D03/.

Live content is unavailable. Log in and register to view live content