Skip to yearly menu bar Skip to main content


Poster

Instructor-inspired Machine Learning for Robust Molecular Property Prediction

Fang Wu · Shuting Jin · Siyuan Li · Stan Z. Li

East Exhibit Hall A-C #3503
[ ] [ Project Page ]
Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST

Abstract:

Machine learning catalyzes a revolution in chemical and biological science. However, its efficacy is heavily dependent on the availability of labeled data, and annotating biochemical data is extremely laborious. To surmount this data sparsity challenge, we present an instructive learning algorithm named InstructMol to measure pseudo-labels' reliability and help the target model leverage large-scale unlabeled data. InstructMol does not require transferring knowledge between multiple domains, which avoids the potential gap between the pretraining and fine-tuning stages. We demonstrated the high accuracy of InstructMol on several real-world molecular datasets and out-of-distribution (OOD) benchmarks.

Live content is unavailable. Log in and register to view live content