Poster
Vitron: A Unified Pixel-level Vision LLM for Understanding, Generating, Segmenting, Editing
Hao Fei · Shengqiong Wu · Hanwang Zhang · Tat-Seng Chua · Shuicheng Yan
East Exhibit Hall A-C #3807
In this paper we present Vitron, a universal pixel-level vision LLM designed for comprehensive understanding, generating, segmenting, and editing of both static images and dynamic videos. Building on top of an LLM backbone, Vitron incorporates encoders for images, videos, and pixel-level regional visuals within its frontend modules, while employing state-of-the-art visual specialists as its backend, via which Vitron supports a spectrum of vision end tasks, spanning visual comprehension to visual generation, from low level to high level. To ensure an effective and precise message passing from LLM to backend modules for function invocation, we propose a novel hybrid method by simultaneously integrating discrete textual instructions and continuous signal embeddings. Further, we design various pixel-level spatiotemporal vision-language alignment learning for Vitron to reach the best fine-grained visual capability. Finally, a cross-task synergy module is advised to learn to maximize the task-invariant fine-grained visual features, enhancing the synergy between different visual tasks. Demonstrated over 12 visual tasks and evaluated across 22 datasets, Vitron showcases its extensive capabilities in the four main vision task clusters. Overall, this work illuminates the great potential of developing a more unified multimodal generalist.
Live content is unavailable. Log in and register to view live content