Skip to yearly menu bar Skip to main content


Poster

Recurrent Reinforcement Learning with Memoroids

Steven Morad · Chris Lu · Ryan Kortvelesy · Stephan Liwicki · Jakob Foerster · Amanda Prorok

West Ballroom A-D #6404
[ ] [ Project Page ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract:

Memory models such as Recurrent Neural Networks (RNNs) and Transformers address Partially Observable Markov Decision Processes (POMDPs) by mapping trajectories to latent Markov states. Neither model scales particularly well to long sequences, especially compared to an emerging class of memory models called Linear Recurrent Models. We discover that the recurrent update of these models resembles a monoid, leading us to reformulate existing models using a novel monoid-based framework that we call memoroids. We revisit the traditional approach to batching in recurrent reinforcement learning, highlighting theoretical and empirical deficiencies. We leverage memoroids to propose a batching method that improves sample efficiency, increases the return, and simplifies the implementation of recurrent loss functions in reinforcement learning.

Live content is unavailable. Log in and register to view live content