Skip to yearly menu bar Skip to main content


Poster

Local Anti-Concentration Class: Logarithmic Regret for Greedy Linear Contextual Bandit

Seok-Jin Kim · Min-hwan Oh

West Ballroom A-D #6700
[ ]
Thu 12 Dec 11 a.m. PST — 2 p.m. PST

Abstract: We study the performance guarantees of exploration-free greedy algorithms for the linear contextual bandit problem. We introduce a novel condition, named the \textit{Local Anti-Concentration} (LAC) condition, which enables a greedy bandit algorithm to achieve provable efficiency. We show that the LAC condition is satisfied by a broad class of distributions, including Gaussian, exponential, uniform, Cauchy, and Student's~$t$ distributions, along with other exponential family distributions and their truncated variants. This significantly expands the class of distributions under which greedy algorithms can perform efficiently. Under our proposed LAC condition, we prove that the cumulative expected regret of the greedy algorithm for the linear contextual bandit is bounded by $\mathcal{O}(\operatorname{poly} \log T)$. Our results establish the widest range of distributions known to date that allow a sublinear regret bound for greedy algorithms, further achieving a sharp poly-logarithmic regret.

Live content is unavailable. Log in and register to view live content