Fri 4:00 a.m. - 4:10 a.m.
|
Introduction and opening remarks
(
Opening remarks
)
>
SlidesLive Video
|
馃敆
|
Fri 4:10 a.m. - 4:25 a.m.
|
Provable Active Learning of Neural Networks for Parametric PDEs
(
Spotlight
)
>
link
|
Aarshvi Gajjar 路 Chinmay Hegde 路 Christopher Musco
馃敆
|
Fri 4:25 a.m. - 4:40 a.m.
|
PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers
(
Spotlight
)
>
link
SlidesLive Video
|
Namgyu Kang 路 Byeonghyeon Lee 路 Youngjoon Hong 路 Seok-Bae Yun 路 Eunbyung Park
馃敆
|
Fri 4:40 a.m. - 4:55 a.m.
|
Bridging the Gap Between Coulomb GAN and Gradient-regularized WGAN
(
Spotlight
)
>
link
SlidesLive Video
|
Siddarth Asokan 路 Chandra Seelamantula
馃敆
|
Fri 4:55 a.m. - 5:10 a.m.
|
How PINNs cheat: Predicting chaotic motion of a double pendulum
(
Spotlight
)
>
link
SlidesLive Video
|
Sophie Steger 路 Franz M. Rohrhofer 路 Bernhard Geiger
馃敆
|
Fri 5:10 a.m. - 6:05 a.m.
|
Poster Session 1
(
Poster Session 1
)
>
|
馃敆
|
Fri 6:05 a.m. - 6:50 a.m.
|
Keynote Talk 1
(
Keynote Talk 1
)
>
SlidesLive Video
|
Yang Song
馃敆
|
Fri 6:50 a.m. - 7:05 a.m.
|
Blind Drifting: Diffusion models with a linear SDE drift term for blind image restoration tasks
(
Spotlight
)
>
link
SlidesLive Video
|
Simon Welker 路 Henry Chapman 路 Timo Gerkmann
馃敆
|
Fri 7:05 a.m. - 8:05 a.m.
|
Break
|
馃敆
|
Fri 8:05 a.m. - 8:50 a.m.
|
Keynote Talk 2
(
Keynote Talk 2
)
>
|
Rose Yu
馃敆
|
Fri 8:50 a.m. - 9:05 a.m.
|
A Universal Abstraction for Hierarchical Hopfield Networks
(
Spotlight
)
>
link
SlidesLive Video
|
Benjamin Hoover 路 Duen Horng Chau 路 Hendrik Strobelt 路 Dmitry Krotov
馃敆
|
Fri 9:05 a.m. - 10:00 a.m.
|
Poster Session 2
(
Poster Session 2
)
>
|
馃敆
|
Fri 10:00 a.m. - 10:45 a.m.
|
Keynote Talk 3
(
Keynote Talk 3
)
>
|
Christopher Rackauckas
馃敆
|
Fri 10:45 a.m. - 10:55 a.m.
|
Closing remarks
(
Closing remarks
)
>
SlidesLive Video
|
馃敆
|
-
|
On the impact of larger batch size in the training of Physics Informed Neural Networks
(
Poster
)
>
link
|
Shyam Sankaran 路 Hanwen Wang 路 Leonardo Ferreira Guilhoto 路 Paris Perdikaris
馃敆
|
-
|
PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by Partial Differential Equations
(
Poster
)
>
link
|
Moshe Eliasof 路 Eldad Haber 路 Eran Treister
馃敆
|
-
|
A Neural ODE Interpretation of Transformer Layers
(
Poster
)
>
link
|
Yaofeng Zhong 路 Tongtao Zhang 路 Amit Chakraborty 路 Biswadip Dey
馃敆
|
-
|
Provable Active Learning of Neural Networks for Parametric PDEs
(
Poster
)
>
link
|
Aarshvi Gajjar 路 Chinmay Hegde 路 Christopher Musco
馃敆
|
-
|
PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers
(
Poster
)
>
link
|
Namgyu Kang 路 Byeonghyeon Lee 路 Youngjoon Hong 路 Seok-Bae Yun 路 Eunbyung Park
馃敆
|
-
|
Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks
(
Poster
)
>
link
|
Junwoo Cho 路 Seungtae Nam 路 Hyunmo Yang 路 Seok-Bae Yun 路 Youngjoon Hong 路 Eunbyung Park
馃敆
|
-
|
LiFe-net: Data-driven Modelling of Time-dependent Temperatures and Charging Statistics Of Tesla鈥檚 LiFePo4 EV Battery
(
Poster
)
>
link
|
Jeyhun Rustamov 路 Luisa Fennert 路 Nico Hoffmann
馃敆
|
-
|
Neural Latent Dynamics Models
(
Poster
)
>
link
|
Nicola Farenga 路 Stefania Fresca 路 Andrea Manzoni
馃敆
|
-
|
Optimal Control of PDEs Using Physics-Informed Neural Networks
(
Poster
)
>
link
|
Saviz Mowlavi 路 Saleh Nabi
馃敆
|
-
|
Physics Informed Symbolic Networks
(
Poster
)
>
link
|
Ritam Majumdar 路 Vishal Jadhav 路 Anirudh Deodhar 路 Shirish Karande 路 Lovekesh Vig 路 Venkataramana Runkana
馃敆
|
-
|
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
(
Poster
)
>
link
|
Shuheng Liu 路 Xiyue Huang 路 Pavlos Protopapas
馃敆
|
-
|
Learning flows of control systems
(
Poster
)
>
link
|
Miguel Aguiar 路 Amritam Das 路 Karl H. Johansson
馃敆
|
-
|
Bridging the Gap Between Coulomb GAN and Gradient-regularized WGAN
(
Poster
)
>
link
|
Siddarth Asokan 路 Chandra Seelamantula
馃敆
|
-
|
Efficient Robustness Verification of Neural Ordinary Differential Equations
(
Poster
)
>
link
|
Mustafa Zeqiri 路 Mark M眉ller 路 Marc Fischer 路 Martin Vechev
馃敆
|
-
|
Solving Singular Liouville Equations Using Deep Learning
(
Poster
)
>
link
|
Yuxiang Ji
馃敆
|
-
|
How PINNs cheat: Predicting chaotic motion of a double pendulum
(
Poster
)
>
link
|
Sophie Steger 路 Franz M. Rohrhofer 路 Bernhard Geiger
馃敆
|
-
|
Structure preserving neural networks based on ODEs
(
Poster
)
>
link
|
Davide Murari 路 Elena Celledoni 路 Brynjulf Owren 路 Carola-Bibiane Sch枚nlieb 路 Ferdia Sherry
馃敆
|
-
|
Blind Drifting: Diffusion models with a linear SDE drift term for blind image restoration tasks
(
Poster
)
>
link
|
Simon Welker 路 Henry Chapman 路 Timo Gerkmann
馃敆
|
-
|
Learned 1-D advection solver to accelerate air quality modeling
(
Poster
)
>
link
|
Manho Park 路 Zhonghua Zheng 路 Nicole Riemer 路 Christopher Tessum
馃敆
|
-
|
Learning Ordinary Differential Equations with the Line Integral Loss Function
(
Poster
)
>
link
|
Albert Johannessen
馃敆
|
-
|
A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data
(
Poster
)
>
link
|
Brydon Eastman 路 Lena Podina 路 Mohammad Kohandel
馃敆
|
-
|
A Universal Abstraction for Hierarchical Hopfield Networks
(
Poster
)
>
link
|
Benjamin Hoover 路 Duen Horng Chau 路 Hendrik Strobelt 路 Dmitry Krotov
馃敆
|
-
|
Modular Flows: Differential Molecular Generation
(
Poster
)
>
link
|
Yogesh Verma 路 Samuel Kaski 路 Markus Heinonen 路 Vikas Garg
馃敆
|
-
|
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
(
Poster
)
>
link
|
Guillaume Morel 路 Lucas Drumetz 路 Nicolas Courty 路 Fran莽ois Rousseau 路 Simon Bena茂chouche
馃敆
|
-
|
Numerical integrators for learning dynamical systems from noisy data
(
Poster
)
>
link
|
H氓kon Noren 路 S酶lve Eidnes 路 Elena Celledoni
馃敆
|
-
|
Experimental study of Neural ODE training with adaptive solver for dynamical systems modeling
(
Poster
)
>
link
|
Alexandre Allauzen 路 Thiago Petrilli Maffei Dardis 路 Hannah De Oliveira Plath
馃敆
|
-
|
Hamiltonian Neural Koopman Operator
(
Poster
)
>
link
|
Jingdong Zhang 路 Qunxi Zhu 路 Wei LIN
馃敆
|
-
|
torchode: A Parallel ODE Solver for PyTorch
(
Poster
)
>
link
|
Marten Lienen 路 Stephan G眉nnemann
馃敆
|