Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

10 Results

<<   <   Page 1 of 1   >>   >
Workshop
FO-PINNs: A First-Order formulation for Physics~Informed Neural Networks
Rini Jasmine Gladstone · Mohammad Amin Nabian · Hadi Meidani
Poster
Thu 14:00 Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck · Siddhartha Mishra
Poster
Tue 9:00 Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations
Ramansh Sharma · Varun Shankar
Workshop
Real-time Health Monitoring of Heat Exchangers using Hypernetworks and PINNs
Ritam Majumdar · Vishal Jadhav · Anirudh Deodhar · Shirish Karande · Lovekesh Vig · Venkataramana Runkana
Workshop
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators
Haydn Maust · Zongyi Li · Yixuan Wang · Anima Anandkumar
Workshop
A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data
Brydon Eastman · Lena Podina · Mohammad Kohandel
Workshop
Fri 4:55 How PINNs cheat: Predicting chaotic motion of a double pendulum
Sophie Steger · Franz M. Rohrhofer · Bernhard Geiger
Workshop
Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks
Junwoo Cho · Seungtae Nam · Hyunmo Yang · Seok-Bae Yun · Youngjoon Hong · Eunbyung Park
Poster
Thu 9:00 PDEBench: An Extensive Benchmark for Scientific Machine Learning
Makoto Takamoto · Timothy Praditia · Raphael Leiteritz · Daniel MacKinlay · Francesco Alesiani · Dirk Pflüger · Mathias Niepert
Workshop
How PINNs cheat: Predicting chaotic motion of a double pendulum
Sophie Steger · Franz M. Rohrhofer · Bernhard Geiger