firstbacksecondback
10 Results
Workshop
|
FO-PINNs: A First-Order formulation for Physics~Informed Neural Networks Rini Jasmine Gladstone · Mohammad Amin Nabian · Hadi Meidani |
||
Poster
|
Thu 14:00 |
Generic bounds on the approximation error for physics-informed (and) operator learning Tim De Ryck · Siddhartha Mishra |
|
Poster
|
Tue 9:00 |
Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations Ramansh Sharma · Varun Shankar |
|
Workshop
|
Real-time Health Monitoring of Heat Exchangers using Hypernetworks and PINNs Ritam Majumdar · Vishal Jadhav · Anirudh Deodhar · Shirish Karande · Lovekesh Vig · Venkataramana Runkana |
||
Workshop
|
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators Haydn Maust · Zongyi Li · Yixuan Wang · Anima Anandkumar |
||
Workshop
|
A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data Brydon Eastman · Lena Podina · Mohammad Kohandel |
||
Workshop
|
Fri 4:55 |
How PINNs cheat: Predicting chaotic motion of a double pendulum Sophie Steger · Franz M. Rohrhofer · Bernhard Geiger |
|
Workshop
|
Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks Junwoo Cho · Seungtae Nam · Hyunmo Yang · Seok-Bae Yun · Youngjoon Hong · Eunbyung Park |
||
Poster
|
Thu 9:00 |
PDEBench: An Extensive Benchmark for Scientific Machine Learning Makoto Takamoto · Timothy Praditia · Raphael Leiteritz · Daniel MacKinlay · Francesco Alesiani · Dirk Pflüger · Mathias Niepert |
|
Workshop
|
How PINNs cheat: Predicting chaotic motion of a double pendulum Sophie Steger · Franz M. Rohrhofer · Bernhard Geiger |