Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

82 Results

<<   <   Page 7 of 7   >>   >
Poster
Tue 14:00 Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
Benjamin Dubois-Taine · Francis Bach · Quentin Berthet · Adrien Taylor
Poster
Tue 9:00 Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason Altschuler · Kunal Talwar
Poster
Tue 14:00 Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
Lijun Zhang · Wei Jiang · Jinfeng Yi · Tianbao Yang
Poster
Tue 9:00 Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution
Antonio Orvieto · Simon Lacoste-Julien · Nicolas Loizou
Poster
Wed 14:00 Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Sally Dong · Haotian Jiang · Yin Tat Lee · Swati Padmanabhan · Guanghao Ye
Poster
Wed 14:00 Local Linear Convergence of Gradient Methods for Subspace Optimization via Strict Complementarity
Ron Fisher · Dan Garber
Poster
Thu 9:00 When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li · Daogao Liu · Tatsunori Hashimoto · Huseyin A. Inan · Janardhan Kulkarni · Yin-Tat Lee · Abhradeep Guha Thakurta
Poster
Tue 9:00 Near-Optimal No-Regret Learning Dynamics for General Convex Games
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm
Poster
Tue 14:00 Frank-Wolfe-based Algorithms for Approximating Tyler's M-estimator
Lior Danon · Dan Garber
Poster
Wed 9:00 A Damped Newton Method Achieves Global O(1k2) and Local Quadratic Convergence Rate
Slavomír Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac