Poster
|
Tue 9:00
|
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng · Ilias Diakonikolas · Rong Ge · Shivam Gupta · Daniel Kane · Mahdi Soltanolkotabi
|
|
Poster
|
Tue 9:00
|
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang · Yunwen Lei · Yiming Ying · Ding-Xuan Zhou
|
|
Poster
|
Thu 9:00
|
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
Colin Wei · Yining Chen · Tengyu Ma
|
|
Poster
|
Wed 14:00
|
On the generalization of learning algorithms that do not converge
Nisha Chandramoorthy · Andreas Loukas · Khashayar Gatmiry · Stefanie Jegelka
|
|
Poster
|
|
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao
|
|
Poster
|
|
Distributed Learning of Finite Gaussian Mixtures
Qiong Zhang · Jiahua Chen
|
|
Poster
|
Thu 14:00
|
Statistical Learning and Inverse Problems: A Stochastic Gradient Approach
Yuri Fonseca · Yuri Saporito
|
|
Poster
|
Thu 14:00
|
Effects of Data Geometry in Early Deep Learning
Saket Tiwari · George Konidaris
|
|
Poster
|
Tue 9:00
|
Learning (Very) Simple Generative Models Is Hard
Sitan Chen · Jerry Li · Yuanzhi Li
|
|
Poster
|
Tue 14:00
|
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev · Samuel Hopkins
|
|
Poster
|
Tue 9:00
|
Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions
Binghui Peng · Andrej Risteski
|
|
Poster
|
Thu 9:00
|
An Analytical Theory of Curriculum Learning in Teacher-Student Networks
Luca Saglietti · Stefano Mannelli · Andrew Saxe
|
|