Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

41 Results

<<   <   Page 2 of 4   >   >>
Poster
Thu 14:00 Detection and Localization of Changes in Conditional Distributions
Lizhen Nie · Dan Nicolae
Poster
Quasi-Newton Methods for Saddle Point Problems
Chengchang Liu · Luo Luo
Poster
Tue 14:00 Fast Bayesian Estimation of Point Process Intensity as Function of Covariates
Hideaki Kim · Taichi Asami · Hiroyuki Toda
Workshop
Stochastic Adaptive Regularization Method with Cubics: A High Probability Complexity Bound
Katya Scheinberg · Miaolan Xie
Workshop
Fri 6:30 Efficient Second-Order Stochastic Methods for Machine Learning
Donald Goldfarb
Poster
A Unified Convergence Theorem for Stochastic Optimization Methods
Xiao Li · Andre Milzarek
Poster
Tue 9:00 Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik
Poster
Thu 9:00 An In-depth Study of Stochastic Backpropagation
Jun Fang · Mingze Xu · Hao Chen · Bing Shuai · Zhuowen Tu · Joseph Tighe
Poster
Tue 14:00 Optimal Algorithms for Decentralized Stochastic Variational Inequalities
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov
Poster
Tue 9:00 Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov
Workshop
A Stochastic Prox-Linear Method for CVaR Minimization
Si Yi Meng · Vasileios Charisopoulos · Robert Gower
Workshop
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov · Eduard Gorbunov · Hugo Berard · Nicolas Loizou