Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

52 Results

<<   <   Page 2 of 5   >   >>
Poster
Wed 14:00 Stochastic Multiple Target Sampling Gradient Descent
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung
Poster
Wed 9:00 Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation Regime
Difan Zou · Jingfeng Wu · Vladimir Braverman · Quanquan Gu · Sham Kakade
Poster
Tue 14:00 Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu · Zhiyuan Li · Sanjeev Arora
Workshop
Self-Stabilization: The Implicit Bias of Gradient Descent at the Edge of Stability
Alex Damian · Eshaan Nichani · Jason Lee
Poster
Tue 9:00 Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
Jiayuan Ye · Reza Shokri
Poster
Wed 14:00 Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li · Tianhao Wang · Jason Lee · Sanjeev Arora
Poster
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Zixuan Wang · Zhouzi Li · Jian Li
Poster
Wed 14:00 Gradient Descent: The Ultimate Optimizer
Kartik Chandra · Audrey Xie · Jonathan Ragan-Kelley · ERIK MEIJER
Workshop
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov · Eduard Gorbunov · Hugo Berard · Nicolas Loizou
Poster
Tue 9:00 Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution
Antonio Orvieto · Simon Lacoste-Julien · Nicolas Loizou
Poster
Tue 14:00 Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions
Kiwon Lee · Andrew Cheng · Elliot Paquette · Courtney Paquette
Poster
Thu 14:00 Statistical Learning and Inverse Problems: A Stochastic Gradient Approach
Yuri Fonseca · Yuri Saporito