Workshop
|
|
Contrasting random and learned features in deep Bayesian linear regression
Jacob Zavatone-Veth · William Tong · Cengiz Pehlevan
|
|
Poster
|
Thu 9:00
|
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor · Wesley Maddox · Pavel Izmailov · Andrew Wilson
|
|
Poster
|
Tue 14:00
|
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam · Satinder Singh
|
|
Poster
|
Thu 14:00
|
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier · Luigi Nardi · Matthias Poloczek
|
|
Poster
|
Tue 9:00
|
Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning
Dilip Arumugam · Benjamin Van Roy
|
|
Poster
|
Thu 14:00
|
Bayesian Risk Markov Decision Processes
Yifan Lin · Yuxuan Ren · Enlu Zhou
|
|
Poster
|
Tue 9:00
|
Laplacian Autoencoders for Learning Stochastic Representations
Marco Miani · Frederik Warburg · Pablo Moreno-Muñoz · Nicki Skafte · Søren Hauberg
|
|
Workshop
|
|
Bayesian Dynamic Causal Discovery
Alexander Tong · Lazar Atanackovic · Jason Hartford · Yoshua Bengio
|
|
Workshop
|
|
Variational Bayesian Inference and Learning for Continuous Switching Linear Dynamical Systems
Jack Goffinet · David Carlson
|
|
Poster
|
Wed 9:00
|
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
Haotian Fu · Shangqun Yu · Michael Littman · George Konidaris
|
|
Workshop
|
|
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Paul Chang · Prakhar Verma · ST John · Victor Picheny · Henry Moss · Arno Solin
|
|
Poster
|
Tue 9:00
|
Generalization Error Bounds on Deep Learning with Markov Datasets
Lan V. Truong
|
|