Skip to yearly menu bar Skip to main content


Poster

Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent

Jason Altschuler · Sinho Chewi · Patrik R Gerber · Austin Stromme

Keywords: [ Optimization ] [ Optimal Transport ]


Abstract:

We study first-order optimization algorithms for computing the barycenter of Gaussian distributions with respect to the optimal transport metric. Although the objective is geodesically non-convex, Riemannian gradient descent empirically converges rapidly, in fact faster than off-the-shelf methods such as Euclidean gradient descent and SDP solvers. This stands in stark contrast to the best-known theoretical results, which depend exponentially on the dimension. In this work, we prove new geodesic convexity results which provide stronger control of the iterates, yielding a dimension-free convergence rate. Our techniques also enable the analysis of two related notions of averaging, the entropically-regularized barycenter and the geometric median, providing the first convergence guarantees for these problems.

Chat is not available.