Skip to yearly menu bar Skip to main content


( events)   Timezone:  
Poster
None
FNeVR: Neural Volume Rendering for Face Animation
Bohan Zeng · Boyu Liu · Hong Li · Xuhui Liu · Jianzhuang Liu · Dapeng Chen · Wei Peng · Baochang Zhang
[ Slides [ Poster [ OpenReview

Face animation, one of the hottest topics in computer vision, has achieved a promising performance with the help of generative models. However, it remains a critical challenge to generate identity preserving and photo-realistic images due to the sophisticated motion deformation and complex facial detail modeling. To address these problems, we propose a Face Neural Volume Rendering (FNeVR) network to fully explore the potential of 2D motion warping and 3D volume rendering in a unified framework. In FNeVR, we design a 3D Face Volume Rendering (FVR) module to enhance the facial details for image rendering. Specifically, we first extract 3D information with a well designed architecture, and then introduce an orthogonal adaptive ray-sampling module for efficient rendering. We also design a lightweight pose editor, enabling FNeVR to edit the facial pose in a simple yet effective way. Extensive experiments show that our FNeVR obtains the best overall quality and performance on widely used talking-head benchmarks.