Program Highlights »
Poster
Tue Dec 4th 10:45 AM -- 12:45 PM @ Room 210 #98
Neural Guided Constraint Logic Programming for Program Synthesis
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel

Synthesizing programs using example input/outputs is a classic problem in artificial intelligence. We present a method for solving Programming By Example (PBE) problems by using a neural model to guide the search of a constraint logic programming system called miniKanren. Crucially, the neural model uses miniKanren's internal representation as input; miniKanren represents a PBE problem as recursive constraints imposed by the provided examples. We explore Recurrent Neural Network and Graph Neural Network models. We contribute a modified miniKanren, drivable by an external agent, available at https://github.com/xuexue/neuralkanren. We show that our neural-guided approach using constraints can synthesize programs faster in many cases, and importantly, can generalize to larger problems.