(31 events) Timezone: America/Chicago
Show all
Toggle Poster Visibility
Fri Dec 09 01:30 AM -- 01:45 AM (CST)
Welcome and Opening Remarks
Fri Dec 09 01:45 AM -- 02:30 AM (CST)
Christos Papadimitriou : A computer scientist thinks about the brain
Fri Dec 09 02:30 AM -- 03:00 AM (CST)
Cristina Savin : Spike-Based Probabilistic Computation
Fri Dec 09 03:00 AM -- 03:30 AM (CST)
Mitya Chklovskii : Toward Biologically Plausible Machine Learning: A Similarity Matching Approach
Fri Dec 09 03:30 AM -- 04:00 AM (CST)
Coffee Break 1a (plus posters)
Fri Dec 09 04:00 AM -- 04:30 AM (CST)
Jonathan Pillow : Scalable Inference for Structured Hierarchical Receptive Field Models
Fri Dec 09 04:30 AM -- 05:00 AM (CST)
Emily Fox : Functional Connectivity in MEG via Graphical Models of Time Series
Fri Dec 09 05:00 AM -- 05:30 AM (CST)
Srini Turaga : Independence testing & Amortized inference, with neural networks, for neuroscience
Fri Dec 09 05:30 AM -- 07:00 AM (CST)
Lunch Day 1
Fri Dec 09 07:00 AM -- 07:30 AM (CST)
Il Memming Park : Dynamical Systems Interpretation of Neural Trajectories
Fri Dec 09 07:30 AM -- 08:00 AM (CST)
David Sussillo : LFADS - Latent Factor Analysis via Dynamical Systems
Fri Dec 09 08:00 AM -- 08:30 AM (CST)
Coffee Break 1b (plus posters)
Fri Dec 09 08:30 AM -- 09:00 AM (CST)
Poster Session 1
Fri Dec 09 09:00 AM -- 09:30 AM (CST)
Eva Dyer
Fri Dec 09 09:30 AM -- 10:00 AM (CST)
Michael Buice
Fri Dec 09 10:00 AM -- 10:30 AM (CST)
Stefan Mihalas : Modeling Optimal Context Integration in Cortical Columns
Fri Dec 09 10:30 AM -- 11:00 AM (CST)
Breakout Discussion Afternoon Session
Sat Dec 10 01:30 AM -- 01:45 AM (CST)
Opening Remarks
Sat Dec 10 01:45 AM -- 02:30 AM (CST)
Yoshua Bengio : Toward Biologically Plausible Deep Learning
Sat Dec 10 02:30 AM -- 03:00 AM (CST)
Surya Ganguli : Deep Neural Models of the Retinal Response to Natural Stimuli
Sat Dec 10 03:00 AM -- 03:30 AM (CST)
Max Welling : Making Deep Learning Efficient Through Sparsification
Sat Dec 10 03:30 AM -- 04:00 AM (CST)
Coffee Break 2a (plus posters)
Sat Dec 10 04:00 AM -- 04:30 AM (CST)
David Cox : Predictive Coding for Unsupervised Feature Learning
Sat Dec 10 04:30 AM -- 05:30 AM (CST)
From Brains to Bits and Back Again
Sat Dec 10 05:30 AM -- 07:00 AM (CST)
Lunch Day 2
Sat Dec 10 07:00 AM -- 07:30 AM (CST)
Fred Hamprecht : Motif Discovery in Functional Brain Data
Sat Dec 10 07:30 AM -- 08:00 AM (CST)
Anima Anandkumar
Sat Dec 10 08:00 AM -- 08:30 AM (CST)
Coffee Break 2b (plus posters)
Sat Dec 10 08:30 AM -- 09:00 AM (CST)
Poster Session 2
Sat Dec 10 09:00 AM -- 09:30 AM (CST)
Kanitscheider : Training Recurrent Networks to Generate Hypotheses About How the Brain Solves Hard Navigation Problems
Sat Dec 10 09:30 AM -- 10:00 AM (CST)
Jorg Lucke : Probabilistic Inference and the Brain: Towards General, Scalable, and Deep Approximations
Successful Page Load