Skip to yearly menu bar Skip to main content


Mexico City Oral Session

Oral 2B Deep Learning 1

Don Alberto 2

Moderators: Amir Globerson · Ofir Lindenbaum

Wed 3 Dec 3:30 p.m. PST — 4:30 p.m. PST
Abstract:
Chat is not available.

Wed 3 Dec. 15:30 - 15:50 PST

A multiscale analysis of mean-field transformers in the moderate interaction regime

Giuseppe Bruno · Federico Pasqualotto · Andrea Agazzi

In this paper, we study the evolution of tokens through the depth of encoder-only transformer models at inference time by modeling them as a system of particles interacting in a mean-field way and studying the corresponding dynamics. More specifically, we consider this problem in the moderate interaction regime, where the number $N$ of tokens is large and the inverse temperature parameter $\beta$ of the model scales together with $N$. In this regime, the dynamics of the system displays a multiscale behavior: a fast phase, where the token empirical measure collapses on a low-dimensional space, an intermediate phase, where the measure further collapses into clusters, and a slow one, where such clusters sequentially merge into a single one. We provide a rigorous characterization of the limiting dynamics in each of these phases and prove convergence in the above mentioned limit, exemplifying our results with some simulations.

Wed 3 Dec. 15:50 - 16:10 PST

The emergence of sparse attention: impact of data distribution and benefits of repetition

Nicolas Zucchet · Francesco D'Angelo · Andrew Lampinen · Stephanie Chan

Emergence is a fascinating property of large language models and neural networks more broadly: as models scale and train for longer, they sometimes develop new abilities in sudden ways. Despite initial studies, we still lack a comprehensive understanding of how and when these abilities emerge. To address this gap, we study the emergence over training of sparse attention, a critical and frequently observed attention pattern in Transformers. By combining theoretical analysis of a toy model with empirical observations on small Transformers trained on a linear regression variant, we uncover the mechanics driving sparse attention emergence and reveal that emergence timing follows power laws based on task structure, architecture, and optimizer choice. We additionally find that repetition can greatly speed up emergence. Finally, we confirm these results on a well-studied in-context associative recall task. Our findings provide a simple, theoretically grounded framework for understanding how data distributions and model design influence the learning dynamics behind one form of emergence.

Although transformer-based models have shown exceptional empirical performance, the fundamental principles governing their training dynamics are inadequately characterized beyond configuration-specific studies. Inspired by empirical evidence showing improved reasoning capabilities under small initialization scales in language models, we employ the gradient flow analytical framework established in \cite{zhou2022towards} to systematically investigate linearized Transformer training dynamics. Our theoretical analysis dissects the dynamics of attention modules into two distinct stages. In the first stage, asymmetric weight perturbations from random initialization sustain non-degenerate gradient dynamics in parameter matrices, facilitating systematic escape from small initialization regimes. Subsequently, these matrices undergo condensation, progressively aligning toward the target orientation. In the second stage, the previously static key-query matrices actively participate in training, driving the normalized matrices toward asymptotic rank collapse. This two-stage framework generalizes classical directional convergence results.