Orals
Representation Entanglement for Generation: Training Diffusion Transformers Is Much Easier Than You Think
Optimal Mistake Bounds for Transductive Online Learning
Understanding and Mitigating Numerical Sources of Nondeterminism in LLM Inference
Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration, such as evaluation batch size, GPU count, and GPU version, can introduce significant differences in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9\% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision—while critical for reproducibility—is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.
Dynam3D: Dynamic Layered 3D Tokens Empower VLM for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) is a core task where embodied agents leverage their spatial mobility to navigate in 3D environments toward designated destinations based on natural language instructions. Recently, video-language large models (Video-VLMs) with strong generalization capabilities and rich commonsense knowledge have shown remarkable performance when applied to VLN tasks. However, these models still encounter the following challenges when applied to real-world 3D navigation: 1) Insufficient understanding of 3D geometry and spatial semantics; 2) Limited capacity for large-scale exploration and long-term environmental memory; 3) Poor adaptability to dynamic and changing environments.To address these limitations, we propose Dynam3D, a dynamic layered 3D representation model that leverages language-aligned, generalizable, and hierarchical 3D representations as visual input to train 3D-VLM in navigation action prediction. Given posed RGB-D images, our Dynam3D projects 2D CLIP features into 3D space and constructs multi-level 3D patch-instance-zone representations for 3D geometric and semantic understanding with a dynamic and layer-wise update strategy. Our Dynam3D is capable of online encoding and localization of 3D instances, and dynamically updates them in changing environments to provide large-scale exploration and long-term memory capabilities for navigation. By leveraging large-scale 3D-language pretraining and task-specific adaptation, our Dynam3D sets new state-of-the-art performance on VLN benchmarks including R2R-CE, REVERIE-CE and NavRAG-CE under monocular settings. Furthermore, experiments for pre-exploration, lifelong memory, and real-world robot validate the effectiveness of practical deployment.
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a family of state-of-the-art vision encoders for image and video understanding. Traditionally, vision encoders have relied on a variety of pretraining objectives, each excelling at different downstream tasks. Surprisingly, after scaling a carefully tuned image pretraining recipe and refining with a robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods: language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together, our PE family of models achieves state-of-the-art results on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, tracking, and depth estimation. We release our models, code, and novel dataset of synthetically and human-annotated videos: https://github.com/facebookresearch/perception_models
Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond)
Large language models (LMs) often struggle to generate diverse, human-like creative content, raising concerns about the long-term homogenization of human thought through repeated exposure to similar outputs. Yet scalable methods for evaluating LM output diversity remain limited, especially beyond narrow tasks such as random number or name generation, or beyond repeated sampling from a single model. To address this gap, we introduce Infinity-Chat, a large-scale dataset of 26K diverse, real-world, open-ended user queries that admit a wide range of plausible answers with no single ground truth. We introduce the first comprehensive taxonomy for characterizing the full spectrum of open-ended prompts posed to LMs, comprising 6 top-level categories (e.g., creative content generation, brainstorm & ideation) that further breaks down to 17 subcategories. Using Infinity-Chat, we present a large-scale study of mode collapse in LMs, revealing a pronounced Artificial Hivemind effect in open-ended generation of LMs, characterized by (1) intra-model repetition, where a single model consistently generates similar responses, and more so (2) inter-model homogeneity, where different models produce strikingly similar outputs. Infinity-Chat also includes 31,250 human annotations, across absolute ratings and pairwise preferences, with 25 independent human annotations per example. This enables studying collective and individual-specific human preferences in response to open-ended queries. Our findings show that state-of-the-art LMs, reward models, and LM judges are less well calibrated to human ratings on model generations that elicit differing idiosyncratic annotator preferences, despite maintaining comparable overall quality. Overall, INFINITY-CHAT presents the first large-scale resource for systematically studying real-world open-ended queries to LMs, revealing critical insights to guide future research for mitigating long-term AI safety risks posed by the Artificial Hivemind.
On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity
Modern deep generative models can now produce high-quality synthetic samples that are often indistinguishable from real training data. A growing body of research aims to understand why recent methods, such as diffusion and flow matching techniques, generalize so effectively. Among the proposed explanations are the inductive biases of deep learning architectures and the stochastic nature of the conditional flow matching loss. In this work, we rule out the noisy nature of the loss as a key factor driving generalization in flow matching. First, we empirically show that in high-dimensional settings, the stochastic and closed-form versions of the flow matching loss yield nearly equivalent losses. Then, using state-of-the-art flow matching models on standard image datasets, we demonstrate that both variants achieve comparable statistical performance, with the surprising observation that using the closed-form can even improve performance.
High-Dimensional Calibration from Swap Regret
Does Stochastic Gradient really succeed for bandits?
Interactive Cross-modal Learning for Text-3D Scene Retrieval
Text-3D Scene Retrieval (T3SR) aims to retrieve relevant scenes using linguistic queries. Although traditional T3SR methods have made significant progress in capturing fine-grained associations, they implicitly assume that query descriptions are information-complete. In practical deployments, however, limited by the capabilities of users and models, it is difficult or even impossible to directly obtain a perfect textual query suiting the entire scene and model, thereby leading to performance degradation. To address this issue, we propose a novel Interactive Text-3D Scene Retrieval Method (IDeal), which promotes the enhancement of the alignment between texts and 3D scenes through continuous interaction. To achieve this, we present an Interactive Retrieval Refinement framework (IRR), which employs a questioner to pose contextually relevant questions to an answerer in successive rounds that either promote detailed probing or encourage exploratory divergence within scenes. Upon the iterative responses received from the answerer, IRR adopts a retriever to perform both feature-level and semantic-level information fusion, facilitating scene-level interaction and understanding for more precise re-rankings. To bridge the domain gap between queries and interactive texts, we propose an Interaction Adaptation Tuning strategy (IAT). IAT mitigates the discriminability and diversity risks among augmented text features that approximate the interaction text domain, achieving contrastive domain adaptation for our retriever. Extensive experimental results on three datasets demonstrate the superiority of IDeal.
Why Diffusion Models Don’t Memorize: The Role of Implicit Dynamical Regularization in Training
SAVVY: Spatial Awareness via Audio-Visual LLMs through Seeing and Hearing
3D spatial reasoning in dynamic, audio-visual environments is a cornerstone of human cognition yet remains largely unexplored by existing Audio-Visual Large Language Models (AV-LLMs) and benchmarks, which predominantly focus on static or 2D scenes. We introduce SAVVY-Bench, the first benchmark for 3D spatial reasoning in dynamic scenes with synchronized spatial audio. SAVVY-Bench is comprised of thousands of carefully curated question–answer pairs probing both directional and distance relationships involving static and moving objects, and requires fine-grained temporal grounding, consistent 3D localization, and multi-modal annotation. To tackle this challenge, we propose SAVVY, a novel training-free reasoning pipeline that consists of two stages: (i) Egocentric Spatial Tracks Estimation, which leverages AV-LLMs as well as other audio-visual methods to track the trajectories of key objects related to the query using both visual and spatial audio cues, and (ii) Dynamic Global Map Construction, which aggregates multi-modal queried object trajectories and converts them into a unified global dynamic map. Using the constructed map, a final QA answer is obtained through a coordinate transformation that aligns the global map with the queried viewpoint. Empirical evaluation demonstrates that SAVVY substantially enhances performance of state-of-the-art AV-LLMs, setting a new standard and stage for approaching dynamic 3D spatial reasoning in AV-LLMs.
Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To study this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an robust evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and the LMM-as-a-judge approach. We conducted experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models. The evaluation results demonstrate that current models face significant challenges in reasoning-based editing tasks. Even the most powerful model evaluated, GPT-image-1, achieves an accuracy of merely 28.8%. RISEBench effectively highlights the limitations of contemporary editing models, provides valuable insights, and indicates potential future directions for the field of reasoning-aware visual editing. Our code and data have been released at https://github.com/PhoenixZ810/RISEBench.
Agnostic Active Learning Is Always Better Than Passive Learning
A multiscale analysis of mean-field transformers in the moderate interaction regime
PRIMT: Preference-based Reinforcement Learning with Multimodal Feedback and Trajectory Synthesis from Foundation Models
Preference-based reinforcement learning (PbRL) has emerged as a promising paradigm for teaching robots complex behaviors without reward engineering. However, its effectiveness is often limited by two critical challenges: the reliance on extensive human input and the inherent difficulties in resolving query ambiguity and credit assignment during reward learning. In this paper, we introduce PRIMT, a PbRL framework designed to overcome these challenges by leveraging foundation models (FMs) for multimodal synthetic feedback and trajectory synthesis. Unlike prior approaches that rely on single-modality FM evaluations, PRIMT employs a hierarchical neuro-symbolic fusion strategy, integrating the complementary strengths of vision-language models (VLMs) and large language models (LLMs) in evaluating robot behaviors for more reliable and comprehensive feedback. PRIMT also incorporates foresight trajectory generation to warm-start the trajectory buffer with bootstrapped samples, reducing early-stage query ambiguity, and hindsight trajectory augmentation for counterfactual reasoning with a causal auxiliary loss to improve credit assignment. We evaluate PRIMT on 2 locomotion and 6 manipulation tasks on various benchmarks, demonstrating superior performance over FM-based and scripted baselines. Website at https://primt25.github.io/.
The emergence of sparse attention: impact of data distribution and benefits of repetition
Emergence is a fascinating property of large language models and neural networks more broadly: as models scale and train for longer, they sometimes develop new abilities in sudden ways. Despite initial studies, we still lack a comprehensive understanding of how and when these abilities emerge. To address this gap, we study the emergence over training of sparse attention, a critical and frequently observed attention pattern in Transformers. By combining theoretical analysis of a toy model with empirical observations on small Transformers trained on a linear regression variant, we uncover the mechanics driving sparse attention emergence and reveal that emergence timing follows power laws based on task structure, architecture, and optimizer choice. We additionally find that repetition can greatly speed up emergence. Finally, we confirm these results on a well-studied in-context associative recall task. Our findings provide a simple, theoretically grounded framework for understanding how data distributions and model design influence the learning dynamics behind one form of emergence.
Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks
Adaptive Surrogate Gradients for Sequential Reinforcement Learning in Spiking Neural Networks
CoralVQA: A Large-Scale Visual Question Answering Dataset for Coral Reef Image Understanding
Coral reefs are vital yet vulnerable ecosystems that require continuous monitoring to support conservation. While coral reef images provide essential information in coral monitoring, interpreting such images remains challenging due to the need for domain expertise. Visual Question Answering (VQA), powered by Large Vision-Language Models (LVLMs), has great potential in user-friendly interaction with coral reef images. However, applying VQA to coral imagery demands a dedicated dataset that addresses two key challenges: domain-specific annotations and multidimensional questions. In this work, we introduce CoralVQA, the first large-scale VQA dataset for coral reef analysis. It contains 12,805 real-world coral images from 67 coral genera collected from 3 oceans, along with 277,653 question-answer pairs that comprehensively assess ecological and health-related conditions. To construct this dataset, we develop a semi-automatic data construction pipeline in collaboration with marine biologists to ensure both scalability and professional-grade data quality. CoralVQA presents novel challenges and provides a comprehensive benchmark for studying vision-language reasoning in the context of coral reef images. By evaluating several state-of-the-art LVLMs, we reveal key limitations and opportunities. These insights form a foundation for future LVLM development, with a particular emphasis on supporting coral conservation efforts.
OpenHOI: Open-World Hand-Object Interaction Synthesis with Multimodal Large Language Model
Understanding and synthesizing realistic 3D hand-object interactions (HOI) is critical for applications ranging from immersive AR/VR to dexterous robotics. Existing methods struggle with generalization, performing well on closed-set objects and predefined tasks but failing to handle unseen objects or open-vocabulary instructions. We introduce OpenHOI, the first framework for open-world HOI synthesis, capable of generating long-horizon manipulation sequences for novel objects guided by free-form language commands. Our approach integrates a 3D Multimodal Large Language Model (MLLM) fine-tuned for joint affordance grounding and semantic task decomposition, enabling precise localization of interaction regions (e.g., handles, buttons) and breakdown of complex instructions (e.g., “Find a water bottle and take a sip”) into executable sub-tasks. To synthesize physically plausible interactions, we propose an affordance-driven diffusion model paired with a training-free physics refinement stage that minimizes penetration and optimizes affordance alignment. Evaluations across diverse scenarios demonstrate OpenHOI’s superiority over state-of-the-art methods in generalizing to novel object categories, multi-stage tasks, and complex language instructions.
Tighter CMI-Based Generalization Bounds via Stochastic Projection and Quantization
From Condensation to Rank Collapse: A Two-Stage Analysis of Transformer Training Dynamics
Although transformer-based models have shown exceptional empirical performance, the fundamental principles governing their training dynamics are inadequately characterized beyond configuration-specific studies. Inspired by empirical evidence showing improved reasoning capabilities under small initialization scales in language models, we employ the gradient flow analytical framework established in \cite{zhou2022towards} to systematically investigate linearized Transformer training dynamics. Our theoretical analysis dissects the dynamics of attention modules into two distinct stages. In the first stage, asymmetric weight perturbations from random initialization sustain non-degenerate gradient dynamics in parameter matrices, facilitating systematic escape from small initialization regimes. Subsequently, these matrices undergo condensation, progressively aligning toward the target orientation. In the second stage, the previously static key-query matrices actively participate in training, driving the normalized matrices toward asymptotic rank collapse. This two-stage framework generalizes classical directional convergence results.
SAGE: A Unified Framework for Generalizable Object State Recognition with State-Action Graph Embedding
Recognizing the physical states of objects and their transformations within videos is crucial for structured video understanding and enabling robust real-world applications, such as robotic manipulation. However, pretrained vision-language models often struggle to capture these nuanced dynamics and their temporal context, and specialized object state recognition frameworks may not generalize to unseen actions or objects. We introduce SAGE (State-Action Graph Embeddings), a novel framework that offers a unified model of physical state transitions by decomposing states into fine-grained, language-described visual concepts that are sharable across different objects and actions. SAGE initially leverages Large Language Models to construct a State-Action Graph, which is then multimodally refined using Vision-Language Models. Extensive experiments show that our method significantly outperforms baselines, generalizes effectively to unseen objects and actions in open-world settings. SAGE improves the prior state-of-the-art by as much as 14.6% on novel state recognition with less than 5% of its inference time.
State Entropy Regularization for Robust Reinforcement Learning
State entropy regularization has empirically shown better exploration and sample complexity in reinforcement learning (RL). However, its theoretical guarantees have not been studied. In this paper, we show that state entropy regularization improves robustness to structured and spatially correlated perturbations. These types of variation are common in transfer learning but often overlooked by standard robust RL methods, which typically focus on small, uncorrelated changes. We provide a comprehensive characterization of these robustness properties, including formal guarantees under reward and transition uncertainty, as well as settings where the method performs poorly. Much of our analysis contrasts state entropy with the widely used policy entropy regularization, highlighting their different benefits. Finally, from a practical standpoint, we illustrate that compared with policy entropy, the robustness advantages of state entropy are more sensitive to the number of rollouts used for policy evaluation.
Auto-Compressing Networks
Deep neural networks with short residual connections have demonstrated remarkable success across domains, but increasing depth often introduces computational redundancy without corresponding improvements in representation quality. We introduce Auto-Compressing Networks (ACNs), an architectural variant where additive long feedforward connections from each layer to the output replace traditional short residual connections. By analyzing the distinct dynamics induced by this modification, we reveal a unique property we coin as auto-compression—the ability of a network to organically compress information during training with gradient descent, through architectural design alone. Through auto-compression, information is dynamically "pushed" into early layers during training, enhancing their representational quality and revealing potential redundancy in deeper ones. We theoretically show that this property emerges from layer-wise training patterns found only in ACNs, where layers are dynamically utilized during training based on task requirements. We also find that ACNs exhibit enhanced noise robustness compared to residual networks, superior performance in low-data settings, improved transfer learning capabilities, and mitigate catastrophic forgetting suggesting that they learn representations that generalize better despite using fewer parameters. Our results demonstrate up to 18\% reduction in catastrophic forgetting and 30-80\% architectural compression while maintaining accuracy across vision transformers, MLP-mixers, and BERT architectures. These findings establish ACNs as a practical approach to developing efficient neural architectures that automatically adapt their computational footprint to task complexity, while learning robust representations suitable for noisy real-world tasks and continual learning scenarios.
ControlFusion: A Controllable Image Fusion Network with Language-Vision Degradation Prompts
Current image fusion methods struggle with real-world composite degradations and lack the flexibility to accommodate user-specific needs. To address this, we propose ControlFusion, a controllable fusion network guided by language-vision prompts that adaptively mitigates composite degradations. On the one hand, we construct a degraded imaging model based on physical mechanisms, such as the Retinex theory and atmospheric scattering principle, to simulate composite degradations and provide a data foundation for addressing realistic degradations. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features according to degradation prompts, enabling adaptability to varying degradation levels. To support user-specific preferences in visual quality, a text encoder is incorporated to embed user-defined degradation types and levels as degradation prompts. Moreover, a spatial-frequency collaborative visual adapter is designed to autonomously perceive degradations from source images, thereby reducing complete reliance on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly under real-world and compound degradations.
Position: If Innovation in AI systematically Violates Fundamental Rights, Is It Innovation at All?
Artificial intelligence (AI) now permeates critical infrastructures and decisionmaking systems where failures produce social, economic, and democratic harm. This position paper challenges the entrenched belief that regulation and innovation are opposites. As evidenced by analogies from aviation, pharmaceuticals, and welfare systems and recent cases of synthetic misinformation, bias and unaccountable decision-making, the absence of well-designed regulation has already created immeasurable damage. Regulation, when thoughtful and adaptive, is not a brake on innovation—it is its foundation. The present position paper examines the EU AI Act as a model of risk-based, responsibility-driven regulation that addresses the Collingridge Dilemma: acting early enough to prevent harm, yet flexibly enough to sustain innovation. Its adaptive mechanisms—regulatory sandboxes, small and medium enterprises (SMEs) support, real-world testing, fundamental rights impact assessment (FRIA)—demonstrate how regulation can accelerate responsibly, rather than delay, technological progress. The position paper summarises how governance tools transform perceived burdens into tangible advantages: legal certainty, consumer trust, and ethical competitiveness. Ultimately, the paper reframes progress: innovation and regulation advance together. By embedding transparency, impact assessments, accountability, and AI literacy into design and deployment, the EU framework defines what responsible innovation truly means—technological ambition disciplined by democratic values and fundamental rights.
More effort is needed to protect pedestrian privacy in the era of AI
In the era of artificial intelligence (AI), pedestrian privacy is increasingly at risk. In research areas such as autonomous driving, computer vision, and surveillance, large datasets are often collected in public spaces, capturing pedestrians without consent or anonymization. These datasets are used to train systems that can identify, track, and analyze individuals, often without their knowledge. Although various technical methods and regional regulations have been proposed to address this issue, existing solutions are either insufficient to protect privacy or compromise data utility, thereby limiting their effectiveness for research. In this paper, we argue that more effort is needed to protect pedestrian privacy in the era of AI while maintaining data utility. We call on the AI and computer vision communities to take pedestrian privacy seriously and to rethink how pedestrian data are collected and anonymized. Collaboration with experts in law and ethics will also be essential for the responsible development of AI. Without stronger action, it will become increasingly difficult for individuals to protect their privacy, and public trust in AI may decline.
Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
A Clean Slate for Offline Reinforcement Learning
Progress in offline reinforcement learning (RL) has been impeded by ambiguous problem definitions and entangled algorithmic designs, resulting in inconsistent implementations, insufficient ablations, and unfair evaluations. Although offline RL explicitly avoids environment interaction, prior methods frequently employ extensive, undocumented online evaluation for hyperparameter tuning, complicating method comparisons. Moreover, existing reference implementations differ significantly in boilerplate code, obscuring their core algorithmic contributions. We address these challenges by first introducing a rigorous taxonomy and a transparent evaluation protocol that explicitly quantifies online tuning budgets. To resolve opaque algorithmic design, we provide clean, minimalistic, single-file implementations of various model-free and model-based offline RL methods, significantly enhancing clarity and achieving substantial speed-ups. Leveraging these streamlined implementations, we propose Unifloral, a unified algorithm that encapsulates diverse prior approaches and enables development within a single, comprehensive hyperparameter space. Using Unifloral with our rigorous evaluation protocol, we develop two novel algorithms - TD3-AWR (model-free) and MoBRAC (model-based) - which substantially outperform established baselines. Our implementation is publicly available at https://github.com/EmptyJackson/unifloral.
Dynamical Low-Rank Compression of Neural Networks with Robustness under Adversarial Attacks
Deployment of neural networks on resource-constrained devices demands models that are both compact and robust to adversarial inputs. However, compression and adversarial robustness often conflict. In this work, we introduce a dynamical low-rank training scheme enhanced with a novel spectral regularizer that controls the condition number of the low-rank core in each layer. This approach mitigates the sensitivity of compressed models to adversarial perturbations without sacrificing clean accuracy. The method is model- and data-agnostic, computationally efficient, and supports rank adaptivity to automatically compress the network at hand. Extensive experiments across standard architectures, datasets, and adversarial attacks show the regularized networks can achieve over 94 compression while recovering or improving adversarial accuracy relative to uncompressed baselines.
Real-Time Hyper-Personalized Generative AI Should Be Regulated to Prevent the Rise of "Digital Heroin"
This position paper argues that real-time generative AI has the potential to become the next wave of addictive digital media, creating a new class of digital content akin to ``digital heroin'' with severe implications for mental health and youth development. By shortening the content-generation feedback loop to mere seconds, these advanced models will soon be able to hyper-personalize outputs on the fly. When paired with misaligned incentives (e.g., maximizing user engagement), this will fuel unprecedented compulsive consumption patterns with far-reaching consequences for mental health, cognitive development, and social stability. Drawing on interdisciplinary research, from clinical observations of social media addiction to neuroscientific studies of dopamine-driven feedback, we illustrate how real-time tailored content generation may erode user autonomy, foment emotional distress, and disproportionately endanger vulnerable groups, such as adolescents. Due to the rapid advancement of generative AI and its potential to induce severe addiction-like effects, we call for strong government oversight akin to existing controls on addictive substances, particularly for minors. We further urge the machine learning community to act proactively by establishing robust design guidelines, collaborating with public health experts, and supporting targeted policy measures to ensure responsible and ethical deployment, rather than paving the way for another wave of unregulated digital dependence.
ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution
Accurate, high-resolution ocean forecasting is crucial for maritime operations and environmental monitoring. While traditional numerical models are capable of producing sub-daily, eddy-resolving forecasts, they are computationally intensive and face challenges in maintaining accuracy at fine spatial and temporal scales. In contrast, recent data-driven approaches offer improved computational efficiency and emerging potential, yet typically operate at daily resolution and struggle with sub-daily predictions due to error accumulation over time. We introduce FuXi-Ocean, the first data-driven global ocean forecasting model achieving six-hourly predictions at eddy-resolving 1/12° spatial resolution, reaching depths of up to 1500 meters. The model architecture integrates a context-aware feature extraction module with a predictive network employing stacked attention blocks. The core innovation is the Mixture-of-Time (MoT) module, which adaptively integrates predictions from multiple temporal contexts by learning variable-specific reliability , mitigating cumulative errors in sequential forecasting. Through comprehensive experimental evaluation, FuXi-Ocean demonstrates superior skill in predicting key variables, including temperature, salinity, and currents, across multiple depths.
Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. We make all of our experimental data and code available.
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features (“math” may split into “algebra”, “geometry”, etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get “absorbed” into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
Exploring Diffusion Transformer Designs via Grafting
In Search of Adam’s Secret Sauce
Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions
As the economic and environmental costs of training and deploying large vision or language models increase dramatically, analog in-memory computing (AIMC) emerges as a promising energy-efficient solution. However, the training perspective, especially its training dynamic, is underexplored. In AIMC hardware, the trainable weights are represented by the conductance of resistive elements and updated using consecutive electrical pulses. While the conductance changes by a constant in response to each pulse, in reality, the change is scaled by asymmetric and non-linear response functions, leading to a non-ideal training dynamic. This paper provides a theoretical foundation for gradient-based training on AIMC hardware with non-ideal response functions. We demonstrate that asymmetric response functions negatively impact Analog SGD by imposing an implicit penalty on the objective. To overcome the issue, we propose residual learning algorithm, which provably converges exactly to a critical point by solving a bilevel optimization problem. We show that the proposed method can be extended to deal with other hardware imperfections like limited response granularity. As far as we know, it is the first paper to investigate the impact of a class of generic non-ideal response functions. The conclusion is supported by simulations validating our theoretical insights.
Deep Compositional Phase Diffusion for Long Motion Sequence Generation
Recent research on motion generation has shown significant progress in generating semantically aligned motion with singular semantics. However, when employing these models to create composite sequences containing multiple semantically generated motion clips, they often struggle to preserve the continuity of motion dynamics at the transition boundaries between clips, resulting in awkward transitions and abrupt artifacts. To address these challenges, we present Compositional Phase Diffusion, which leverages the Semantic Phase Diffusion Module (SPDM) and Transitional Phase Diffusion Module (TPDM) to progressively incorporate semantic guidance and phase details from adjacent motion clips into the diffusion process. Specifically, SPDM and TPDM operate within the latent motion frequency domain established by the pre-trained Action-Centric Motion Phase Autoencoder (ACT-PAE). This allows them to learn semantically important and transition-aware phase information from variable-length motion clips during training. Experimental results demonstrate the competitive performance of our proposed framework in generating compositional motion sequences that align semantically with the input conditions, while preserving phase transitional continuity between preceding and succeeding motion clips. Additionally, motion inbetweening task is made possible by keeping the phase parameter of the input motion sequences fixed throughout the diffusion process, showcasing the potential for extending the proposed framework to accommodate various application scenarios. Codes are available at https://github.com/asdryau/TransPhase.
Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free
Gating mechanisms have been widely utilized, from early models like LSTMs and Highway Networks to recent state space models, linear attention, and also softmax attention. Yet, existing literature rarely examines the specific effects of gating. In this work, we conduct comprehensive experiments to systematically investigate gating-augmented softmax attention variants. Specifically, we perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts (MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our central finding is that a simple modification—applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)—consistently improves performance. This modification also enhances training stability, tolerates larger learning rates, and improves scaling properties. By comparing various gating positions and computational variants, we attribute this effectiveness to two key factors: (1) introducing non-linearity upon the low-rank mapping in the softmax attention, and (2) applying query-dependent sparse gating scores to modulate the SDPA output. Notably, we find this sparse gating mechanism mitigates massive activation, attention sink and enhances long-context extrapolation performance. We also release related codes (https://github.com/qiuzh20/gatedattention}) and models (https://huggingface.co/QwQZh/gatedattention) to facilitate future research. Furthermore, the most effective SDPA output gating is used in the Qwen3-Next models (https://huggingface.co/collections/Qwen/qwen3-next).
Superposition Yields Robust Neural Scaling
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling inversely with model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
Mean Flows for One-step Generative Modeling
Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
Boosting Knowledge Utilization in Multimodal Large Language Models via Adaptive Logits Fusion and Attention Reallocation
Despite their recent progress, Multimodal Large Language Models (MLLMs) often struggle in knowledge-intensive tasks due to the limited and outdated parametric knowledge acquired during training. Multimodal Retrieval Augmented Generation addresses this issue by retrieving contextual knowledge from external databases, thereby enhancing MLLMs with expanded knowledge sources. However, existing MLLMs often fail to fully leverage the retrieved contextual knowledge for response generation. We examine representative MLLMs and identify two major causes, namely, attention bias toward different tokens and knowledge conflicts between parametric and contextual knowledge. To this end, we design Adaptive Logits Fusion and Attention Reallocation (ALFAR), a training-free and plug-and-play approach that improves MLLM responses by maximizing the utility of the retrieved knowledge. Specifically, ALFAR tackles the challenges from two perspectives. First, it alleviates attention bias by adaptively shifting attention from visual tokens to relevant context tokens according to query-context relevance. Second, it decouples and weights parametric and contextual knowledge at output logits, mitigating conflicts between the two types of knowledge. As a plug-and-play method, ALFAR achieves superior performance across diverse datasets without requiring additional training or external tools. Extensive experiments over multiple MLLMs and benchmarks show that ALFAR consistently outperforms the state-of-the-art by large margins. Our code and data are available at https://github.com/Lackel/ALFAR.
EvoLM: In Search of Lost Language Model Training Dynamics
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. By training over 100 LMs with 1B and 4B parameters from scratch, we rigorously evaluate both upstream (language modeling) and downstream (problem-solving) reasoning capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
Large Language Diffusion Models
The capabilities of large language models (LLMs) are widely regarded as relying on autoregressive models (ARMs). We challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA employs a forward data masking process and a reverse generation process, parameterized by a Transformer to predict masked tokens. It provides a principled generative approach for probabilistic inference by optimizing a likelihood lower bound. Across extensive benchmarks on general tasks, math, code, and so on, LLaDA demonstrates strong scalability and performs comparably to our self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue. Moreover, LLaDA addresses the reversal curse, surpassing GPT-4o in a reversal poem completion task. Our findings show the promise of diffusion models for language modeling at scale and challenge the common assumption that core LLM capabilities discussed above inherently depend on ARMs. Project page and codes: \url{https://ml-gsai.github.io/LLaDA-demo/}.
HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as \blg, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. \alg employs learnable matrices with M\"{o}bius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that \alg consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters.
Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
A Snapshot of Influence: A Local Data Attribution Framework for Online Reinforcement Learning
Online reinforcement learning (RL) excels in complex, safety-critical domains but suffers from sample inefficiency, training instability, and limited interpretability. Data attribution provides a principled way to trace model behavior back to training samples, yet existing methods assume fixed datasets, which is violated in online RL where each experience both updates the policy and shapes future data collection. In this paper, we initiate the study of data attribution for online RL, focusing on the widely used Proximal Policy Optimization (PPO) algorithm. We start by establishing a local attribution framework, interpreting model checkpoints with respect to the records in the recent training buffer. We design two target functions, capturing agent action and cumulative return respectively, and measure each record's contribution through gradient similarity between its training loss and these targets. We demonstrate the power of this framework through three concrete applications: diagnosis of learning, temporal analysis of behavior formation, and targeted intervention during training. Leveraging this framework, we further propose an algorithm, iterative influence-based filtering (IIF), for online RL training that iteratively performs experience filtering to refine policy updates. Across standard RL benchmarks (classic control, navigation, locomotion) to RLHF for large language models, IIF reduces sample complexity, speeds up training, and achieves higher returns. Together, these results open a new direction for making online RL more interpretable, efficient, and effective.
KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
MokA: Multimodal Low-Rank Adaptation for MLLMs
In this paper, we reveal that most current efficient multimodal fine-tuning methods are hindered by a key limitation: they are directly borrowed from LLMs, often neglecting the intrinsic differences of multimodal scenarios and even affecting the full utilization of all modalities. Inspired by our empirical observation, we argue that unimodal adaptation and cross-modal adaptation are two essential parts for the effective fine-tuning of MLLMs. From this perspective, we propose Multimodal Low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy that takes multimodal characteristics into consideration. It compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive experiments cover three representative multimodal scenarios (audio-visual-text, visual-text, and speech-text), and multiple LLM backbones (LLaMA2, Qwen2, Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of the proposed method. Ablation studies and efficiency evaluation are also conducted to fully asses our method. Overall, we think MokA provides a more targeted solution for efficient adaptation of MLLMs, paving the way for further exploration.